1
|
Rodriguez AE, Florin-Christensen M, Flores DA, Echaide I, Suarez CE, Schnittger L. The glycosylphosphatidylinositol-anchored protein repertoire of Babesia bovis and its significance for erythrocyte invasion. Ticks Tick Borne Dis 2014; 5:343-8. [DOI: 10.1016/j.ttbdis.2013.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/23/2013] [Accepted: 12/29/2013] [Indexed: 11/26/2022]
|
2
|
Black CG, Proellocks NI, Kats LM, Cooke BM, Mohandas N, Coppel RL. In vivo studies support the role of trafficking and cytoskeletal-binding motifs in the interaction of MESA with the membrane skeleton of Plasmodium falciparum-infected red blood cells. Mol Biochem Parasitol 2008; 160:143-7. [PMID: 18482775 DOI: 10.1016/j.molbiopara.2008.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 11/19/2022]
Abstract
In red blood cells (RBCs) infected with the malaria parasite Plasmodium falciparum, a 19-residue region of the mature parasite-infected erythrocyte surface antigen (MESA) associates with RBC cytoskeleton protein 4.1R; an interaction essential for parasite survival. This region in MESA is adjacent to a host targeting motif found in other malaria parasite proteins exported to the membrane skeleton. To demonstrate function of these motifs in vivo, regions of MESA fused to a reporter were expressed in malaria parasites. Immunochemical analyses confirmed the requirement for both motifs in the trafficking and interaction of MESA with the cytoskeleton and demonstrates their function in vivo.
Collapse
Affiliation(s)
- Casilda G Black
- NHMRC Program in Malaria, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
3
|
Carret CK, Horrocks P, Konfortov B, Winzeler E, Qureshi M, Newbold C, Ivens A. Microarray-based comparative genomic analyses of the human malaria parasite Plasmodium falciparum using Affymetrix arrays. Mol Biochem Parasitol 2005; 144:177-86. [PMID: 16174539 DOI: 10.1016/j.molbiopara.2005.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 12/13/2022]
Abstract
Microarray-based comparative genomic hybridization (CGH) provides a powerful tool for whole genome analyses and the rapid detection of genomic variation that underlies virulence and disease. In the field of Plasmodium research, many of the parasite genomes that one might wish to study in a high throughput manner are not laboratory clones, but clinical isolates. One of the key limitations to the use of clinical samples in CGH, however, is the miniscule amounts of genomic DNA available. Here we describe the successful application of multiple displacement amplification (MDA), a non-PCR-based amplification method that exhibits clear advantages over all other currently available methods. Using MDA, CGH was performed on a panel of NF54 and IT/FCR3 clones, identifying previously published deletions on chromosomes 2 and 9 as well as polymorphism in genes associated with disease pathology.
Collapse
Affiliation(s)
- Céline Karine Carret
- Pathogen Microarrays Group, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Repeat arrays in protein-coding sequences were analyzed by a novel approach, based on analyzing the distribution of the pairwise proportion of nucleotide differences among units within a repeat array. The results showed that evidence of recent repeat array expansion was particularly characteristic of the repeat arrays of the malaria parasites (genus Plasmodium), supporting the hypothesis that Plasmodium is particularly prone to repeat array expansion by slipped-strand mispairing or a similar mechanism. Repeat arrays in Plasmodium asexual-stage antigens (which are exposed to the immune system of the vertebrate host) had unique characteristics with respect to the number of repeat units, as well as nucleotide and amino acid composition, suggesting that natural selection exerted by the host immune system has shaped features of these arrays.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Building, Columbia, SC 29208, USA.
| |
Collapse
|
5
|
Abstract
Plasmodium falciparum, the agent of human malignant malaria, diverged from Plasmodium reichenowi, the chimpanzee parasite, about the time the human and chimpanzee lineages diverged from each other. The absence of synonymous nucleotide variation at ten loci indicates that the world populations of P. falciparum derive most recently from one single strain, or 'cenancestor,' which lived a few thousand years ago. Antigenic genes of P. falciparum (such as Csp, Msp-1, and Msp-2) exhibit numerous polymorphisms that have been estimated to be millions of years old. We have discovered in these antigenic genes short repetitive sequences that distort the alignment of alleles and account for the apparent old age of the polymorphisms. The processes of intragenic recombination that generate the repeats occur at rates about 10(-3) to 10(-2), several orders of magnitude greater than the typical mutational process of nucleotide substitutions. We conclude that the antigenic polymorphisms of P. falciparum are consistent with a recent expansion of the world populations of the parasite from a cenancestor that lived in tropical Africa a few thousand years ago.
Collapse
Affiliation(s)
- F J Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA.
| | | |
Collapse
|
6
|
Anderson TJ, Day KP. Geographical structure and sequence evolution as inferred from the Plasmodium falciparum S-antigen locus. Mol Biochem Parasitol 2000; 106:321-6. [PMID: 10699263 DOI: 10.1016/s0166-6851(99)00222-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- T J Anderson
- Wellcome Trust Centre for Epidemiology of Infectious Disease, Department of Zoology, Oxford University, Oxford, UK.
| | | |
Collapse
|
7
|
Wu T, Black CG, Wang L, Hibbs AR, Coppel RL. Lack of sequence diversity in the gene encoding merozoite surface protein 5 of Plasmodium falciparum. Mol Biochem Parasitol 1999; 103:243-50. [PMID: 10551366 DOI: 10.1016/s0166-6851(99)00134-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The gene encoding merozoite surface protein 5 (MSP5) of Plasmodium falciparum is situated between the genes encoding MSP2 and MSP4 on chromosome 2. Both MSP4 and MSP5 encode proteins that contain hydrophobic signal and glycosylphosphatidylinositol (GPI) attachment signals and a single epidermal growth factor (EGF)-like domain at their carboxyl termini. The similar gene organization, location and similar structural features of the two genes suggest that they have arisen from a gene duplication event. In this study we provide further evidence for the merozoite surface location of MSP5 by demonstrating that MSP5 is present in isolated merozoites, partitions in the detergent-enriched phase following Triton X-114 fractionation and shows a staining pattern consistent with merozoite surface location by indirect immunofluorescence confocal microscopy. Analysis of antigenic diversity of MSP5 shows a lack of sequence variation between various isolates of P. falciparum from different geographical locations, a feature unusual for surface proteins of merozoites and one that may simplify vaccine formulation.
Collapse
Affiliation(s)
- T Wu
- Department of Microbiology, Monash University, Clayton, Vic., Australia
| | | | | | | | | |
Collapse
|
8
|
Kun JF, Waller KL, Coppel RL. Plasmodium falciparum: structural and functional domains of the mature-parasite-infected erythrocyte surface antigen. Exp Parasitol 1999; 91:258-67. [PMID: 10072328 DOI: 10.1006/expr.1998.4374] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mature parasite-infected erythrocyte surface antigen (MESA) is a protein exported to the membrane skeleton of the infected red cell, where it forms a strong noncovalent interaction with the host red cell protein, protein 4.1. The complete gene structure of MESA from the Ugandan isolate Palo Alto is described. Comparison to the previously reported MESA sequence from the Papua New Guinean cloned line D10 reveals strong conservation of the general gene structure of a short first exon and a long second exon. The exact exon/intron boundaries were determined by the generation and sequencing of a cDNA from this region. The MESA gene from both isolates consists of seven blocks of repeats that are identical in order. Repeat blocks are conserved to a high degree; however, differences are noted in most blocks in the form of scattered mutations or differences in repeat numbers. Previous work had shown that synthetic peptides spanning a 19-residue region could inhibit the binding of MESA to protein 4.1. Removal of this region from MESA almost completely abolished the binding of MESA to IOVs. Sequencing of this region from a number of laboratory and field isolates demonstrates complete conservation of the cytoskeletal binding domain and flanking sequences.
Collapse
Affiliation(s)
- J F Kun
- Institut für Tropenmedizin, Wilhelmstrasse 27, Tübingen, 72074, Germany.
| | | | | |
Collapse
|
9
|
Rich SM, Licht MC, Hudson RR, Ayala FJ. Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proc Natl Acad Sci U S A 1998; 95:4425-30. [PMID: 9539753 PMCID: PMC22505 DOI: 10.1073/pnas.95.8.4425] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/1998] [Indexed: 02/07/2023] Open
Abstract
We have analyzed DNA sequences from world-wide geographic strains of Plasmodium falciparum and found a complete absence of synonymous DNA polymorphism at 10 gene loci. We hypothesize that all extant world populations of the parasite have recently derived (within several thousand years) from a single ancestral strain. The upper limit of the 95% confidence interval for the time when this most recent common ancestor lived is between 24,500 and 57,500 years ago (depending on different estimates of the nucleotide substitution rate); the actual time is likely to be much more recent. The recent origin of the P. falciparum populations could have resulted from either a demographic sweep (P. falciparum has only recently spread throughout the world from a small geographically confined population) or a selective sweep (one strain favored by natural selection has recently replaced all others). The selective sweep hypothesis requires that populations of P. falciparum be effectively clonal, despite the obligate sexual stage of the parasite life cycle. A demographic sweep that started several thousand years ago is consistent with worldwide climatic changes ensuing the last glaciation, increased anthropophilia of the mosquito vectors, and the spread of agriculture. P. falciparum may have rapidly spread from its African tropical origins to the tropical and subtropical regions of the world only within the last 6,000 years. The recent origin of the world-wide P. falciparum populations may account for its virulence, as the most malignant of human malarial parasites.
Collapse
Affiliation(s)
- S M Rich
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA
| | | | | | | |
Collapse
|
10
|
Ramasamy R. Molecular basis for evasion of host immunity and pathogenesis in malaria. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1406:10-27. [PMID: 9545516 DOI: 10.1016/s0925-4439(97)00078-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article relates the ability of the malaria parasite Plasmodium falciparum to avoid a protective immune response, and to induce pathological changes, to the properties of specific parasite molecules. Cytoadherence and rosetting are important features of cerebral malaria and involve proteins located on the surface of the infected red blood cell. Proinflammatory cytokines, particularly tumour necrosis factor (TNF), play a role in protective immunity and in inducing pathology. Glycophosphatidyl inositol membrane anchors of parasite proteins possess insulin like activity and induce TNF synthesis. People subject to repeated infections in malaria endemic areas rarely develop complete or sterile immunity to malaria. They frequently carry small numbers of parasites in the blood, with little symptoms of the disease, illustrating a phenomenon termed semi-immunity. The basis for semi-immunity is incompletely understood. Malaria parasites are susceptible to several immunological effector mechanisms. The presence of extensive repetitive regions is a feature of many P. falciparum proteins. Available evidence suggests that the structural characteristics of the repeats and their location on the surface of parasite proteins promote immunogenicity. The repeats may help the parasite evade host immunity by (i) exhibiting sequence polymorphism, (ii) preventing the normal affinity and isotype maturation of an immune response, (iii) functioning possibly as B cell superantigens, (iv) generating predominantly thymus independent antibody responses, and (v) acting as a sink for binding protective antibodies. Sequence diversity in non-repetitive regions and antigenic variation in parasite molecules located on the surface of infected red blood cells also play a role in immune evasion. Some sequence homologies between parasite and human proteins may be due to molecular mimicry. Homologies in other instances can cause autoimmune responses. The immune evasion mechanisms of the parasite need to be considered in developing vaccines. Protective immunity and pathology may be delicately balanced in malaria.
Collapse
Affiliation(s)
- R Ramasamy
- Molecular Biology Laboratory, Institute of Fundamental Studies, Kandy, Sri Lanka.
| |
Collapse
|
11
|
Eisen D, Billman-Jacobe H, Marshall VF, Fryauff D, Coppel RL. Temporal variation of the merozoite surface protein-2 gene of Plasmodium falciparum. Infect Immun 1998; 66:239-46. [PMID: 9423864 PMCID: PMC107883 DOI: 10.1128/iai.66.1.239-246.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extensive polymorphism of key parasite antigens is likely to hamper the effectiveness of subunit vaccines against Plasmodium falciparum infection. However, little is known about the extent of the antigenic repertoire of naturally circulating strains in different areas where malaria is endemic. To address this question, we conducted a study in which blood samples were collected from parasitemic individuals living within a small hamlet in Western Irian Jaya and subjected to PCR amplification using primers that would allow amplification of the gene encoding merozoite surface protein-2 (MSP2). We determined the nucleotide sequence of the amplified product and compared the deduced amino acid sequences to sequences obtained from samples collected in the same hamlet 29 months previously. MSP2 genes belonging to both major allelic families were observed at both time points. In the case of the FC27 MSP2 family, we observed that the majority of individuals were infected by parasites expressing the same form of MSP2. Infections with parasites expressing 3D7 MSP2 family alleles were more heterogeneous. No MSP2 alleles observed at the earlier time point were detectable at the later time point, either for the population as a whole or for individuals who were assayed at both time points. We examined a subset of the infected patients by using blood samples taken between the two major surveys. In no patients could we detect reinfection by a parasite expressing a previously encountered form of MSP2. Our results are consistent with the possibility that infection induces a form of strain-specific immune response against the MSP2 antigen that biases against reinfection by parasites bearing identical forms of MSP2.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Antigens, Protozoan
- Chromosome Mapping
- DNA Primers/genetics
- DNA, Protozoan/analysis
- DNA, Protozoan/genetics
- Genome, Protozoan
- Humans
- Indonesia/epidemiology
- Malaria, Falciparum/blood
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/genetics
- Molecular Epidemiology
- Molecular Sequence Data
- Parasitemia/blood
- Parasitemia/epidemiology
- Parasitemia/genetics
- Plasmodium falciparum/genetics
- Polymerase Chain Reaction
- Polymorphism, Genetic
- Protozoan Proteins/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- D Eisen
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
12
|
Mai Z, Samuelson J. A new gene family (ariel) encodes asparagine-rich Entamoeba histolytica antigens, which resemble the amebic vaccine candidate serine-rich E. histolytica protein. Infect Immun 1998; 66:353-5. [PMID: 9423879 PMCID: PMC107898 DOI: 10.1128/iai.66.1.353-355.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A family of genes, called ariel, are named for and encode asparagine-rich Entamoeba histolytica antigens containing 2 to 16 octapeptide repeats. Ariel proteins, which are constitutively expressed by trophozoites, belong to a large antigen family that includes the serine-rich E. histolytica protein (SREHP), an amebic vaccine candidate.
Collapse
Affiliation(s)
- Z Mai
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02125, USA
| | | |
Collapse
|
13
|
Identical alleles of Plasmodium falciparum merozoite surface protein 2 found in distant geographic areas and times. Parasitol Int 1997. [DOI: 10.1016/s1383-5769(97)00020-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Reeder JC, Brown GV. Antigenic variation and immune evasion in Plasmodium falciparum malaria. Immunol Cell Biol 1996; 74:546-54. [PMID: 8989593 DOI: 10.1038/icb.1996.88] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Plasmodium falciparum malaria is responsible for 2 million deaths each year. Even in endemic regions, immunity to malaria builds slowly and is rarely complete. Strategies such as antigenic variation and antigenic diversity are critical to a parasite's ability to evade the host immune response and infect previously exposed individuals. In this short review, the phenomenon of antigenic variation is discussed in relation to immune evasion and its impact on parasite pathogenesis. Recent advances in the understanding of the underlying molecular mechanisms of antigenic variation are examined and questions posed for future research.
Collapse
Affiliation(s)
- J C Reeder
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | | |
Collapse
|
15
|
Abstract
Numbers of synonymous (ds) and nonsynonymous (dN) nucleotide substitutions per site were analysed in eight polymorphic Plasmodium genes: circumsporozoite protein gene (CSP), sporozoite surface protein 2 (thrombospondin related anonymous protein, TRAP), merozoite surface antigen 2 (MSA-2), apical membrane antigen 1 (PF83), liver-stage antigen-1 (LSA-1), knob-associated histidine-rich protein (KAHRP), ring-infected erythrocyte surface antigen (RESA) and S-antigen. In certain regions of genes coding for proteins of the sporozoite and merozoite surface (CSP, TRAP, MSA-2 and PF83), dN was significantly greater than dS. This unusual pattern of nucleotide substitution is indicative of positive Darwinian selection acting to promote diversity at the amino-acid level; thus our results suggest that the sporozoite and merozoite surface proteins are under positive selection, presumably exerted by the host immune system. No such pattern of substitution was observed on LSA-1, KAHRP, RESA, or S-antigen. Observed patterns of nucleotide substitution were not explicable by nucleotide content bias. G + C content in the 5' nonrepeat region of CSP in nine Plasmodium species was positively correlated with that in the 3' nonrepeat region; however, there was no relationship between G + C content and the ratio dS/dN in either CSP or a larger sample of all regions of all genes analysed.
Collapse
Affiliation(s)
- M K Hughes
- Department of Biology, Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|