1
|
Le Franc S, Bonan I, Fleury M, Butet S, Barillot C, Lécuyer A, Cogné M. Visual feedback improves movement illusions induced by tendon vibration after chronic stroke. J Neuroeng Rehabil 2021; 18:156. [PMID: 34717672 PMCID: PMC8556973 DOI: 10.1186/s12984-021-00948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Illusion of movement induced by tendon vibration is commonly used in rehabilitation and seems valuable for motor rehabilitation after stroke, by playing a role in cerebral plasticity. The aim was to study if congruent visual cues using Virtual Reality (VR) could enhance the illusion of movement induced by tendon vibration of the wrist among participants with stroke. METHODS We included 20 chronic stroke participants. They experienced tendon vibration of their wrist (100 Hz, 30 times) inducing illusion of movement. Three VR visual conditions were added to the vibration: a congruent moving virtual hand (Moving condition); a static virtual hand (Static condition); or no virtual hand at all (Hidden condition). The participants evaluated for each visual condition the intensity of the illusory movement using a Likert scale, the sensation of wrist's movement using a degree scale and they answered a questionnaire about their preferred condition. RESULTS The Moving condition was significantly superior to the Hidden condition and to the Static condition in terms of illusion of movement (p < 0.001) and the wrist's extension (p < 0.001). There was no significant difference between the Hidden and the Static condition for these 2 criteria. The Moving condition was considered the best one to increase the illusion of movement (in 70% of the participants). Two participants did not feel any illusion of movement. CONCLUSIONS This study showed the interest of using congruent cues in VR in order to enhance the consistency of the illusion of movement induced by tendon vibration among participants after stroke, regardless of their clinical severity. By stimulating the brain motor areas, this visuo-proprioceptive feedback could be an interesting tool in motor rehabilitation. Record number in Clinical Trials: NCT04130711, registered on October 17th 2019 ( https://clinicaltrials.gov/ct2/show/NCT04130711?id=NCT04130711&draw=2&rank=1 ).
Collapse
Affiliation(s)
- Salomé Le Franc
- Rehabilitation Medicine Unit, CHU de Rennes, University Hospital of Rennes, 2, rue Henri Le Guilloux, 35000, Rennes, France.
- Hybrid Unity, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France.
| | - Isabelle Bonan
- Rehabilitation Medicine Unit, CHU de Rennes, University Hospital of Rennes, 2, rue Henri Le Guilloux, 35000, Rennes, France
- Empenn Unity U1228, Inserm, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| | - Mathis Fleury
- Hybrid Unity, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
- Empenn Unity U1228, Inserm, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| | - Simon Butet
- Rehabilitation Medicine Unit, CHU de Rennes, University Hospital of Rennes, 2, rue Henri Le Guilloux, 35000, Rennes, France
- Empenn Unity U1228, Inserm, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| | - Christian Barillot
- Empenn Unity U1228, Inserm, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| | - Anatole Lécuyer
- Hybrid Unity, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| | - Mélanie Cogné
- Rehabilitation Medicine Unit, CHU de Rennes, University Hospital of Rennes, 2, rue Henri Le Guilloux, 35000, Rennes, France
- Hybrid Unity, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| |
Collapse
|
2
|
Le Franc S, Fleury M, Cogne M, Butet S, Barillot C, Lecuyer A, Bonan I. Influence of virtual reality visual feedback on the illusion of movement induced by tendon vibration of wrist in healthy participants. PLoS One 2020; 15:e0242416. [PMID: 33216756 PMCID: PMC7678999 DOI: 10.1371/journal.pone.0242416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction Illusion of movement induced by tendon vibration is an effective approach for motor and sensory rehabilitation in case of neurological impairments. The aim of our study was to investigate which modality of visual feedback in Virtual Reality (VR) associated with tendon vibration of the wrist could induce the best illusion of movement. Methods We included 30 healthy participants in the experiment. Tendon vibration inducing illusion of movement (wrist extension, 100Hz) was applied on their wrist during 3 VR visual conditions (10 times each): a moving virtual hand corresponding to the movement that the participants could feel during the tendon vibration (Moving condition), a static virtual hand (Static condition), or no virtual hand at all (Hidden condition). After each trial, the participants had to quantify the intensity of the illusory movement on a Likert scale, the subjective degree of extension of their wrist and afterwards they answered a questionnaire. Results There was a significant difference between the 3 visual feedback conditions concerning the Likert scale ranking and the degree of wrist’s extension (p<0.001). The Moving condition induced a higher intensity of illusion of movement and a higher sensation of wrist’s extension than the Hidden condition (p<0.001 and p<0.001 respectively) than that of the Static condition (p<0.001 and p<0.001 respectively). The Hidden condition also induced a higher intensity of illusion of movement and a higher sensation of wrist’s extension than the Static condition (p<0.01 and p<0.01 respectively). The preferred condition to facilitate movement’s illusion was the Moving condition (63.3%). Conclusions This study demonstrated the importance of carefully selecting a visual feedback to improve the illusion of movement induced by tendon vibration, and the increase of illusion by adding VR visual cues congruent to the illusion of movement. Further work will consist in testing the same hypothesis with stroke patients.
Collapse
Affiliation(s)
- Salomé Le Franc
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- * E-mail:
| | - Mathis Fleury
- Inria, Rennes, France
- Empenn Unity U1228, Inserm, Inria, University of Rennes, Irisa, Umr Cnrs 6074, Rennes, France
| | - Mélanie Cogne
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
| | - Simon Butet
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
| | - Christian Barillot
- Empenn Unity U1228, Inserm, Inria, University of Rennes, Irisa, Umr Cnrs 6074, Rennes, France
| | | | - Isabelle Bonan
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unity U1228, Inserm, Inria, University of Rennes, Irisa, Umr Cnrs 6074, Rennes, France
| |
Collapse
|
3
|
Seeing Your Foot Move Changes Muscle Proprioceptive Feedback. eNeuro 2019; 6:eN-NWR-0341-18. [PMID: 30923738 PMCID: PMC6437656 DOI: 10.1523/eneuro.0341-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Multisensory effects are found when the input from single senses combines, and this has been well researched in the brain. Presently, we examined in humans the potential impact of visuo-proprioceptive interactions at the peripheral level, using microneurography, and compared it with a similar behavioral task. We used a paradigm where participants had either proprioceptive information only (no vision) or combined visual and proprioceptive signals (vision). We moved the foot to measure changes in the sensitivity of single muscle afferents, which can be altered by the descending fusimotor drive. Visual information interacted with proprioceptive information, where we found that for the same passive movement, the response of muscle afferents increased when the proprioceptive channel was the only source of information, as compared with when visual cues were added, regardless of the attentional level. Behaviorally, when participants looked at their foot moving, they more accurately judged differences between movement amplitudes, than in the absence of visual cues. These results impact our understanding of multisensory interactions throughout the nervous system, where the information from different senses can modify the sensitivity of peripheral receptors. This has clinical implications, where future strategies may modulate such visual signals during sensorimotor rehabilitation.
Collapse
|
4
|
Hand movement illusions show changes in sensory reliance and preservation of multisensory integration with age for kinaesthesia. Neuropsychologia 2018; 119:45-58. [DOI: 10.1016/j.neuropsychologia.2018.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 11/20/2022]
|
5
|
Blanchard C, Roll R, Roll JP, Kavounoudias A. Differential contributions of vision, touch and muscle proprioception to the coding of hand movements. PLoS One 2013; 8:e62475. [PMID: 23626826 PMCID: PMC3633880 DOI: 10.1371/journal.pone.0062475] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/21/2013] [Indexed: 11/24/2022] Open
Abstract
To further elucidate the mechanisms underlying multisensory integration, this study examines the controversial issue of whether congruent inputs from three different sensory sources can enhance the perception of hand movement. Illusory sensations of clockwise rotations of the right hand were induced by either separately or simultaneously stimulating visual, tactile and muscle proprioceptive channels at various intensity levels. For this purpose, mechanical vibrations were applied to the pollicis longus muscle group in the subjects’ wrists, and a textured disk was rotated under the palmar skin of the subjects’ right hands while a background visual scene was projected onto the rotating disk. The elicited kinaesthetic illusions were copied by the subjects in real time and the EMG activity in the adductor and abductor wrist muscles was recorded. The results show that the velocity of the perceived movements and the amplitude of the corresponding motor responses were modulated by the nature and intensity of the stimulation. Combining two sensory modalities resulted in faster movement illusions, except for the case of visuo-tactile co-stimulation. When a third sensory input was added to the bimodal combinations, the perceptual responses increased only when a muscle proprioceptive stimulation was added to a visuo-tactile combination. Otherwise, trisensory stimulation did not override bimodal conditions that already included a muscle proprioceptive stimulation. We confirmed that vision or touch alone can encode the kinematic parameters of hand movement, as is known for muscle proprioception. When these three sensory modalities are available, they contribute unequally to kinaesthesia. In addition to muscle proprioception, the complementary kinaesthetic content of visual or tactile inputs may optimize the velocity estimation of an on-going movement, whereas the redundant kinaesthetic content of the visual and tactile inputs may rather enhance the latency of the perception.
Collapse
Affiliation(s)
| | - Régine Roll
- Aix-Marseille Université, CNRS, LNIA UMR 7260, Marseille, France
| | | | - Anne Kavounoudias
- Aix-Marseille Université, CNRS, LNIA UMR 7260, Marseille, France
- * E-mail:
| |
Collapse
|
6
|
Blanchard C, Roll R, Roll JP, Kavounoudias A. Combined contribution of tactile and proprioceptive feedback to hand movement perception. Brain Res 2011; 1382:219-29. [DOI: 10.1016/j.brainres.2011.01.066] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 09/17/2010] [Accepted: 01/19/2011] [Indexed: 11/26/2022]
|
7
|
Kavounoudias A, Roll JP, Anton JL, Nazarian B, Roth M, Roll R. Proprio-tactile integration for kinesthetic perception: an fMRI study. Neuropsychologia 2007; 46:567-75. [PMID: 18023825 DOI: 10.1016/j.neuropsychologia.2007.10.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/12/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
This study aims to identify the cerebral networks involved in the integrative processing of somesthetic inputs for kinesthetic purposes. In particular, we investigated how muscle proprioceptive and tactile messages can result in a unified percept of one's own body movements. We stimulated either separately or conjointly these two sensory channels in order to evoke kinesthetic illusions of a clockwise rotation of 10 subjects' right hand in an fMRI environment. Results first show that, whether induced by a tactile or a proprioceptive stimulation, the kinesthetic illusion was accompanied by the activation of a very similar cerebral network including cortical and subcortical sensorimotor areas, which are also classically found in passive or imagined movement tasks. In addition, the strongest kinesthetic illusions occurred under the congruent proprio-tactile co-stimulation condition. They were specifically associated to brain area activations distinct from those evidenced under the unimodal stimulations: the inferior parietal lobule, the superior temporal sulcus, the insula-claustrum region, and the cerebellum. These findings support the hypothesis that heteromodal areas may subserve multisensory integrative mechanisms at cortical and subcortical levels. They also suggest the integrative processing might consist of detection of the spatial coherence between the two kinesthetic messages involving the inferior parietal lobule activity and of a detection of their temporal coincidence via a subcortical relay, the insula structure, usually linked to the relative synchrony of different stimuli. Finally, the involvement of the superior temporal sulcus in the feeling of biological movement and that of the cerebellum in the movement timing control are also discussed.
Collapse
Affiliation(s)
- A Kavounoudias
- Laboratoire de Neurobiologie Humaine, UMR 6149, CNRS - Aix-Marseille Université, 3 place V. Hugo, 13331 Marseille, France.
| | | | | | | | | | | |
Collapse
|
8
|
Gay A, Parratte S, Salazard B, Guinard D, Pham T, Legré R, Roll JP. Proprioceptive feedback enhancement induced by vibratory stimulation in complex regional pain syndrome type I: An open comparative pilot study in 11 patients. Joint Bone Spine 2007; 74:461-6. [PMID: 17693114 DOI: 10.1016/j.jbspin.2006.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Accepted: 10/09/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Complex regional pain syndrome type I (CRPS-I) is now considered as a central nervous system disease with peripheral manifestations. CRPS-I may result from a mismatch between sensory input and motor output leading to a disorganization of motor programming in cortical structures. According to previous studies in the field of motor control, one efficient way to correct this mismatch could be a proprioceptive feedback enhancement. The goal of the present study was to determine whether vibratory stimulation by improving proprioceptive feedback may increase range of motion and minimize pain in patients with CRPS-I. METHODS An open non-randomized study was conducted in 11 patients with CRPS-I of the hand and wrist. Conventional rehabilitation sessions were given for 10 weeks. During each session, patients in the intervention group (n=7) received vibratory stimulation of the affected region; the remaining 4 patients served as the controls. RESULTS After 10 weeks, range-of-motion gains were about 30% larger and pain severity was about 50% lower in the intervention group than in the control group. A significant decrease in analgesic use occurred in the intervention group. DISCUSSION Vibratory stimulation may significantly improve range of motion and pain in patients with CRPS-I, probably by reestablishing consonance between sensory input and motor output at cortical level. Prospective randomized studies in larger numbers of patients are needed. Cross-over designs or simulated vibratory stimulation should be used to minimize bias.
Collapse
Affiliation(s)
- André Gay
- Hand Surgery and Reconstructive Limb Surgery Department, La Conception Teaching Hospital, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Apport de la rééducation proprioceptive vibratoire dans la prise en charge du syndrome douloureux régional complexe de type I; étude pilote ouverte sur sept patients et quatre témoins. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.rhum.2006.10.674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Scheidt RA, Conditt MA, Secco EL, Mussa-Ivaldi FA. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements. J Neurophysiol 2005; 93:3200-13. [PMID: 15659526 DOI: 10.1152/jn.00947.2004] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
People tend to make straight and smooth hand movements when reaching for an object. These trajectory features are resistant to perturbation, and both proprioceptive as well as visual feedback may guide the adaptive updating of motor commands enforcing this regularity. How is information from the two senses combined to generate a coherent internal representation of how the arm moves? Here we show that eliminating visual feedback of hand-path deviations from the straight-line reach (constraining visual feedback of motion within a virtual, "visual channel") prevents compensation of initial direction errors induced by perturbations. Because adaptive reduction in direction errors occurred with proprioception alone, proprioceptive and visual information are not combined in this reaching task using a fixed, linear weighting scheme as reported for static tasks not requiring arm motion. A computer model can explain these findings, assuming that proprioceptive estimates of initial limb posture are used to select motor commands for a desired reach and visual feedback of hand-path errors brings proprioceptive estimates into registration with a visuocentric representation of limb position relative to its target. Simulations demonstrate that initial configuration estimation errors lead to movement direction errors as observed experimentally. Registration improves movement accuracy when veridical visual feedback is provided but is not invoked when hand-path errors are eliminated. However, the visual channel did not exclude adjustment of terminal movement features maximizing hand-path smoothness. Thus visual and proprioceptive feedback may be combined in fundamentally different ways during trajectory control and final position regulation of reaching movements.
Collapse
Affiliation(s)
- Robert A Scheidt
- Dept. of Biomedical Engineering, Olin Engineering Center, 303, P.O. Box 1881, Marquette University, Milwaukee, WI 53201-1881, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Vibration at approximately 70 Hz on the biceps tendon elicits a vivid illusory arm extension. Nobody has examined which areas in the brain are activated when subjects perceive this kinesthetic illusion. The illusion was hypothesized to originate from activations of somatosensory areas normally engaged in kinesthesia. The locations of the microstructurally defined cytoarchitectonic areas of the primary motor (4a and 4p) and primary somatosensory cortex (3a, 3b, and 1) were obtained from population maps of these areas in standard anatomical format. The regional cerebral blood flow (rCBF) was measured with (15)O-butanol and positron emission tomography in nine subjects. The left biceps tendon was vibrated at 10 Hz (LOW), at 70 or 80 Hz (ILLUSION), or at 220 or 240 Hz (HIGH). A REST condition with eyes closed was included in addition. Only the 70 and 80 Hz vibrations elicited strong illusory arm extensions in all subjects without any electromyographic activity in the arm muscles. When the rCBF of the ILLUSION condition was contrasted to the LOW and HIGH conditions, we found two clusters of activations, one in the supplementary motor area (SMA) extending into the caudal cingulate motor area (CMAc) and the other in area 4a extending into the dorsal premotor cortex (PMd) and area 4p. When LOW, HIGH, and ILLUSION were contrasted to REST, giving the main effect of vibration, areas 4p, 3b, and 1, the frontal and parietal operculum, and the insular cortex were activated. Thus, with the exception of area 4p, the effects of vibration and illusion were associated with disparate cortical areas. This indicates that the SMA, CMAc, PMd, and area 4a were activated associated with the kinesthetic illusion. Thus, against our expectations, motor areas rather than somatosensory areas seem to convey the illusion of limb movement.
Collapse
|