1
|
Barreto-Vieira DF, Couto-Lima D, Jácome FC, Caldas GC, Barth OM. Dengue, Yellow Fever, Zika and Chikungunya epidemic arboviruses in Brazil: ultrastructural aspects. Mem Inst Oswaldo Cruz 2021; 115:e200278. [PMID: 33566939 PMCID: PMC7860610 DOI: 10.1590/0074-02760200278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/21/2020] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND The impact of arbovirus cocirculation in Brazil is unknown. Dengue virus (DENV) reinfection may result in more intense viraemia or immunopathology, leading to more severe disease. The Zika virus (ZIKV) epidemic in the Americas provided pathogenicity evidence that had not been previously observed in flavivirus infections. In contrast to other flaviviruses, electron microscopy studies have shown that ZIKV may replicate in viroplasm-like structures. Flaviviruses produce an ensemble of structurally different virions, collectively contributing to tissue tropism and virus dissemination. OBJECTIVES AND METHODS In this work, the Aedes albopictus mosquito cell lineage (C6/36 cells) and kidney epithelial cells from African green monkeys (Vero cells) were infected with samples of the main circulating arboviruses in Brazil [DENV-1, DENV-2, DENV-3, DENV-4, ZIKV, Yellow Fever virus (YFV) and Chikungunya virus (CHIKV)], and ultrastructural studies by transmission electron microscopy were performed. FINDINGS We observed that ZIKV, the DENV serotypes, YFV and CHIKV particles are spherical. ZIKV, DENV-1, -2, -3 and -4 presented diameters of 40-50 nm, and CHIKV presented approximate diameters of 50-60 nm. Viroplasm-like structures was observed in ZIKV replication cycle. MAIN CONCLUSIONS The morphogenesis of these arboviruses is similar to what has been presented in previous studies. However, we understand that further studies are needed to investigate the relationship between viroplasm-like structures and ZIKV replication dynamics.
Collapse
Affiliation(s)
- Debora Ferreira Barreto-Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
| | - Dinair Couto-Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, RJ, Brasil
| | - Fernanda Cunha Jácome
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
| | - Gabriela Cardoso Caldas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
| | - Ortrud Monika Barth
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J Virol 2014; 88:4687-97. [PMID: 24522909 DOI: 10.1128/jvi.00118-14] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED During dengue virus infection of host cells, intracellular membranes are rearranged into distinct subcellular structures such as double-membrane vesicles, convoluted membranes, and tubular structures. Recent electron tomographic studies have provided a detailed three-dimensional architecture of the double-membrane vesicles, representing the sites of dengue virus replication, but temporal and spatial evidence linking membrane morphogenesis with viral RNA synthesis is lacking. Integrating techniques in electron tomography and molecular virology, we defined an early period in virus-infected mosquito cells during which the formation of a virus-modified membrane structure, the double-membrane vesicle, is proportional to the rate of viral RNA synthesis. Convoluted membranes were absent in dengue virus-infected C6/36 cells. Electron tomographic reconstructions elucidated a high-resolution view of the replication complexes inside vesicles and allowed us to identify distinct pathways of particle formation. Hence, our findings extend the structural details of dengue virus replication within mosquito cells and highlight their differences from mammalian cells. IMPORTANCE Dengue virus induces several distinct intracellular membrane structures within the endoplasmic reticulum of mammalian cells. These structures, including double-membrane vesicles and convoluted membranes, are linked, respectively, with viral replication and viral protein processing. However, dengue virus cycles between two disparate animal groups with differing physiologies: mammals and mosquitoes. Using techniques in electron microscopy, we examined the differences between intracellular structures induced by dengue virus in mosquito cells. Additionally, we utilized techniques in molecular virology to temporally link events in virus replication to the formation of these dengue virus-induced membrane structures.
Collapse
|
3
|
Hoenen A, Gillespie L, Morgan G, van der Heide P, Khromykh A, Mackenzie J. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein. Virology 2014; 448:104-16. [DOI: 10.1016/j.virol.2013.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 06/28/2013] [Accepted: 10/03/2013] [Indexed: 02/04/2023]
|
4
|
Chong MK, Chua AJS, Tan TTT, Tan SH, Ng ML. Microscopy techniques in flavivirus research. Micron 2013; 59:33-43. [PMID: 24530363 DOI: 10.1016/j.micron.2013.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022]
Abstract
The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses.
Collapse
Affiliation(s)
- Mun Keat Chong
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore
| | - Anthony Jin Shun Chua
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456, Singapore
| | - Terence Tze Tong Tan
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore
| | - Suat Hoon Tan
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 12 Medical Drive, MD5, Singapore 117597, Singapore
| | - Mah Lee Ng
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456, Singapore; Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 12 Medical Drive, MD5, Singapore 117597, Singapore.
| |
Collapse
|
5
|
Gangodkar S, Jain P, Dixit N, Ghosh K, Basu A. Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques. JOURNAL OF ELECTRON MICROSCOPY 2010; 59:503-11. [PMID: 20705752 PMCID: PMC7793021 DOI: 10.1093/jmicro/dfq063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 07/06/2010] [Accepted: 07/14/2010] [Indexed: 05/29/2023]
Abstract
The biogenesis events and formation of dengue virus (DENV) in the infected host cells remain incompletely understood. In the present study, we examined the ultrastructural changes associated with DENV-2 replication in three susceptible host cells, C6/36, Vero and SK Hep1, a cell line of human endothelial origin, using transmission electron microscopy, whole-mount grid-cell culture techniques and electron tomography (ET). The prominent feature in C6/36 cells was the formation of large perinuclear vacuoles with mature DENV particles, and on-grid whole-mount examination of the infected Vero cells showed different forms of DENV core structures associated with cellular membranes within 48 h after infection. Distinct multivesicular structures and prominent autophagic vesicles were seen in the infected SK Hep1 cells when compared with the other two cell lines. ET showed the three-dimensional organization of these vesicles as a continuous system. This is the first report of ET-based analysis of DENV-2 replication in a human endothelial cell line. These results further emphasizes the strong role played by intracellular host membranes-virus interactions in the biogenesis of DENV and strongly argues for the possibility of targeting compounds to block such structure formation as key anti-dengue agents.
Collapse
Affiliation(s)
- Shobha Gangodkar
- Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001,India
| | - Preksha Jain
- Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001,India
| | - Nishikant Dixit
- Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001,India
| | - Kanjaksha Ghosh
- National Institute of Immunohematology (ICMR), 13th Floor KEM Hospital, Parel, Mumbai, India
| | - Atanu Basu
- Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001,India
| |
Collapse
|
6
|
Do viruses subvert cholesterol homeostasis to induce host cubic membranes? Trends Cell Biol 2010; 20:371-9. [PMID: 20434915 PMCID: PMC7127466 DOI: 10.1016/j.tcb.2010.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 11/25/2022]
Abstract
Biological membranes with cubic morphology are a hallmark of stressed or diseased cellular conditions; both protein–protein interactions and lipid alterations appear to contribute to their biogenesis, yet their specific cellular functions are unknown. The occurrence of cubic membranes strikingly correlates with viral infections; notably, virus entry, proliferation, and release are processes closely linked to cellular cholesterol metabolism, and dys-regulation of cholesterol synthesis at the level of HMG-CoA reductase also induces cubic membrane formation, in the absence of viral infection. We propose that virus-induced cubic membranes could result from viral interference of cellular cholesterol homeostasis, generating a protective membrane environment to facilitate virus assembly and proliferation. Preventing cubic membrane formation might thus disrupt the ‘virus factory’ and offer new avenues to combat viral infections.
Collapse
|
7
|
Růžek D, Vancová M, Tesařová M, Ahantarig A, Kopecký J, Grubhoffer L. Morphological changes in human neural cells following tick-borne encephalitis virus infection. J Gen Virol 2009; 90:1649-1658. [DOI: 10.1099/vir.0.010058-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10 000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed.
Collapse
Affiliation(s)
- Daniel Růžek
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Martina Tesařová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Arunee Ahantarig
- Faculty of Science, Mahidol University, 6 Rama Road, Bangkok 10400, Thailand
| | - Jan Kopecký
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| |
Collapse
|
8
|
Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 2009; 5:365-75. [PMID: 19380115 PMCID: PMC7103389 DOI: 10.1016/j.chom.2009.03.007] [Citation(s) in RCA: 803] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 02/02/2009] [Accepted: 03/13/2009] [Indexed: 01/31/2023]
Abstract
Positive-strand RNA viruses are known to rearrange cellular membranes to facilitate viral genome replication. The biogenesis and three-dimensional organization of these membranes and the link between replication and virus assembly sites is not fully clear. Using electron microscopy, we find Dengue virus (DENV)-induced vesicles, convoluted membranes, and virus particles to be endoplasmic reticulum (ER)-derived, and we detect double-stranded RNA, a presumed marker of RNA replication, inside virus-induced vesicles. Electron tomography (ET) shows DENV-induced membrane structures to be part of one ER-derived network. Furthermore, ET reveals vesicle pores that could enable release of newly synthesized viral RNA and reveals budding of DENV particles on ER membranes directly apposed to vesicle pores. Thus, DENV modifies ER membrane structure to promote replication and efficient encapsidation of the genome into progeny virus. This architecture of DENV replication and assembly sites could explain the coordination of distinct steps of the flavivirus replication cycle.
Collapse
|
9
|
Tan TTT, Bhuvanakantham R, Li J, Howe J, Ng ML. Tyrosine 78 of premembrane protein is essential for assembly of West Nile virus. J Gen Virol 2009; 90:1081-1092. [PMID: 19264649 DOI: 10.1099/vir.0.007872-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Flavivirus premembrane (prM) protein plays an important role in conformational folding of the envelope (E) protein and protects it against premature fusion in acidic vesicles of the Golgi network. Currently, molecular determinants on the prM protein ectodomain which mediate critical steps during the flavivirus assembly process are poorly characterized. In this study, bioinformatics analysis and alanine scanning mutagenesis showed that the amino acid triplet valine 76, tyrosine 78 and glycine 79 is absolutely conserved among flavivirus prM ectodomains. Triple mutations engineered at these residues in prM ectodomain of West Nile virus (WNV) completely abrogated virus infectivity. Site-directed mutagenesis of prM protein revealed that tyrosine 78 of the amino acid triplet was required for virus infectivity and secretion. The mutation did not affect folding, post-translational modifications and trafficking of the prM and E proteins. Ultrastructural studies using transmission electron microscopy confirmed that virus particle formation was blocked by tyrosine 78 mutation. Specificity of assembly defect conferred by tyrosine 78 mutation was demonstrated by positive and negative trans complementation studies. Collectively, these results defined tyrosine 78 as a novel critical determinant present on prM protein ectodomain that is required for flavivirus assembly. Molecular dissection of prM protein function provides the crucial knowledge much needed in the elucidation of flavivirus particle formation.
Collapse
Affiliation(s)
- Terence T T Tan
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, 5 Science Drive 2, National University of Singapore, Singapore 117597
| | - Raghavan Bhuvanakantham
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, 5 Science Drive 2, National University of Singapore, Singapore 117597
| | - Jun Li
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, 5 Science Drive 2, National University of Singapore, Singapore 117597
| | - Josephine Howe
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, 5 Science Drive 2, National University of Singapore, Singapore 117597
| | - Mah-Lee Ng
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, 5 Science Drive 2, National University of Singapore, Singapore 117597
| |
Collapse
|
10
|
Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 2005; 97:147-72. [PMID: 15656780 PMCID: PMC7161905 DOI: 10.1042/bc20040058] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 07/06/2004] [Indexed: 12/13/2022]
Abstract
Genome replication and assembly of viruses often takes place in specific intracellular compartments where viral components concentrate, thereby increasing the efficiency of the processes. For a number of viruses the formation of 'factories' has been described, which consist of perinuclear or cytoplasmic foci that mostly exclude host proteins and organelles but recruit specific cell organelles, building a unique structure. The formation of the viral factory involves a number of complex interactions and signalling events between viral and cell factors. Mitochondria, cytoplasmic membranes and cytoskeletal components frequently participate in the formation of viral factories, supplying basic and common needs for key steps in the viral replication cycle.
Collapse
Affiliation(s)
- Reyes R Novoa
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Chua JJE, Ng MML, Chow VTK. The non-structural 3 (NS3) protein of dengue virus type 2 interacts with human nuclear receptor binding protein and is associated with alterations in membrane structure. Virus Res 2004; 102:151-63. [PMID: 15084397 DOI: 10.1016/j.virusres.2004.01.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 01/19/2004] [Accepted: 01/19/2004] [Indexed: 11/18/2022]
Abstract
Flaviviral infections produce a distinct array of virus-induced intracellular membrane alterations that are associated with the flaviviral replication machinery. Currently, it is still unknown which flaviviral protein(s) is/are responsible for this induction. Using yeast two-hybrid and co-immunoprecipitation analyses, we demonstrated that the NS3 protein of dengue virus type 2 interacted specifically with nuclear receptor binding protein (NRBP), a host cellular protein that influences trafficking between the endoplasmic reticulum (ER) and Golgi, and that interacts with Rac3, a member of the Rho-GTPase family. Co-expression of NS3 and NRBP in baby hamster kidney cells exhibited significant subcellular co-localization, and revealed the redistribution of NRBP from the cytoplasm to the perinuclear region. Furthermore, a set of membrane structures affiliated with the rough ER at the perinuclear region was induced in cells transfected with NS3. These structures are reminiscent of the virus-induced convoluted membranes previously observed in flavivirus-infected cells. This interaction between dengue viral and host cell proteins as well as the formation of the NS3-induced membrane structures suggest that NS3 may subvert the role of NRBP in ER-Golgi trafficking.
Collapse
Affiliation(s)
- John J E Chua
- Programme in Infectious Diseases, Department of Microbiology, Faculty of Medicine, National University of Singapore, Kent Ridge, Singapore 117597, Singapore
| | | | | |
Collapse
|
12
|
Affiliation(s)
- Brett D Lindenbach
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
13
|
Lobigs M, Müllbacher A, Regner M. MHC class I up-regulation by flaviviruses: Immune interaction with unknown advantage to host or pathogen. Immunol Cell Biol 2003; 81:217-23. [PMID: 12752686 DOI: 10.1046/j.1440-1711.2003.01161.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In contrast to many other viruses that escape from cytotoxic T cell recognition by down-regulating major histocompatibility complex class I-restricted antigen presentation, flavivirus infection of mammalian cells up-regulates cell surface expression of major histocompatibility complex class I molecules. Two putative mechanisms for flavivirus-induced major histocompatibility complex class I up-regulation, one via activation of the transcription factor NF-kappaB, the second by augmentation of peptide import into the lumen of the endoplasmic reticulum, are reviewed, and the biological effect of the flavivirus-mediated phenomenon on target cell recognition by natural killer and cytotoxic T cells is addressed. Finally, we speculate on the physiological role of flavivirus-mediated modulation of major histocompatibility complex class I antigen presentation in the context of the biology of flavivirus transmission between the vertebrate host and arthropod vector and suggest that it may represent a strategy for immune evasion from the natural killer cell response or, alternatively, that up-regulation of major histocompatibility complex class I is a by-product of flavivirus replication without significance for virus growth.
Collapse
Affiliation(s)
- Mario Lobigs
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
14
|
Lim SP, Soo HM, Tan YH, Brenner S, Horstmann H, MacKenzie JM, Ng ML, Lim SG, Hong WJ. Inducible system in human hepatoma cell lines for hepatitis C virus production. Virology 2002; 303:79-99. [PMID: 12482660 DOI: 10.1006/viro.2002.1687] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We cloned the complete complementary DNA of an isolate of the hepatitis C virus, HCV-S1, into a tetracycline-inducible expression vector and stably transfected it into two human hepatoma cell lines, Huh7 and HepG2. Twenty-six Huh7 and two HepG2-positive clones were obtained after preliminary screening. Two Huh7 (SH-7 and -9) and one HepG2 (G-19) clones were chosen for further characterisation. Expression of HCV proteins in these cells accumulated from 6 h to 4 days posttreatment. Full-length viral plus-strand RNA was detected by Northern analyses. Using RT-PCR and ribonuclease protection assay, we also detected the synthesis of minus-strand HCV RNA. Plus- and minus-strand viral RNA was still detected after treatment with actinomycin D. Indirect immunofluorescence staining with anti-E2, NS4B, and NS5A revealed that these proteins were mostly localised to the endoplasmic reticulum (ER). Culture media from tet-induced SH-9 cells was separated on sucrose density gradients and analysed for the presence of HCV RNA. Viral RNA levels peaked at two separate ranges, one with a buoyant density of 1.08 g/ml and another from 1.17 to 1.39 g/ml. Electron microscopy demonstrated the presence of subviral-like particles (approximately 20-25 nm in diameter) in the cytoplasm of SH-9 and G-19 cells, which were positively labelled by anti-HCV core antibodies. Anti-E2 antibodies strongly labelled cytoplasmic vesicular structures and some viral-like particles. Complete viral particles of about 50 nm which reacted with anti-E2 antibodies were observed in the culture media of tet-induced SH-9 cells following negative staining. Supernatant from tet-treated SH-9 cells was found to infect nai;ve Huh7 and stable Huh7-human CD81 cells.
Collapse
Affiliation(s)
- Siew Pheng Lim
- Collaborative Anti-viral Research Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, 117609, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mackenzie JM, Khromykh AA, Jones MK, Westaway EG. Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 1998; 245:203-15. [PMID: 9636360 DOI: 10.1006/viro.1998.9156] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In a previous study on the replication of Kunjin virus using immunoelectron microscopy (E. G. Westaway, J. M. Mackenzie, M. T. Kenney, M. K. Jones, and A. A. Khromykh, 1997, J. Virol. 71, 6650-6661), NS1 and NS3 were found associated with double-stranded RNA (dsRNA) within vesicle packets (VP) in infected Vero cells, suggesting that these induced membrane structures may be the cytoplasmic sites of RNA replication. NS2B and NS3 (comprising the virus-encoded protease) were colocalized within distinct paracrystalline (PC) or convoluted membranes (CM), also induced in the cytoplasm, suggesting that these membranes are the sites of proteolytic cleavage. In this study we found by immunofluorescence (IF) that the small hydrophobic nonstructural proteins NS2A and NS4A were located in discrete foci in the cytoplasm of infected cells at both 16 and 24 h postinfection, partially coincident with dsRNA foci. In cryosections of infected cells at 24 h, NS2A was located by immunogold labeling primarily within VP, associated with labeled dsRNA. NS2A fused to glutathione S-transferase (GST) bound strongly to the 3' untranslated region of Kunjin RNA and also to the proposed replicase components NS3 and NS5 in cell lysates. NS4A was localized by immunogold labeling within a majority of the virus-induced membranes, including VP, CM, and PC. GST-NS4A bound weakly to the 3' untranslated region of Kunjin RNA but was bound to NS4A strongly and to most of the other viral nonstructural proteins, including NS3 and NS5. Taken together the results indicate that the flavivirus replication complex includes NS2A and NS4A in the VP in addition to the previously identified NS1 and NS3.
Collapse
Affiliation(s)
- J M Mackenzie
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston, Brisbane, Australia.
| | | | | | | |
Collapse
|
16
|
Westaway EG, Mackenzie JM, Kenney MT, Jones MK, Khromykh AA. Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 1997; 71:6650-61. [PMID: 9261387 PMCID: PMC191943 DOI: 10.1128/jvi.71.9.6650-6661.1997] [Citation(s) in RCA: 365] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The subcellular location of the nonstructural proteins NS1, NS2B, and NS3 in Vero cells infected with the flavivirus Kunjin was investigated using indirect immunofluorescence and cryoimmunoelectron microscopy with monospecific antibodies. Comparisons were also made by dual immunolabelling using antibodies to double-stranded RNA (dsRNA), the putative template in the flavivirus replication complex. At 8 h postinfection, the immunofluorescent patterns showed NS1, NS2B, NS3, and dsRNA located in a perinuclear rim with extensions into the peripheral cytoplasm. By 16 h, at the end of the latent period, all patterns had changed to some discrete perinuclear foci associated with a thick cytoplasmic reticulum. By 24 h, this localization in perinuclear foci was more apparent and some foci were dual labelled with antibodies to dsRNA. In immuno-gold-labelled cryosections of infected cells at 24 h, all antibodies were associated with clusters of induced membrane structures in the perinuclear region. Two important and novel observations were made. First, one set of induced membranes comprised vesicle packets of smooth membranes dual labelled with anti-dsRNA and anti-NS1 or anti-NS3 antibodies. Second, adjacent masses of paracrystalline arrays or of convoluted smooth membranes, which appeared to be structurally related, were strongly labelled only with anti-NS2B and anti-NS3 antibodies. Paired membranes similar in appearance to the rough endoplasmic reticulum were also labelled, but less strongly, with antibodies to the three nonstructural proteins. Other paired membranes adjacent to the structures discussed above enclosed accumulated virus particles but were not labelled with any of the four antibodies. The collection of induced membranes may represent virus factories in which translation, RNA synthesis, and virus assembly occur.
Collapse
Affiliation(s)
- E G Westaway
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Australia
| | | | | | | | | |
Collapse
|
17
|
Mackenzie JM, Jones MK, Young PR. Improved membrane preservation of flavivirus-infected cells with cryosectioning. J Virol Methods 1996; 56:67-75. [PMID: 8690769 DOI: 10.1016/0166-0934(95)01916-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ultra-cryomicrotomy and electron microscopy were used to investigate membranous structures in dengue virus-infected mammalian and insect cells. The cryo-sectioned samples displayed ultrastructure comparable to their resin-embedded counterparts with all previously identified virus-induced structures being observed. Structures not previously identified were also found. In particular, membrane-bound packets of vesicles, 100-200 nm in diameter were seen distributed throughout areas of virus-induced membrane proliferation. These packets were clearly distinct from virion arrays. Small smooth membrane vesicles, previously found to contain thread-like enclosures (M.L. Ng, J. Gen. Virol. 68 (1987) 577-582), were frequently observed to contain dense staining material, however the exact nature of this material remains unclear. Virus-induced modification of golgi-like and/or ER membranes was also observed and may represent early events in the generation of the smooth membrane vesicles seen during infection. We suggest that cryosectioning is the method of choice to investigate membrane rearrangement induced by this family of viruses and that a diamond knife and modified staining techniques, as utilised in this report, be employed to enhance morphology and section preservation.
Collapse
Affiliation(s)
- J M Mackenzie
- Sir Albert Sakzewski Virus Research Centre, Royal Childrens' Hospital, Herston, Queensland, Australia.
| | | | | |
Collapse
|