1
|
Akbari M, Krokan HE. Cytotoxicity and mutagenicity of endogenous DNA base lesions as potential cause of human aging. Mech Ageing Dev 2008; 129:353-65. [PMID: 18355895 DOI: 10.1016/j.mad.2008.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/25/2008] [Accepted: 01/28/2008] [Indexed: 11/26/2022]
Abstract
Endogenous factors constitute a substantial source of damage to the genomic DNA. The type of damage includes a number of different base lesions and single- and double-strand breaks. Unrepaired DNA damage can give rise to mutations and may cause cell death. A number of studies have demonstrated an association between aging and the accumulation of DNA damage. This may be attributed to reduced DNA repair with age, although this is apparently not a general feature for all types of damage and repair mechanisms. Therefore, detailed studies that improve our knowledge of DNA repair systems as well as mutagenic and toxic effects of DNA lesions will help us to gain a better insight into the mechanisms of aging. The aim of this review is to provide a brief description of cytotoxic and mutagenic endogenous DNA lesions that are mainly repaired by base excision repair and single-strand break repair pathways and to discuss the potential role of DNA lesions and DNA repair dysfunction in the onset of human aging.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | |
Collapse
|
2
|
Wong HK, Muftuoglu M, Beck G, Imam SZ, Bohr VA, Wilson DM. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res 2007; 35:4103-13. [PMID: 17567611 PMCID: PMC1919475 DOI: 10.1093/nar/gkm404] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cockayne syndrome B (CSB) protein--defective in a majority of patients suffering from the rare autosomal disorder CS--is a member of the SWI2/SNF2 family with roles in DNA repair and transcription. We demonstrate herein that purified recombinant CSB and the major human apurinic/apyrimidinic (AP) endonuclease, APE1, physically and functionally interact. CSB stimulates the AP site incision activity of APE1 on normal (i.e. fully paired) and bubble AP-DNA substrates, with the latter being more pronounced (up to 6-fold). This activation is ATP-independent, and specific for the human CSB and full-length APE1 protein, as no CSB-dependent stimulation was observed with Escherichia coli endonuclease IV or an N-terminal truncated APE1 fragment. CSB and APE1 were also found in a common protein complex in human cell extracts, and recombinant CSB, when added back to CSB-deficient whole cell extracts, resulted in increased total AP site incision capacity. Moreover, human fibroblasts defective in CSB were found to be hypersensitive to both methyl methanesulfonate (MMS) and 5-hydroxymethyl-2'-deoxyuridine, agents that introduce base excision repair (BER) DNA substrates/intermediates.
Collapse
Affiliation(s)
- Heng-Kuan Wong
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Meltem Muftuoglu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Gad Beck
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Syed Z. Imam
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- *To whom correspondence should be addressed. 410 558 8153410 558 8157
| |
Collapse
|
3
|
Abstract
Natural and exogenous processes can give rise to abasic sites with either a purine or pyrimidine as the base on the opposing strand. The solution state structures of the apyrimidinic DNA duplex, with D6 indicating an abasic site, [sequence: see text] referred to as AD, and the apurinic DNA duplex with a dC17, referred to as CD, have been determined. A particularly striking difference is that the abasic site in CD is predominantly a beta hemiacetal, whereas in AD the alpha and beta forms are equally present. Hydrogen bonding with water by the abasic site and the base on the opposite strand appears to play a large role in determining the structure near the damaged site. Comparison of these structures with that of a duplex DNA containing a thymine glycol at the same position as the abasic site and with that of a duplex DNA containing an abasic site in the middle of a curved DNA sequence offers some insight into the common and distinct structural features of damaged DNA sites.
Collapse
Affiliation(s)
- R D Beger
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|