1
|
Sangshetti JN, Shinde DB, Kulkarni A, Arote R. Two decades of antifilarial drug discovery: a review. RSC Adv 2017. [DOI: 10.1039/c7ra01857f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Filariasis is one of the oldest, most debilitating, disabling, and disfiguring neglected tropical diseases with various clinical manifestations and a low rate of mortality, but has a high morbidity rate, which results in social stigma.
Collapse
Affiliation(s)
| | | | | | - Rohidas Arote
- Department of Molecular Genetics
- School of Dentistry
- Seoul National University
- Seoul
- Republic of Korea
| |
Collapse
|
2
|
Thein MC, Winter AD, Stepek G, McCormack G, Stapleton G, Johnstone IL, Page AP. Combined extracellular matrix cross-linking activity of the peroxidase MLT-7 and the dual oxidase BLI-3 is critical for post-embryonic viability in Caenorhabditis elegans. J Biol Chem 2009; 284:17549-63. [PMID: 19406744 PMCID: PMC2719394 DOI: 10.1074/jbc.m900831200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/27/2009] [Indexed: 01/01/2023] Open
Abstract
The nematode cuticle is a protective collagenous extracellular matrix that is modified, cross-linked, and processed by a number of key enzymes. This Ecdysozoan-specific structure is synthesized repeatedly and allows growth and development in a linked degradative and biosynthetic process known as molting. A targeted RNA interference screen using a cuticle collagen marker has been employed to identify components of the cuticle biosynthetic pathway. We have characterized an essential peroxidase, MoLT-7 (MLT-7), that is responsible for proper cuticle molting and re-synthesis. MLT-7 is an active, inhibitable peroxidase that is expressed in the cuticle-synthesizing hypodermis coincident with each larval molt. mlt-7 mutants show a range of body morphology defects, most notably molt, dumpy, and early larval stage arrest phenotypes that can all be complemented with a wild type copy of mlt-7. The cuticles of these mutants lacks di-tyrosine cross-links, becomes permeable to dye and accessible to tyrosine iodination, and have aberrant collagen protein expression patterns. Overexpression of MLT-7 causes mutant phenotypes further supporting its proposed enzymatic role. In combination with BLI-3, an H2O2-generating NADPH dual oxidase, MLT-7 is essential for post-embryonic development. Disruption of mlt-7, and particularly bli-3, via RNA interference also causes dramatic changes to the in vivo cross-linking patterns of the cuticle collagens DPY-13 and COL-12. This points toward a functionally cooperative relationship for these two hypodermally expressed proteins that is essential for collagen cross-linking and proper extracellular matrix formation.
Collapse
Affiliation(s)
- Melanie C. Thein
- From the Institute of Comparative Medicine, Veterinary Faculty, and
| | - Alan D. Winter
- From the Institute of Comparative Medicine, Veterinary Faculty, and
| | - Gillian Stepek
- From the Institute of Comparative Medicine, Veterinary Faculty, and
| | | | - Genevieve Stapleton
- the Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G61 1QH, Scotland, United Kingdom
| | - Iain L. Johnstone
- the Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G61 1QH, Scotland, United Kingdom
| | - Antony P. Page
- From the Institute of Comparative Medicine, Veterinary Faculty, and
| |
Collapse
|
3
|
Immune responses generated by intramuscular DNA immunization of Brugia malayi transglutaminase (BmTGA) in mice. Parasitology 2009; 136:887-94. [DOI: 10.1017/s0031182009006143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SUMMARYAn attempt was made to evaluate the immunoprophylactic efficacy of Brugia malayi transglutaminase (BmTGA) as a DNA vaccine, for human lymphatic filariasis. BmTGA was cloned and characterized in the DNA vaccine vector pVAX1. Further, the tissue distribution study of the DNA construct, pVAX-TGA was carried out in mice and the DNA vaccine was shown to be efficiently distributed to all the organs, was accessible to the immune system, and at the same time was metabolized quickly and did not pose problems of toxicity. Intramuscular immunization in mice showed significant antibody production and splenocyte proliferation upon antigenic stimulation. The immune responses were biased towards the Th1 arm, as evaluated in terms of isotype antibody distribution and cytokine profile. Thus, analysis of the humoral and cellular immune responses indicated that BmTGA is a potent immunogen. However, protection studies as determined by the micropore chamber method using live microfilarial larvae, showed that the DNA vaccine could confer only partial protection in the mouse model. We conclude that despite the induction of sufficient humoral and cellular immune responses, BmTGA as a DNA vaccine could not confer much protection against subsequent challenge and other aspects of the immune responses need to be further investigated.
Collapse
|
4
|
Davids BJ, Mehta K, Fesus L, McCaffery JM, Gillin FD. Dependence of Giardia lamblia encystation on novel transglutaminase activity. Mol Biochem Parasitol 2004; 136:173-80. [PMID: 15478797 DOI: 10.1016/j.molbiopara.2004.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Earlier, we found that three protein disulfide isomerases (PDI) from Giardia lamblia (gPDI) also have transglutaminase (TGase) activity in vitro. We now show that differentiating Giardia cells contain isopeptide bonds (epsilon(gamma-glutamyl)lysine), the biological product of TGase activity that results in irreversible crosslinking of proteins in vivo. HPLC analyses showed the highest isopeptide bond content in cells encysting for 21 h, indicating an important role for TGase early in encystation. We were not able to detect isopeptide bonds in water-resistant cysts, possibly because they could not be extracted. One of the hallmarks of early encystation is the formation of encystation secretory vesicles (ESV) that transport nascent cyst wall proteins (CWPs) to the outer cell surface. ImmunoEM and live-cell immunofluorescence assays of encysting parasites revealed that gPDIs 1-3 are located in ESV and that gPDI-2 is also novel in that it is localized on the cell surface. Cystamine, a widely used TGase inhibitor, caused a dose-dependent inhibition of ESV formation by 21 h, thereby preventing development of trophozoites into cysts. Since cystamine (0.5-1 mM) inhibited the TGase activity of recombinant gPDIs 1-3 in vitro, PDIs appear to be the physiologic targets of cystamine. We found that when parasites were treated with cystamine, CWPs were not processed normally. These data suggest that TGase-catalyzed reactions may be needed for either the machinery that processes CWP precursors or their recruitment to ESV.
Collapse
Affiliation(s)
- B J Davids
- Department of Pathology, Division of Infectious Diseases, UCSD Medical Center, University of California, CTF-C 403, 214 Dickinson Street, San Diego, CA 92103-8416, USA.
| | | | | | | | | |
Collapse
|
5
|
Mádi A, Hoffrogge R, Blaskó B, Glocker MO, Fésüs L. Amine donor protein substrates for transglutaminase activity in Caenorhabditis elegans. Biochem Biophys Res Commun 2004; 315:1064-9. [PMID: 14985121 DOI: 10.1016/j.bbrc.2004.01.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Indexed: 01/22/2023]
Abstract
Transglutaminase dependent cross-linking of proteins has been implicated in a wide range of biological phenomena occurring in both extracellular and intracellular compartments. Clarification of the physiological role of transglutaminases requires identification of substrate molecules. Here we report the detection, purification, and identification by mass spectrometry of proteins, the glutamate dehydrogenase, a protein disulfide isomerase, and aldehyde dehydrogenase as amine donor substrates for the transglutaminase activity of the nematode Caenorhabditis elegans utilizing a novel biotinylated oligoglutamine peptide as a substrate. We also purified and identified streptavidin-binding proteins of the worm.
Collapse
Affiliation(s)
- András Mádi
- Signalling and Apoptosis Research Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | |
Collapse
|
6
|
Page AP, Winter AD. Enzymes involved in the biogenesis of the nematode cuticle. ADVANCES IN PARASITOLOGY 2003; 53:85-148. [PMID: 14587697 DOI: 10.1016/s0065-308x(03)53003-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nematodes include species that are significant parasites of man, his domestic animals and crops, and cause chronic debilitating diseases in the developing world; such as lymphatic filariasis and river blindness caused by filarial species. Around one third of the World's population harbour parasitic nematodes; no vaccines exist for prevention of infection, limited effective drugs are available and drug resistance is an ever-increasing problem. A critical structure of the nematode is the protective cuticle, a collagen-rich extracellular matrix (ECM) that forms the exoskeleton, and is critical for viability. This resilient structure is synthesized sequentially five times during nematode development and offers protection from the environment, including the hosts' immune response. The detailed characterization of this complex structure; it's components, and the means by which they are synthesized, modified, processed and assembled will identify targets that may be exploited in the future control of parasitic nematodes. This review will focus on the nematode cuticle. This structure is predominantly composed of collagens, a class of proteins that are modified by a range of co- and post-translational modifications prior to assembly into higher order complexes or ECMs. The collagens and their associated enzymes have been comprehensively characterized in vertebrate systems and some of these studies will be addressed in this review. Conversely, the biosynthesis of this class of essential structural proteins has not been studied in such detail in the nematodes. As with all morphogenetic, functional and developmental studies in the Nematoda phylum, the free-living species Caenorhabditis elegans has proven to be invaluable in the characterization of the cuticle and the cuticle collagen gene family, and is now proving to be an excellent model in the study of cuticle collagen biosynthetic enzymes. This model system will be the main focus of this review.
Collapse
Affiliation(s)
- Antony P Page
- Wellcome Centre for Molecular Parasitology, The Anderson College, The University of Glasgow, Glasgow G11 6NU, UK
| | | |
Collapse
|
7
|
Chandrashekar R, Mehta K. Transglutaminase-catalyzed reactions in the growth, maturation and development of parasitic nematodes. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:11-7. [PMID: 10637581 DOI: 10.1016/s0169-4758(99)01587-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Parasitic nematodes cause several debilitating diseases in humans and animals. New drugs that are parasite specific and minimally toxic to the host are needed to counter these infections effectively. The identification and inhibition of enzymes that are vital for the growth and survival of parasites offer new approaches for developing effective chemotherapeutic agents. Several enzymes in nematodes fall into this category. Here, Ramaswamy Chandrashekar and Kapil Mehta examine in detail the role of transglutaminase, a protein-crosslinking enzyme, in the normal growth and development of nematodes, with an emphasis on filarial parasites.
Collapse
|
8
|
Waffenschmidt S, Kusch T, Woessner JP. A transglutaminase immunologically related to tissue transglutaminase catalyzes cross-linking of cell wall proteins in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 1999; 121:1003-15. [PMID: 10557250 PMCID: PMC59465 DOI: 10.1104/pp.121.3.1003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/1999] [Accepted: 07/06/1999] [Indexed: 05/21/2023]
Abstract
The addition of primary amines to the growth medium of the unicellular green alga Chlamydomonas reinhardtii disrupts cell wall assembly in both vegetative and zygotic cells. Primary amines are competitive inhibitors of the protein-cross-linking activity of transglutaminases. Two independent assays for transglutaminase confirmed a burst of extracellular activity during the early stages of cell wall formation in both vegetative cells and zygotes. When non-inhibiting levels of a radioactive primary amine ((14)C-putrescine) were added to the growth medium, both cell types were labeled in a reaction catalyzed by extracellular transglutaminase. The radioactive label was found specifically in the cell wall proteins of both cell types, and acid hydrolysis of the labeled material released unmodified (14)C-putrescine. Western blots of the proteins secreted at the times of maximal transglutaminase activity in both cell types revealed a single highly cross-reactive 72-kD band when screened with antibodies to guinea pig tissue transglutaminase. Furthermore, the proteins immunoprecipitated by this antiserum in vivo exhibited transglutaminase activity. We propose that this transglutaminase is responsible for an early cell wall protein cross-linking event that temporally precedes the oxidative cross-linking mediated by extracellular peroxidases.
Collapse
|
9
|
Chandrashekar R, Tsuji N, Morales T, Ozols V, Mehta K. An ERp60-like protein from the filarial parasite Dirofilaria immitis has both transglutaminase and protein disulfide isomerase activity. Proc Natl Acad Sci U S A 1998; 95:531-6. [PMID: 9435226 PMCID: PMC18454 DOI: 10.1073/pnas.95.2.531] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transglutaminases (TGases; EC 2.3.2.13) are a family of enzymes that catalyze calcium-dependent covalent cross-linking of cellular proteins by establishing epsilon-(gamma-glutamyl)lysine isopeptide bonds. These covalent isopeptide bonds are of great physiological significance because they are highly resistant to proteolysis, denaturants, and reducing agents. Prior studies have demonstrated the presence of isopeptide bonds in the sheath and cuticle of filarial parasites, suggesting an important role for TGase-catalyzed reactions during the growth and development of filarial nematodes. Herein we report the identification and cloning of a cDNA encoding a TGase from the dog heartworm Dirofilaria immitis (DiTG). The DiTG expressed in Escherichia coli (recombinant DiTG) was able to catalyze calcium-dependent cross-linking reactions. The derived amino acid sequence of the DiTG cDNA (pDiTG) predicts a protein of 57.1 kDa and includes an N-terminal hydrophobic signal peptide. The pDiTG has no sequence similarity with any of the known TGases, but it has significant homology to protein disulfide isomerase (PDI) and, particularly, to the PDI-related endoplasmic reticulum protein ERp60, a PDI isoform found in the lumen of endoplasmic reticulum. As predicted from the amino acid sequence homology, recombinant DiTG catalyzed the isomerization of intramolecular disulfide/sulfhydryl bonds in denatured RNase in vitro as effectively as did mammalian PDI. Conversely, purified PDI from bovine liver could catalyze protein cross-linking reactions in a Ca(2+)-dependent manner. This report describes the dual catalytic activity of TGase and PDI in post- and/or cotranslational modification of newly synthesized proteins. These TGase-catalyzed posttranslational modifications may play a pivotal role in the synthesis of new cuticle during the growth and maturation of filarial parasites.
Collapse
|
10
|
Conraths FJ, Hirzmann J, Hobom G, Zahner H. Expression of the microfilarial sheath protein 2 (shp2) of the filarial parasites Litomosoides sigmodontis and Brugia malayi. Exp Parasitol 1997; 85:241-8. [PMID: 9085921 DOI: 10.1006/expr.1996.4138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The microfilarial sheaths of the filarial parasites Brugia malayi, Brugia pahangi, and Litomosoides sigmodontis consist of several parasite proteins, probably ranging between 7 and 10. The gene encoding sheath protein 2 (shp2), which is the object of this study, is transcribed in embryos and in the uterine epithelium; at least in B. malayi, it is translated in both tissues. Apparently, shp2 is synthesized as a monomer, exported by the respective cells, and integrated into the microfilarial sheath. In the sheath, it exists as a highly polymerized molecule cross-linked by cysteine formation and other covalent bonds, presumably epsilon-(gamma-glutamyl)-lysine links.
Collapse
Affiliation(s)
- F J Conraths
- Institut für Parasitologie, Justus-Liebig-Universitat Giessen, Germany.
| | | | | | | |
Collapse
|
11
|
Mehta K, Chandrashekar R, Rao UR. Transglutaminase-catalyzed incorporation of host proteins in Brugia malayi microfilariae. Mol Biochem Parasitol 1996; 76:105-14. [PMID: 8919999 DOI: 10.1016/0166-6851(95)02549-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recently, we have characterized and purified a novel transglutaminase (pTGase) from adults of the filarial worms Brugia malayi. pTGase-catalyzed reactions seem to play an essential role during in utero growth and development of microfilariae. The results presented here demonstrate that exudates from the peritoneal cavity of jirds, the site where adult worms of B. malayi reside and produce microfilariae, contain several host proteins that can serve as substrates in pTGase-catalyzed reactions. The peritoneal exudate proteins are avidly taken up by adult female worms in vitro and incorporated into the developing microfilariae. Among the several host proteins that were crosslinked, a 68-kDa molecular weight protein (p68) was found to be the major protein taken up by the parasites. Following uptake by the parasites, the peritoneal exudate proteins are crosslinked to form high molecular weight aggregates, that are subsequently incorporated into in utero developing embryos and microfilariae. The cross-linking of host proteins was, however, inhibited by monodansylcadaverine (MDC), a competitive inhibitor of pTGase. Antibodies raised against the jird peritoneal exudate proteins strongly immunoreacted with a 68-kDa protein in adult worms and microfilariae extracts but not with infective-stage larvae (L3) of B. malayi. These results suggest that pTGase is involved in covalent incorporation of host proteins (such as p68) into developing embryos and microfilariae of B. malayi.
Collapse
Affiliation(s)
- K Mehta
- Department of Bioimmunotherapy, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.
| | | | | |
Collapse
|
12
|
Singh RN, Chandrashekar R, Mehta K. Purification and partial characterization of a transglutaminase from dog filarial parasite, Dirofilaria immitis. Int J Biochem Cell Biol 1995; 27:1285-91. [PMID: 8581824 DOI: 10.1016/1357-2725(95)00102-u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- R N Singh
- Department of Bioimmunotherapy, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
13
|
Lustigman S, Brotman B, Huima T, Castelhano AL, Singh RN, Mehta K, Prince AM. Transglutaminase-catalyzed reaction is important for molting of Onchocerca volvulus third-stage larvae. Antimicrob Agents Chemother 1995; 39:1913-9. [PMID: 8540691 PMCID: PMC162856 DOI: 10.1128/aac.39.9.1913] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Highly insoluble proteins, which are probably cross-linked, are common in the cuticle and epicuticle of filarial parasites and other nematode species. We have investigated the possible involvement of transglutaminase (TGase)-catalyzed reactions in the development of Onchocerca volvulus fourth-stage larvae (L4) by testing the effects of TGase inhibitors on the survival of third-stage larvae (L3) and the molting of L3 to L4 in vitro. The larvae were cultured in the presence of three specific TGase inhibitors: monodansylcadaverine, cystamine, and N-benzyloxycarbonyl-D,L-beta-(3-bromo-4,5-dihydroisoxazol-5-yl)-al anine benzylamide. None of the inhibitors reduced the viability of either L3 or L4. However, the inhibitors reduced, in a time- and dose-dependent manner, the number of L3 that molted to L4 in vitro. Molting was completely inhibited in the presence of 100 to 200 microM inhibitors. Ultrastructural examination of L3 that did not molt in the presence of monodansylcadaverine or cystamine indicated that the new L4 cuticle was synthesized, but there was an incomplete separation between the L3 cuticle and the L4 epicuticle. The product of the TGase-catalyzed reaction was localized in molting L3 to cuticle regions where the separation between the old and new cuticles occurs and in the amphids of L3 by a monoclonal antibody that reacts specifically with the isopeptide epsilon-(gamma-glutamyl)lysine. These studies suggest that molting and successful development of L4 also depends on TGase-catalyzed reactions.
Collapse
Affiliation(s)
- S Lustigman
- Department of Virology and Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Mehta K, Chandrshekar R. Transglutaminase activity in the microfilarial sheath. ACTA ACUST UNITED AC 1995; 11:254; author reply 254. [PMID: 15275338 DOI: 10.1016/0169-4758(95)80204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Hirzmann J, Schnaufer A, Hintz M, Conraths F, Stirm S, Zahner H, Hobom G. Brugia spp. and Litomosoides carinii: identification of a covalently cross-linked microfilarial sheath matrix protein (shp2). Mol Biochem Parasitol 1995; 70:95-106. [PMID: 7637719 DOI: 10.1016/0166-6851(95)00011-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A microfilarial sheath protein gene (shp2) coding for the major constituent of the insoluble, cross-linked sheath remnant (SR) from Brugia malayi, Brugia pahangi and Litomosoides carinii has been cloned and sequenced, based on peptide partial amino-acid sequences. All three closely related single-copy shp2 genes in the two genera carry a single intron in identical position; shp2 mRNAs are post-transcriptionally modified by both cis-splicing and trans-splicing. In accordance with their extracellular destinations the encoded proteins include signal peptide sequences; molecular masses of approx. 23 kDa are hence predicted for the mature secreted polypeptides. In their structures sheath matrix proteins shp2 may be regarded as extreme cases of a modular constitution, since these proteins largely consist of two different segments of multiple sequence repetitions, PAA and QYPQAP (or QYPQ), separated by elements of unique sequence. Extreme insolubility and cross-linking are likely to originate from these repetitive sequences within shp2, and to constitute the basic properties of a microfilarial matrix largely consisting of an shp2 network.
Collapse
Affiliation(s)
- J Hirzmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Singh RN, Mehta K. Purification and characterization of a novel transglutaminase from filarial nematode Brugia malayi. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:625-34. [PMID: 7957177 DOI: 10.1111/j.1432-1033.1994.00625.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A transglutaminase (pTGase) was purified from filarial nematode, Brugia malayi. The steps used for purification were thermoprecipitation, ammonium sulfate precipitation, gel filtration on Superose 12 HR 10/30, ion-exchange chromatography on a Mono-Q column and further gel filtration on Superose 12 HR 10/30. The last step yielded an electrophoretically homogenous enzyme protein with 2200-fold purification and a reproducible yield of approximately 20%. The purified enzyme had a molecular mass of 56 kDa, specific activity of 2.25 U/mg protein and an isoelectric point of 7.2. The enzyme was active in the basic pH range with an optimum activity at pH 8.5. The pTGase activity was Ca(2+)-dependent and was inhibited by ammonia, primary amines, EDTA, and -SH group blocking reagents. The enzyme activity was also inhibited by high salt (NaCl and KCl) concentrations, detergents, metal ions, and organic solvents. Ampholine (pH 6-8) at 1% (by vol.) caused about 20% inhibition of pTGase activity but at 3% (by vol.) the inhibition increased up to 80%. Similarly, the micromolar concentrations of GTP inhibited the enzyme activity only moderately but at millimolar concentration a significant inhibition was observed. The stability of the pTGase was not affected by 0.1% SDS or other physical parameters such as freezing and thawing. Further, the pTGase was found to be highly thermostable (stable at 60 degrees C for several hours) with optimum activity observed at 55 degrees C. The distinct substrate specificity, unique N-terminal sequence along with the other physico-chemical properties studied, suggested that pTGase is a novel member of transglutaminase family.
Collapse
Affiliation(s)
- R N Singh
- Department of Clinical Investigation, University of Texas, M.D. Anderson Cancer Center, Houston
| | | |
Collapse
|
17
|
Lustigman S. Molting, enzymes and new targets for chemotherapy of onchocerca volvulus. ACTA ACUST UNITED AC 1993; 9:294-7. [PMID: 15463786 DOI: 10.1016/0169-4758(93)90128-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parasitic nematodes do not multiply in definitive hosts, but they do molt, grow and mature for a certain period after infection, after which they devote their energies almost entirely to egg production. In this review, Sara Lustigman describes key metabolic enzymes that are essential to the development of the larval stages of Onchocerca volvulus in the host, making them potential therapeutic targets.
Collapse
Affiliation(s)
- S Lustigman
- Department of Virology and Parasitology, The Lindsley F. Kimball Research Institute o f the New York Blood Center, 310 East 67th Street, New York, NY 10021, USA
| |
Collapse
|