1
|
Singh UA, Iyengar S. The Role of the Endogenous Opioid System in the Vocal Behavior of Songbirds and Its Possible Role in Vocal Learning. Front Physiol 2022; 13:823152. [PMID: 35273519 PMCID: PMC8902293 DOI: 10.3389/fphys.2022.823152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
The opioid system in the brain is responsible for processing affective states such as pain, pleasure, and reward. It consists of three main receptors, mu- (μ-ORs), delta- (δ-ORs), and kappa- (κ-ORs), and their ligands – the endogenous opioid peptides. Despite their involvement in the reward pathway, and a signaling mechanism operating in synergy with the dopaminergic system, fewer reports focus on the role of these receptors in higher cognitive processes. Whereas research on opioids is predominated by studies on their addictive properties and role in pain pathways, recent studies suggest that these receptors may be involved in learning. Rodents deficient in δ-ORs were poor at recognizing the location of novel objects in their surroundings. Furthermore, in chicken, learning to avoid beads coated with a bitter chemical from those without the coating was modulated by δ-ORs. Similarly, μ-ORs facilitate long term potentiation in hippocampal CA3 neurons in mammals, thereby having a positive impact on spatial learning. Whereas these studies have explored the role of opioid receptors on learning using reward/punishment-based paradigms, the role of these receptors in natural learning processes, such as vocal learning, are yet unexplored. In this review, we explore studies that have established the expression pattern of these receptors in different brain regions of birds, with an emphasis on songbirds which are model systems for vocal learning. We also review the role of opioid receptors in modulating the cognitive processes associated with vocalizations in birds. Finally, we discuss the role of these receptors in regulating the motivation to vocalize, and a possible role in modulating vocal learning.
Collapse
|
2
|
Increased calcium/calmodulin-dependent protein kinase II activity by morphine-sensitization in rat hippocampus. Behav Brain Res 2014; 267:74-82. [DOI: 10.1016/j.bbr.2014.03.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 02/05/2023]
|
3
|
Effects of pre-training morphine on spatial memory acquisition and retrieval in mice. Physiol Behav 2011; 104:754-60. [DOI: 10.1016/j.physbeh.2011.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/13/2011] [Accepted: 07/08/2011] [Indexed: 11/23/2022]
|
4
|
Farhadinasab A, Shahidi S, Najafi A, Komaki A. Role of naloxone as an exogenous opioid receptor antagonist in spatial learning and memory of female rats during the estrous cycle. Brain Res 2009; 1257:65-74. [DOI: 10.1016/j.brainres.2008.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 12/12/2008] [Accepted: 12/13/2008] [Indexed: 01/10/2023]
|
5
|
Hebb ALO, Drolet G, Mendella PD, Roach SP, Gauthier MS, Zacharko RM. Intracerebroventricular d-Pen2, d-Pen5-enkephalin administration soon after stressor imposition influences behavioral responsivity to a subsequent stressor encounter in CD-1 mice. Pharmacol Biochem Behav 2005; 82:453-69. [PMID: 16290012 DOI: 10.1016/j.pbb.2005.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Revised: 09/21/2005] [Accepted: 10/04/2005] [Indexed: 11/25/2022]
Abstract
Endogenous opioid peptide systems diminish stress-induced autonomic nervous system, neuroendocrine (hypothalamic-pituitary-adrenal axis) and behavioral responses, attenuating a collection of physiological symptoms basic to emotional and affective states. Neurogenic stressors may incite specific central changes in opioid peptide availability as well as changes in mu and delta-opioid receptor function. The present investigation evaluated the proactive influence of an intracerebroventricular injection of the opioid receptor agonist D-Pen2, D-Pen5-enkephalin (DPDPE) (0 microg, 0.005 microg, 1.0 microg or 2.5 microg) on locomotor behavior of mice following uncontrollable footshock (Shock) or novel shock chamber exposure (No Shock). It was expected that DPDPE administration following Shock on Day 1 would restore locomotor activity up to 1 week and prevent shock-associated behavior of mice encountering a brief session of footshock 18 days later. Exposure to Shock reduced horizontal locomotor and vertical locomotor (rearing) activity of mice while 2.5 microg DPDPE restored behavior. Eighteen days following Shock and DPDPE challenge, mice were exposed to either an abbreviated session of footshock (Mild Stress) or the shock chamber (Cues). Mice in the No Shock and Shock groups administered 2.5 microg DPDPE on Day 1 did not exhibit any locomotor deficits in response to Mild Stress on Day 18. Mice in the Shock group administered 0.005 microg DPDPE on Day 1, did not exhibit exaggerated rearing deficits following ensuing Mild Stressor encounter relative to mice reexposed to Cues on Day 18. Taken together, these data show that (a) footshock differentially affects rearing and locomotor activity, (b) DPDPE administration increases locomotor activity for up to 1 week following footshock and DPDPE administration, (c) reexposure to Mild Stress affects rearing and locomotor performance differently depending on previous stressor history and DPDPE dose, (d) DPDPE affords long-lasting protection to previously non-stressed mice against the deleterious effects of subsequent mild stress on locomotor activity, while a low dose of DPDE is sufficient to prevent shock-induced sensitization of rearing deficits, 18 days following original stressor and drug presentation. Finally, our investigation demonstrates that DPDPE administration alters the behavioral impact of future stressful encounters and emphasizes the importance of investigating opioid mechanisms in chronic stress disorders.
Collapse
Affiliation(s)
- Andrea L O Hebb
- Laboratory of Molecular Neurobiology, Dalhousie University, Halifax, NS, Canada.
| | | | | | | | | | | |
Collapse
|
6
|
Serper MR, Copersino ML, Richarme D, Vadhan N, Cancro R. Neurocognitive functioning in recently abstinent, cocaine-abusing schizophrenic patients. JOURNAL OF SUBSTANCE ABUSE 2001; 11:205-13. [PMID: 10989779 DOI: 10.1016/s0899-3289(00)00021-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE This report examined a broad range of cognitive functioning in a group of recently abstinent, cocaine-abusing schizophrenic patients (CA + SZ). METHODS Measures of selective and sustained attention, learning and memory, and executive functioning were administered to CA + SZ patients within 72 h of last cocaine use. A comparison group of non-substance-abusing schizophrenic patients (SZ) presenting for inpatient psychiatric treatment were also examined in an identical time frame. We hypothesized that the neurobiological impact of cocaine abuse and acute abstinence would cause CA + SZ to manifest deficits in all domains of cognitive functioning relative to non-abusing SZ patients. RESULTS Results revealed that CA + SZ displayed significant memory impairment relative to their non-abuser SZ counterparts. No group differences, however, were detected on any other neurocognitive measure. CA + SZ were able to selectively process digit strings during the presence and absence of distracting stimuli, sustain attention, and perform executive functions at performance levels equal to their non-abuser SZ counterparts. IMPLICATIONS These results are consistent with many past studies that have found CA + SZ patients to manifest memory impairment but have relatively well preserved functioning in other cognitive domains. The results are discussed in terms of the biological concomitants of cocaine abuse and acute abstinence in schizophrenia.
Collapse
Affiliation(s)
- M R Serper
- Department of Psychology, Hofstra University, Hempstead, NY 11549-1270, USA.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Neuronal G-protein-gated potassium (K(G)) channels are activated by several neurotransmitters and constitute an important mode of synaptic inhibition in the mammalian nervous system. K(G) channels are composed of combinations of four subunits termed G protein-gated inwardly rectifying K(+) channels (GIRK). All four GIRK subunits are expressed in the brain, and there is a general consensus concerning the expression patterns of GIRK1, GIRK2, and GIRK3. The localization pattern of GIRK4, however, remains controversial. In this study, we exploit the negative background of mice lacking a functional GIRK4 gene to identify neuronal populations that contain GIRK4 mRNA. GIRK4 mRNA was detected in only a few regions of the mouse brain, including the deep cortical pyramidal neurons, the endopiriform nucleus and claustrum of the insular cortex, the globus pallidus, the ventromedial hypothalamic nucleus, parafascicular and paraventricular thalamic nuclei, and a few brainstem nuclei (e.g., the inferior olive and vestibular nuclei). Mice lacking GIRK4 were viable and appeared normal and did not display gross deficiencies in locomotor activity, visual tasks, and pain perception. Furthermore, GIRK4-deficient mice performed similarly to wild-type controls in the passive avoidance paradigm, a test of aversive learning. GIRK4 knock-out mice did, however, exhibit impaired performance in the Morris water maze, a test of spatial learning and memory.
Collapse
|
8
|
Serper MR, Bergman A, Copersino ML, Chou JC, Richarme D, Cancro R. Learning and memory impairment in cocaine-dependent and comorbid schizophrenic patients. Psychiatry Res 2000; 93:21-32. [PMID: 10699225 DOI: 10.1016/s0165-1781(99)00122-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Impairments in verbal learning and memory functioning have been found to be cardinal features among individuals with schizophrenia as well as among non-schizophrenic cocaine abusers. Cognitive deficits in these areas, moreover, have been associated with poor treatment response and short-term outcome. Little is known, however, about the acute effects of cocaine abuse on schizophrenic patients' learning and memory functioning. Consequently, a potentially reversible and treatable source of cognitive impairment has been virtually ignored. The present study examined the extent of verbal learning and memory impairment in a group of cocaine-dependent schizophrenic patients (n=42) and a group of non-schizophrenic cocaine-dependent patients (n=21) within 72 h of the last cocaine use using the California Verbal Learning Test (CVLT). Schizophrenic patients (n=34) without any substance-use disorders were also tested in an identical time frame and served as a comparison group. Results revealed that all groups demonstrated significant learning and memory impairment relative to CVLT published age and gender corrected norms. Both cocaine-dependent and non-substance abusing schizophrenic groups presented a very similar pattern of impaired learning and recall performance across all CVLT task domains. Comorbid patients, in contrast, presented with marked deficits in their ability to learn and recall verbal information relative to either schizophrenic or cocaine-only groups. Moreover, the cocaine-abusing schizophrenic patients showed significant forgetfulness of the information that they did acquire during delayed recall conditions. The performance deficits exhibited by cocaine-abusing schizophrenic patients differed not only in relative severity of impairment, but also qualitatively in their increased rates of forgetfulness of acquired information. These results are interpreted in terms of the neurobiological substrates of learning and memory and the neurobiological impact of cocaine on schizophrenic patients' cognition during the early phase of inpatient hospitalization. These results suggest that comorbid patients should be targeted for specialized remediation efforts at the beginning phases of inpatient treatment.
Collapse
Affiliation(s)
- M R Serper
- Department of Psychology, 222 Hauser Hall, Hofstra University, 1000 Fulton Street, Hempstead NY 11549-1270, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Gene duplication is a recurring theme in the evolution of vertebrate polypeptide hormones and neuropeptides. These duplication events can lead to the formation of gene families in which divergence of function is the usual outcome. In the case of the opioid/orphanin family of genes, duplication events have proceeded along two paths: (a) an apparent duplication of function as seen in the analgesic activity of Proenkephalin and Prodynorphin end-products; and (b) divergence of function as seen in the nociceptic activity of Proorphanin end-products or the melanocortin (color change and chronic stress regulation) activity of Proopiomelanocortin end-products. Although genes coding for Proopiomelanocortin, Proenkephalin, Prodynorphin, and Proorphanin have been extensively studied in mammals, the distribution and radiation of these genes in nonmammalian vertebrates is less well understood. This review will present the hypothesis that the radiation of the opioid/orphanin gene family is the result of the duplication and divergence of the Proenkephalin gene during the radiation of the chordates. To evaluate the Proenkephalin gene duplication hypothesis, a 3'RACE procedure was used to screen for the presence of Prodynorphin-related, Proenkephalin-related, and Proorphanin-related cDNAs expressed in the brains of nonmammalian vertebrates.
Collapse
Affiliation(s)
- P B Danielson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208,
| | | |
Collapse
|
10
|
Picciotto MR, Wickman K. Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev 1998; 78:1131-63. [PMID: 9790572 DOI: 10.1152/physrev.1998.78.4.1131] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reverse genetics, in which detailed knowledge of a gene of interest permits in vivo modification of its expression or function, provides a powerful method for examining the physiological relevance of any protein. Transgenic and knockout mouse models are particularly useful for studies of complex neurobiological problems. The primary aims of this review are to familiarize the nonspecialist with the techniques and limitations of mouse mutagenesis, to describe new technologies that may overcome these limitations, and to illustrate, using representative examples from the literature, some of the ways in which genetically altered mice have been used to analyze central nervous system function. The goal is to provide the information necessary to evaluate critically studies in which mutant mice have been used to study neurobiological problems.
Collapse
Affiliation(s)
- M R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
11
|
Abstract
This paper is the nineteenth installment of our annual review of research concerning the opiate system. It summarizes papers published during 1996 reporting the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress, tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148, USA
| | | | | |
Collapse
|