1
|
Chen H, Xing G, Xu W, Chen Y, Xia L, Huang H, Huang J, Hong Q, Luo T, Wang H, Wu Q. The adenosine A2A receptor in human sperm: its role in sperm motility and association with in vitro fertilization outcomes. Front Endocrinol (Lausanne) 2024; 15:1410370. [PMID: 38872963 PMCID: PMC11169588 DOI: 10.3389/fendo.2024.1410370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Background The involvement of ATP and cAMP in sperm function has been extensively documented, but the understanding of the role of adenosine and adenosine receptors remains incomplete. This study aimed to examine the presence of adenosine A2A receptor (A2AR) and study the functional role of A2AR in human sperm. Methods The presence and localization of A2AR in human sperm were examined by western blotting and immunofluorescence assays. The functional role of A2AR in sperm was assessed by incubating human sperm with an A2AR agonist (regadenoson) and an A2AR antagonist (SCH58261). The sperm level of A2AR was examined by western blotting in normozoospermic and asthenozoospermic men to evaluate the association of A2AR with sperm motility and in vitro fertilization (IVF) outcomes. Results A2AR with a molecular weight of 43 kDa was detected in the tail of human sperm. SCH58261 decreased the motility, penetration ability, intracellular Ca2+ concentration, and CatSper current of human sperm. Although regadenoson did not affect these sperm parameters, it alleviated the adverse effects of SCH58261 on these parameters. In addition, the mean level of A2AR in sperm from asthenozoospermic men was lower than that in sperm from normozoospermic men. The sperm level of A2AR was positively correlated with progressive motility. Furthermore, the fertilization rate during IVF was lower in men with decreased sperm level of A2AR than in men with normal sperm level of A2AR. Conclusions These results indicate that A2AR is important for human sperm motility and is associated with IVF outcome.
Collapse
Affiliation(s)
- Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Genbao Xing
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Wenqing Xu
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Chen
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Leizhen Xia
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Hua Huang
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Jialv Huang
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Qing Hong
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Tao Luo
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hao Wang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiongfang Wu
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| |
Collapse
|
2
|
Choudhury H, Chellappan DK, Sengupta P, Pandey M, Gorain B. Adenosine Receptors in Modulation of Central Nervous System Disorders. Curr Pharm Des 2020; 25:2808-2827. [PMID: 31309883 DOI: 10.2174/1381612825666190712181955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
Abstract
The ubiquitous signaling nucleoside molecule, adenosine is found in different cells of the human body to provide its numerous pharmacological role. The associated actions of endogenous adenosine are largely dependent on conformational change of the widely expressed heterodimeric G-protein-coupled A1, A2A, A2B, and A3 adenosine receptors (ARs). These receptors are well conserved on the surface of specific cells, where potent neuromodulatory properties of this bioactive molecule reflected by its easy passage through the rigid blood-brainbarrier, to simultaneously act on the central nervous system (CNS). The minimal concentration of adenosine in body fluids (30-300 nM) is adequate to exert its neuromodulatory action in the CNS, whereas the modulatory effect of adenosine on ARs is the consequence of several neurodegenerative diseases. Modulatory action concerning the activation of such receptors in the CNS could be facilitated towards neuroprotective action against such CNS disorders. Our aim herein is to discuss briefly pathophysiological roles of adenosine on ARs in the modulation of different CNS disorders, which could be focused towards the identification of potential drug targets in recovering accompanying CNS disorders. Researches with active components with AR modulatory action have been extended and already reached to the bedside of the patients through clinical research in the improvement of CNS disorders. Therefore, this review consist of recent findings in literatures concerning the impact of ARs on diverse CNS disease pathways with the possible relevance to neurodegeneration.
Collapse
Affiliation(s)
- Hira Choudhury
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Dinesh K Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MA`HSA University, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Ceylan M, Erkan S, Yaglioglu AS, Akdogan Uremis N, Koç E. Antiproliferative Evaluation of Some 2‐[2‐(2‐Phenylethenyl)‐cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles: DFT and Molecular Docking Study. Chem Biodivers 2020; 17:e1900675. [DOI: 10.1002/cbdv.201900675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Mustafa Ceylan
- Department of ChemistryTokat Gaziosmanpaşa University 60250 Tokat Turkey
| | - Sultan Erkan
- Department of Chemistry and Chemical Process TechnologySivas Cumhuriyet University 58140 Sivas Turkey
| | - Ayse Sahin Yaglioglu
- Department of ChemistryFaculty of ScienceÇankırı Karatekin University 18100 Çankırı Turkey
| | | | - Esra Koç
- Department of ChemistryTokat Gaziosmanpaşa University 60250 Tokat Turkey
| |
Collapse
|
4
|
Sachdeva S, Gupta M. Adenosine and its receptors as therapeutic targets: An overview. Saudi Pharm J 2013; 21:245-53. [PMID: 23960840 PMCID: PMC3744929 DOI: 10.1016/j.jsps.2012.05.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/31/2012] [Indexed: 12/14/2022] Open
Abstract
The main goal of the authors is to present an overview of adenosine and its receptors, which are G-protein coupled receptors. The four known adenosine receptor subtypes are discussed along with the therapeutic potential indicating that these receptors can serve as targets for various dreadful diseases.
Collapse
Affiliation(s)
| | - Monika Gupta
- ASBASJSM College of Pharmacy, Bela, Ropar, India
| |
Collapse
|
5
|
Okuda K, Matsushita T, Hirota T, Sasaki K. Polycyclic N-Heterocyclic Compounds, Part 71: Synthesis and Bronchodilator Evaluation of 5-Substituted 1,2-Dihydrofuro[3,2- f][1,7]naphthyridines and Related Compounds. J Heterocycl Chem 2012. [DOI: 10.1002/jhet.846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kensuke Okuda
- Laboratory of Medicinal and Pharmaceutical Chemistry; Gifu Pharmaceutical University; Gifu; 501-1196; Japan
| | - Tetsuo Matsushita
- Faculty of Pharmaceutical Sciences; Okayama University; Okayama; 700-8530; Japan
| | - Takashi Hirota
- Faculty of Pharmaceutical Sciences; Okayama University; Okayama; 700-8530; Japan
| | - Kenji Sasaki
- Faculty of Pharmaceutical Sciences; Okayama University; Okayama; 700-8530; Japan
| |
Collapse
|
6
|
Okuda K, Yoshida M, Hirota T, Sasaki K. Polycyclic N-Heterocyclic Compounds 74: Rearrangement Reaction of 5-Amino-1,2-dihydrofuro[2,3-c]isoquinolines with α,ω-Dibromoalkanes and Evaluation of Product Bronchodilator Activity. SYNTHETIC COMMUN 2011. [DOI: 10.1080/00397911.2010.532899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Kensuke Okuda
- a Laboratory of Medicinal and Pharmaceutical Chemistry, Gifu Pharmaceutical University , Gifu , Japan
| | - Masahiko Yoshida
- b Faculty of Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Takashi Hirota
- b Faculty of Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Kenji Sasaki
- b Faculty of Pharmaceutical Sciences, Okayama University , Okayama , Japan
| |
Collapse
|
7
|
Okuda K, Deguchi H, Kashino S, Hirota T, Sasaki K. Polycyclic N-Heterocyclic Compounds. Part 64: Synthesis of 5-Amino-1,2,6,7-tetrahydrobenzo[f]furo[2,3-c]isoquinolines and Related Compounds. Evaluation of Their Bronchodilator Activity and Effects on Lipoprotein Lipase mRNA Expression. Chem Pharm Bull (Tokyo) 2010; 58:685-9. [DOI: 10.1248/cpb.58.685] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Setsuo Kashino
- Department of Chemistry, Faculty of Science, Okayama University
| | | | - Kenji Sasaki
- Faculty of Pharmaceutical Sciences, Okayama University
| |
Collapse
|
9
|
Mohan CG, Suresh CH, Mishra PC. Effect of optimised hybridization displacement charge on the description of molecular electrostatic potentials of some substituted acetaldehydes. J CHEM SCI 1996. [DOI: 10.1007/bf02869552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Molecular electrostatic potentials and fields: hydrogen bonding, recognition, reactivity and modelling. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1380-7323(96)80046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|