Patchkovskii S, Strong RT, Pickard CJ, Un S. Gauge invariance of the spin-other-orbit contribution to the g-tensors of electron paramagnetic resonance.
J Chem Phys 2005;
122:214101. [PMID:
15974722 DOI:
10.1063/1.1917840]
[Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The spin-other-orbit (SOO) contribution to the g-tensor (DeltagSOO) of electron paramagnetic resonance arises due to the interaction of electron-spin magnetic moment with the magnetic field produced by the orbital motion of other electrons. A similar mechanism is responsible for the leading term in nuclear magnetic-shielding tensors sigma. We demonstrate that analogous to sigma, paramagnetic DeltagSOO contribution exhibits a pronounced dependence on the choice of the magnetic-field gauge. The gauge corrections to DeltagSOO are similar in magnitude, and opposite in sign, to the paramagnetic SOO term. We calculate gauge-invariant DeltagSOO values using gauge-including atomic orbitals and density-functional theory. For organic radicals, complete gauge-invariant DeltagSOO values typically amount to less than 500 parts per million (ppm), and are small compared to other g-tensor contributions. For the first-row transition-metal compounds, DeltagSOO may contribute several thousand ppm to the g-tensor, but are negligible compared to the remaining deviations from experiment. With popular choices for the magnetic-field gauge, the individual gauge-variant contributions may be an order of magnitude higher, and do not provide a reliable estimation of DeltagSOO.
Collapse