1
|
Hoyos J, Rosales-Chilama M, León C, González C, Gómez MA. Sequencing of hsp70 for discernment of species from the Leishmania (Viannia) guyanensis complex from endemic areas in Colombia. Parasit Vectors 2022; 15:406. [PMID: 36329517 PMCID: PMC9635106 DOI: 10.1186/s13071-022-05438-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Colombia is ranked very high among countries with the highest numbers of endemic Leishmania species (n = 9) causing human disease. Although much effort has been devoted to generating simple and specific tools for Leishmania species identification, challenges remain in the discrimination of species belonging to the Leishmania (Viannia) guyanensis complex: L. (V.) guyanensis and L. (V.) panamensis. METHODS A set of seven reference strains of species belonging to the L. (Leishmania) and L. (Viannia) subgenera, clinical strains from human cases of cutaneous leishmaniasis (CL; n = 26) and samples collected from sylvatic mammals and sand flies (n = 7) from endemic areas in Colombia were analyzed in this study. The heat-shock protein 70 gene (hsp70) was amplified by PCR from DNA extracted from logarithmic-phase promastigotes or tissue samples, and the PCR products were sequenced. Sequence alignment was performed against a set of previously published and curated sequences, and phylogenetic analysis based on the maximum-likelihood and Bayesian inference approaches was conducted. Haplotype diversity among strains and species of the L. (V.) guyanensis complex was explored using a median-joining network. RESULTS Sequencing of the hsp70 gene for L. (Viannia) spp. typing was comparable to species identification using isoenzyme electrophoresis or monoclonal antibodies. Complete species matching was found, except for one sylvatic sample with an identity yet unsolved. Among the L. (V.) panamensis clinical strains, two distinctive phylogenetic clusters were found to correlate with two different zymodemes: L. (V.) panamensis Z2.2 and Z2.3. Analysis of samples from sylvatic environments identified novel records of naturally infected wild mammal and sand fly species. CONCLUSIONS Our results support the adequacy of hsp70 gene sequencing as a single-locus approach for discrimination of L. (Viannia) spp., as well as for exploring the genetic diversity within the L. (V.) guyanensis complex.
Collapse
Affiliation(s)
- Juliana Hoyos
- Departamento de Ciencias Biológicas, Centro de Investigaciones en Microbiología Y Parasitología Tropical (CIMPAT), Universidad de los Andes, Bogota, D.C Colombia
- Centro Internacional de Entrenamiento E Investigaciones Médicas (CIDEIM), Campus de la Universidad Icesi (Edificio O), Cali, Colombia
- Present Address: Odum School of Ecology, University of Georgia, Athens, GA 30602 USA
| | - Mariana Rosales-Chilama
- Centro Internacional de Entrenamiento E Investigaciones Médicas (CIDEIM), Campus de la Universidad Icesi (Edificio O), Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - Cielo León
- Departamento de Ciencias Biológicas, Centro de Investigaciones en Microbiología Y Parasitología Tropical (CIMPAT), Universidad de los Andes, Bogota, D.C Colombia
| | - Camila González
- Departamento de Ciencias Biológicas, Centro de Investigaciones en Microbiología Y Parasitología Tropical (CIMPAT), Universidad de los Andes, Bogota, D.C Colombia
| | - María Adelaida Gómez
- Centro Internacional de Entrenamiento E Investigaciones Médicas (CIDEIM), Campus de la Universidad Icesi (Edificio O), Cali, Colombia
- Universidad Icesi, Cali, Colombia
| |
Collapse
|
2
|
Grünebast J, Clos J. Leishmania: Responding to environmental signals and challenges without regulated transcription. Comput Struct Biotechnol J 2020; 18:4016-4023. [PMID: 33363698 PMCID: PMC7744640 DOI: 10.1016/j.csbj.2020.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Here we describe the non-canonical control of gene expression in Leishmania, a single-cell parasite that is responsible for one of the major neglected tropical diseases. We discuss the lack of regulated RNA synthesis, the post-transcriptional gene regulation including RNA stability and regulated translation. We also show that genetic adaptations such as mosaic aneuploidy, gene copy number variations and DNA sequence polymorphisms are important means for overcoming drug challenge and environmental diversity. These mechanisms are discussed in the context of the unique flow of genetic information found in Leishmania and related protists.
Collapse
Affiliation(s)
- Janne Grünebast
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
3
|
Filgueira CPB, Moreira OC, Cantanhêde LM, de Farias HMT, Porrozzi R, Britto C, Boité MC, Cupolillo E. Comparison and clinical validation of qPCR assays targeting Leishmania 18S rDNA and HSP70 genes in patients with American Tegumentary Leishmaniasis. PLoS Negl Trop Dis 2020; 14:e0008750. [PMID: 33044986 PMCID: PMC7581006 DOI: 10.1371/journal.pntd.0008750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/22/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Leishmaniasis is a worldwide neglected disease, encompassing asymptomatic infections and different clinical forms, such as American Tegumentary Leishmaniasis (ATL) which is part of the complex of diseases caused by protozoan parasites from Leishmania genus, transmitted by sand fly vectors. As a neglected disease, much effort is still needed in treatment and diagnosis. Currently, ATL diagnosis is mainly made by parasite detection by microscopy. The sensitivity of the method varies, and factors such as collection procedures interfere. Molecular approaches, specially based on Real Time PCR (qPCR) technique, has been widely used to detect Leishmania infection and to quantify parasite load, once it is a simple, rapid and sensitive methodology, capable to detect low parasite concentrations and less prone to variability. Although many studies have been already published addressing the use of this technique, an improvement on these methodologies, including an analytical validation, standardization and data association is demanded. Moreover, a proper validation by the assay by the use of clinical samples is still required. In this sense, the purpose of the present work is to compare the performance of qPCR using two commonly used targets (18S rDNA and HSP70) with an internal control (RNAse P) in multiplex reactions. Additionally, we validated reactions by assaying 88 samples from patients presenting different clinical forms of leishmaniasis (cutaneous, mucosal, recent and old lesions), representing the diversity found in Brazil's Amazon Region. Following the methodology proposed herein, the results indicate the use of both qPCR assays, 18S rDNA and HSP70, to achieve a very good net sensitivity (98.5%) and specificity (100%), performing simultaneous or sequential testing, respectively. With this approach, our main goal is to conclude the first step of a further multicenter study to propose the standardization of detection and quantification of Leishmania.
Collapse
Affiliation(s)
- Camila Patricio Braga Filgueira
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Otacilio Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Lilian Motta Cantanhêde
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Epidemiologia Genética, Fundação Oswaldo Cruz, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Heloísa Martins Teixeira de Farias
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Côrtes Boité
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
León CM, Muñoz M, Hernández C, Ayala MS, Flórez C, Teherán A, Cubides JR, Ramírez JD. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia. Front Microbiol 2017; 8:1907. [PMID: 29046670 PMCID: PMC5632848 DOI: 10.3389/fmicb.2017.01907] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR) including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets) and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR), limit of detection (LoD) and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively) and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia). Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America.
Collapse
Affiliation(s)
- Cielo M León
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Bogotá, Colombia.,Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Marina Muñoz
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Bogotá, Colombia
| | - Carolina Hernández
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Bogotá, Colombia.,Programa de Doctorado en Ciencias Biomédicas y Biológicas, Universidad del Rosario, Bogotá, Colombia
| | - Martha S Ayala
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Carolina Flórez
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Aníbal Teherán
- Residente de Medicina de Emergencias, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.,Grupo de Investigación COMPLEXUS, Fundación Universitaria Juan N. Corpas, Bogotá, Colombia
| | - Juan R Cubides
- Programa de Doctorado en Ciencias Biomédicas y Biológicas, Universidad del Rosario, Bogotá, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Juan D Ramírez
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Bogotá, Colombia
| |
Collapse
|
5
|
Stiles JK, Hicock PI, Shah PH, Meade JC. Genomic organization, transcription, splicing and gene regulation inLeishmania. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Codonho BS, Costa SDS, Peloso EDF, Joazeiro PP, Gadelha FR, Giorgio S. HSP70 of Leishmania amazonensis alters resistance to different stresses and mitochondrial bioenergetics. Mem Inst Oswaldo Cruz 2016; 0:0. [PMID: 27304024 PMCID: PMC4957499 DOI: 10.1590/0074-02760160087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/28/2016] [Indexed: 01/09/2023] Open
Abstract
The 70 kDa heat shock protein (HSP70) is a molecular chaperone that assists the parasite Leishmania in returning to homeostasis after being subjected to different types of stress during its life cycle. In the present study, we evaluated the effects of HSP70 transfection of L. amazonensis promastigotes (pTEX-HSP70) in terms of morphology, resistance, infectivity and mitochondrial bioenergetics. The pTEX-HSP70 promastigotes showed no ultrastructural morphological changes compared to control parasites. Interestingly, the pTEX-HSP70 promastigotes are resistant to heat shock, H2O2-induced oxidative stress and hyperbaric environments. Regarding the bioenergetics parameters, the pTEX-HSP70 parasites had higher respiratory rates and released less H2O2 than the control parasites. Nevertheless, the infectivity capacity of the parasites did not change, as verified by the infection of murine peritoneal macrophages and human macrophages, as well as the infection of BALB/c mice. Together, these results indicate that the overexpression of HSP70 protects L. amazonensis from stress, but does not interfere with its infective capacity.
Collapse
Affiliation(s)
- Bárbara Santoni Codonho
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Solange dos Santos Costa
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Eduardo de Figueiredo Peloso
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Campinas, SP, Brasil
| | - Paulo Pinto Joazeiro
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Campinas, SP, Brasil
| | - Fernanda Ramos Gadelha
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Campinas, SP, Brasil
| | - Selma Giorgio
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| |
Collapse
|
7
|
Sequence polymorphism in the Trypanosoma rangeli HSP70 coding genes allows typing of the parasite KP1(+) and KP1(−) groups. Exp Parasitol 2013; 133:447-53. [DOI: 10.1016/j.exppara.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/03/2012] [Accepted: 01/03/2013] [Indexed: 11/22/2022]
|
8
|
Hombach A, Ommen G, Chrobak M, Clos J. The Hsp90-Sti1 interaction is critical for Leishmania donovani proliferation in both life cycle stages. Cell Microbiol 2013; 15:585-600. [PMID: 23107115 PMCID: PMC3654555 DOI: 10.1111/cmi.12057] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/19/2012] [Accepted: 10/20/2012] [Indexed: 11/30/2022]
Abstract
The heat shock protein 90 plays a pivotal role in the life cycle control of Leishmania donovani promoting the fast-growing insect stage of this parasite. Equally important for insect stage growth is the co-chaperone Sti1. We show that replacement of Sti1 is only feasible in the presence of additional Sti1 transgenes indicating an essential role. To better understand the impact of Sti1 and its interaction with Hsp90, we performed a mutational analysis of Hsp90. We established that a single amino acid exchange in the Leishmania Hsp90 renders that protein resistant to the inhibitor radicicol (RAD), yet does not interfere with its functionality. Based on this RAD-resistant Hsp90, we established a combined chemical knockout/gene complementation (CKC) approach. We can show that Hsp90 function is required in both insect and mammalian life stages and that the Sti1-binding motif of Hsp90 is crucial for proliferation of insect and mammalian stages of the parasite. The Sti1-binding motif in Leishmania Hsp90 is suboptimal - optimizing the motif increased initial intracellular proliferation underscoring the importance of the Hsp90-Sti1 interaction for this important parasitic protozoan. The CKC strategy we developed will allow the future analysis of more Hsp90 domains and motifs in parasite viability and infectivity.
Collapse
Affiliation(s)
- Antje Hombach
- Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| | | | - Mareike Chrobak
- Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| |
Collapse
|
9
|
Heat-shock protein 70 PCR-RFLP: a universal simple tool for Leishmania species discrimination in the New and Old World. Parasitology 2010; 137:1159-68. [DOI: 10.1017/s0031182010000089] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SUMMARYIntroduction. Species typing in leishmaniasis gains importance in diagnostics, epidemiology, and clinical studies. A restriction fragment length polymorphism (RFLP) assay of PCR amplicons from a partial heat-shock protein 70 gene (hsp70) had been described for the New World, allowing identification of some species. Methods. Based on an initial in silico analysis of 51 hsp70 sequences, most of which we recently determined in the frame of a phylogenetic study, species-specific restriction sites were identified. These were tested by PCR-RFLP on 139 strains from 14 species, thereby documenting both inter- and intra-species variability. Results. Our assay could identify Leishmania infantum, L. donovani, L. tropica, L. aethiopica, L. major, L. lainsoni, L. naiffi, L. braziliensis, L. peruviana, L. guyanensis, and L. panamensis by applying 2 subsequent digests. L. mexicana, L. amazonensis, and L. garnhami did not generate species-specific restriction fragment patterns. Conclusion. Currently no assay is available for global Leishmania species discrimination. We present a universal PCR-RFLP method allowing identification of most medically relevant Old and New World Leishmania species on the basis of a single PCR, obviating the need to perform separate PCRs. The technique is simple to perform and can be implemented in all settings where PCR is available.
Collapse
|
10
|
|
11
|
Folgueira C, Cañavate C, Chicharro C, Requena JM. Genomic organization and expression of the HSP70 locus in New and Old World Leishmania species. Parasitology 2006; 134:369-77. [PMID: 17054823 DOI: 10.1017/s0031182006001570] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/31/2006] [Accepted: 08/31/2006] [Indexed: 01/23/2023]
Abstract
Heat shock is believed to be a developmental inductor of differentiation in Leishmania. Furthermore, heat shock genes are extensively studied as gene models to decipher mechanisms of gene regulation in kinetoplastids. Here, we describe the organization and expression of the HSP70 loci in representative Leishmania species (L. infantum, L. major, L. tropica, L. mexicana, L. amazonensis and L. braziliensis). With the exception of L. braziliensis, the organization of the HSP70 loci was found to be well conserved among the other Leishmania species. Two types of genes, HSP70-I and HSP70-II, were found to be present in these Leishmania species except for L. braziliensis that lacks HSP70-II gene. Polymorphisms in the HSP70 locus allow the differentiation of the Old and New World species within the subgenus Leishmania. A notable discrepancy between our data and those of the L. major genome database in relation to the gene copy number composing the L. major HSP70 locus was revealed. The temperature-dependent accumulation of the HSP70-I mRNAs is also conserved among the different Leishmania species with the exception of L. braziliensis. In spite of these differences, analysis of the HSP70 synthesis indicated that the HSP70 mRNAs are also preferentially translated during heat shock in L. braziliensis.
Collapse
Affiliation(s)
- C Folgueira
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Ma YF, Zhang Y, Kim K, Weiss LM. Identification and characterisation of a regulatory region in the Toxoplasma gondii hsp70 genomic locus. Int J Parasitol 2004; 34:333-46. [PMID: 15003494 PMCID: PMC3109639 DOI: 10.1016/j.ijpara.2003.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 11/21/2003] [Accepted: 11/24/2003] [Indexed: 11/19/2022]
Abstract
Toxoplasma gondii is an important human and veterinary pathogen. The induction of bradyzoite development in vitro has been linked to temperature, pH, mitochondrial inhibitors, sodium arsenite and many of the other stressors associated with heat shock protein induction. Heat shock or stress induced activation of a set of heat shock protein genes, is characteristic of almost all eukaryotic and prokaryotic cells. Studies in other organisms indicate that heat shock proteins are developmentally regulated. We have established that increases in the expression of bag1/hsp30 and hsp70 are associated with bradyzoite development. The T. gondii hsp70 gene locus was cloned and sequenced. The regulatory regions of this gene were analysed by deletion analysis using beta-galactosidase expression vectors transiently transfected into RH strain T. gondii. Expression was measured at pH 7.1 and 8.1 (i.e. pH shock) and compared to the expression obtained with similar constructs using BAG1 and SAG1 promoters. A pH-regulated region of the Tg-hsp70 gene locus was identified which has some similarities to heat shock elements described in other eukaryotic systems. Green fluorescent protein expression vectors driven by the Tg-hsp70 regulatory region were constructed and stably transfected into T. gondii. Expression of green fluorescent protein in these parasites was induced by pH shock in those lines carrying the Tg-hsp70 regulatory constructs. Gel shift analysis was carried out using oligomers corresponding to the pH-regulated region and a putative DNA binding protein was identified. These data support the identification of a pH responsive cis-regulatory element in the T. gondii hsp70 gene locus. A model of the interaction of hsp70 and small heat shock proteins (e.g. BAG1) in development is presented.
Collapse
Affiliation(s)
- Yan Fen Ma
- Division of Parasitology and Tropical Medicine, Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Room 504 Forchheimer Building, Bronx, New York, 10461 USA
| | - YiWei Zhang
- Division of Parasitology and Tropical Medicine, Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Room 504 Forchheimer Building, Bronx, New York, 10461 USA
| | - Kami Kim
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Louis M. Weiss
- Division of Parasitology and Tropical Medicine, Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Room 504 Forchheimer Building, Bronx, New York, 10461 USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
13
|
Quijada L, Soto M, Alonso C, Requena JM. Identification of a putative regulatory element in the 3'-untranslated region that controls expression of HSP70 in Leishmania infantum. Mol Biochem Parasitol 2000; 110:79-91. [PMID: 10989147 DOI: 10.1016/s0166-6851(00)00258-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The regulation of HSP70 gene expression in Leishmania infantum, in contrast to most eukaryotes, occurs by mechanisms that operate exclusively at the post-transcriptional level. During the normal growth of L. infantum promastigotes at 26 degrees C the mRNAs derived from the sixth gene of the HSP70 locus are more abundant than the mRNAs derived from the other five HSP70 genes, but only the latter transcripts accumulate after incubation at 37 degrees C. Here, it was found that the full-length 3'untranslated region (UTR) and downstream sequences of the HSP70 genes are necessary for a correct polyadenylation of both types of transcripts and responsible for the differences in the steady-state levels of the transcripts. Also, it was found that the addition of the 3'-UTR-I (common to the first five genes of the L. infantum HSP70 gene cluster) to a reporter gene is sufficient to achieve an accumulation of the corresponding transcripts at 37 degrees C. This effect was, furthermore, found to be strand dependent. A progressive shortening of the 1063-base 3'-UTR-I has shown that the temperature-dependent accumulation was lost after deletion of 364-nucleotides from the 3' end. In addition, the accumulation of reporter transcripts at 37 degrees C was not observed in a plasmid construct containing an internal deletion (region 699-816) of the 3'-UTR-I. Thus, our data suggest that RNAs derived from L. infantum HSP70 genes 1-5 contain a cis-acting sequence that functions as a positive element during heat shock.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Gene Expression Regulation
- Genes, Protozoan
- Genes, Reporter
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Heat-Shock Response
- Leishmania infantum/genetics
- Leishmania infantum/metabolism
- Multigene Family
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Regulatory Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- L Quijada
- Centro de Biología Molecular 'Severo Ochoa' (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Quijada L, Soto M, Alonso C, Requena JM. Analysis of post-transcriptional regulation operating on transcription products of the tandemly linked Leishmania infantum hsp70 genes. J Biol Chem 1997; 272:4493-9. [PMID: 9020174 DOI: 10.1074/jbc.272.7.4493] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The genomic organization and expression of the hsp70 genes of Leishmania infantum were examined. In the cluster there are at least six copies of the hsp70 genes arranged in a head-to-tail tandem of 3. 8-kilobase repetition units. The hsp70 gene copy (gene 6) located at the 3' end of the tandem has a 3'-untranslated region highly divergent in sequence relative to the 3'-untranslated region of the rest of hsp70 gene copies (genes 1-5). Nuclease S1 protection assays indicated that the steady-state level of the mRNAs derived from gene 6 is about 50-fold more abundant than the transcript level derived from genes 1-5. Nuclear run-on assays showed, however, that all hsp70 genes are transcribed at similar rates. Thus, it is likely that the differences in the steady-state levels of the transcripts from the hsp70 genes should be associated with variations in their processing or maturation rates. While the abundance of the mRNAs derived from hsp70 genes 1-5 is increased by heat shock, the hsp70 gene 6 mRNA level remains unaffected. Our data showed that ongoing protein synthesis is required for the maintenance of the heat inducement, depicting, thus, a post-transcriptional mechanism of positive regulation involving a labile protein factor that would be either induced or activated during heat shock.
Collapse
Affiliation(s)
- L Quijada
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Jie HB, Bailey CW, Ray BK, Estes DM, Kumar N, Carson CA. Single copy Babesia microti hsp70. Mol Biochem Parasitol 1996; 83:241-6. [PMID: 9027757 DOI: 10.1016/s0166-6851(96)02767-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H B Jie
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia 65211, USA
| | | | | | | | | | | |
Collapse
|
16
|
Charest H, Zhang WW, Matlashewski G. The developmental expression of Leishmania donovani A2 amastigote-specific genes is post-transcriptionally mediated and involves elements located in the 3'-untranslated region. J Biol Chem 1996; 271:17081-90. [PMID: 8663340 DOI: 10.1074/jbc.271.29.17081] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Leishmania donovani is a protozoan parasite that exists as a free-living promastigote in the sandfly insect vector and as an amastigote inside the mammalian host macrophage phagolysosome compartment. The L. donovani A2 genes have been described previously as developmentally expressed in amastigotes but can be induced experimentally in promastigotes by a combination of pH and temperature shifts, conditions that mimic the phagolysosomal compartment of the macrophage cell. Considering the importance of the amastigote stage in human infections, we have examined the molecular basis for amastigote stage-specific gene expression. Our results provide evidence that A2 developmental expression during the promastigote-to-amastigote cytodifferentiation is mediated through differential RNA stability and involves the A2 mRNA 3'-untranslated region. The site of processing in the 3'-untranslated region was a major factor for the accumulation of A2 mRNAs in cells incubated under phagolysosomal conditions. The stability of reporter gene transcripts bearing the A2 3'-untranslated region was increased in cells incubated at low pH, further confirming the importance of pH shift as an inducer for A2 expression. These observations contribute to defining the mechanism of amastigote-specific gene regulation in L. donovani. We also demonstrate the feasibility of using the A2 locus to express heterologous genes differentially in the amastigote form of the L. donovani parasite.
Collapse
Affiliation(s)
- H Charest
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Québec, Canada H9X 3V9
| | | | | |
Collapse
|
17
|
Quijada L, Requena JM, Soto M, Alonso C. During canine viscero-cutaneous leishmaniasis the anti-Hsp70 antibodies are specifically elicited by the parasite protein. Parasitology 1996; 112 ( Pt 3):277-84. [PMID: 8728991 DOI: 10.1017/s0031182000065793] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A Leishmania infantum cDNA library was screened with sera from dogs with viscero-cutaneous leishmaniasis. Sequence analysis of a positive clone isolated from the library revealed that it coded for the carboxyl-terminal region of a member of the 70-kDa heat-shock protein family. The full-length sequence of the L. infantum hsp70 gene was determined after isolation of genomic clones. This protein shows a high degree of sequence conservation with the homologous protein from other organisms. To test its antigenicity a recombinant Hsp70 protein fused to the maltose-binding protein was produced in Escherichia coli using the expression vector pMAL-cRI. By FAST-ELISA assays it was observed that while the complete recombinant protein was recognized by 100% of the sera, the 20 carboxyl-terminal amino acids of the protein were only recognized by 30% of those sera. Thus, although a B-cell epitope must be present within the carboxyl terminal end of the protein other antigenic determinant(s) must reside out of this region. The analysis of the cross-reactivity with mouse Hsp70 by Western blotting strongly suggests that the anti-Hsp70 antibodies generated by infection with L. infantum are directed at specific determinants of the L. infantum Hsp70. Thus, our results indicate that anti-Hsp70 autoantibodies are not induced during Leishmania infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/biosynthesis
- Antibody Formation
- Antibody Specificity
- Autoantibodies/biosynthesis
- Blotting, Western
- Cloning, Molecular
- Conserved Sequence
- DNA, Complementary
- Dog Diseases
- Dogs
- Gene Library
- Genes, Protozoan
- HSP70 Heat-Shock Proteins/biosynthesis
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/immunology
- Leishmania infantum/genetics
- Leishmania infantum/immunology
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/veterinary
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/veterinary
- Mice
- Molecular Sequence Data
- Protozoan Proteins/biosynthesis
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/immunology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- L Quijada
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Abstract
The control of hsp70 mRNA levels was investigated using transgenic bloodstream and procyclic trypanosomes. Heat shock of procyclic and bloodstream trypanosomes caused no significant change in overall protein synthesis, but led to a 2-3-fold increase in the relative hsp70 mRNA level in bloodstream trypanosomes. Incubation of procyclic trypanosomes at 35 degrees C for up to 18 h increased the level of hsp70 mRNA only marginally. The expression of actin and hsp70 mRNAs was markedly reduced in late log phase procyclic trypanosomes but PARP mRNA levels remained constant. Measurements of phleomycin-binding-protein RNAs bearing 3'- and 5'-untranslated regions from the actin, PARP or hsp70 loci indicated that both the heat-shock and cell-density effects were mediated by the untranslated regions. No significant promoter activity was detected in the different hsp70 locus intergenic regions in transient assays.
Collapse
Affiliation(s)
- T Häusler
- Zentrum für Molekulare Biologie, Universität Heidelberg, Germany
| | | |
Collapse
|
19
|
Abstract
The kinetoplastid protozoa infect hosts ranging from invertebrates to plants and mammals, causing diseases of medical and economic importance. They are the earliest-branching organisms in eucaryotic evolution to have either mitochondria or peroxisome-like microbodies. Investigation of their protein trafficking enables us to identify characteristics that have been conserved throughout eucaryotic evolution and also reveals how far variations, or alternative mechanisms, are possible. Protein trafficking in kinetoplastids is in many respects similar to that in higher eucaryotes, including mammals and yeasts. Differences in signal sequence specificities exist, however, for all subcellular locations so far examined in detail--microbodies, mitochondria, and endoplasmic reticulum--with signals being more degenerate, or shorter, than those of their higher eucaryotic counterparts. Some components of the normal array of trafficking mechanisms may be missing in most (if not all) kinetoplastids: examples are clathrin-coated vesicles, recycling receptors, and mannose 6-phosphate-mediated lysosomal targeting. Other aspects and structures are unique to the kinetoplastids or are as yet unexplained. Some of these peculiarities may eventually prove to be weak points that can be used as targets for chemotherapy; others may turn out to be much more widespread than currently suspected.
Collapse
Affiliation(s)
- C Clayton
- Zentrum für Molekulare Biologie, Heidelberg, Germany
| | | | | |
Collapse
|
20
|
Aly R, Argaman M, Halman S, Shapira M. A regulatory role for the 5' and 3' untranslated regions in differential expression of hsp83 in Leishmania. Nucleic Acids Res 1994; 22:2922-9. [PMID: 8065903 PMCID: PMC310256 DOI: 10.1093/nar/22.15.2922] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Exposure of Leishmania promastigotes to temperatures typical of mammals result in a stress response, which is accompanied by an increase in the steady state level of heat shock transcripts and their translation. Accumulation of the heat shock protein (hsp83) mRNA occurs due to differential decay rates at the altered temperatures, while transcription is unaffected. A similar pattern of post-transcriptional regulation was observed for a transfected chloramphenicol acetyltransferase (CAT) gene, which was flanked at both ends by intergenic regions (IR) of hsp83. Shortening the 5' untranslated region (UTR) by 100 nts produced an active CAT enzyme, but abolished the temperature-dependent regulation of the CAT-hsp83 mRNA turn-over. The 3' UTR is also involved in the temperature-dependent degradation of hsp83 mRNA, since exchange of the hsp83 3' UTR with a parallel fragment from a non-heat shock gene abolished the differential turn-over of CAT mRNA. Thus, the regulated decay of hsp83 mRNA is controlled by sequence or conformational elements present in both upstream and downstream UTRs. Like the endogenous hsp83, translation of CAT mRNA which contained hsp83 UTRs was higher at 35 degrees C. This was observed only with transcripts in which stability increased at elevated temperatures. Modifications which abolished the temperature dependence of CAT mRNA decay, eliminated its elevated translation at the higher temperatures. The correlation suggests a mechanistic link between the translational machinery and mRNA stability.
Collapse
Affiliation(s)
- R Aly
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
21
|
Steinkraus HB, Greer JM, Stephenson DC, Langer PJ. Sequence heterogeneity and polymorphic gene arrangements of the Leishmania guyanensis gp63 genes. Mol Biochem Parasitol 1993; 62:173-85. [PMID: 7908120 DOI: 10.1016/0166-6851(93)90107-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Leishmania GP63 major surface protein gene family encodes multiple isoforms which differ predominantly in the carboxyterminal region. We have isolated 4 full-length gp63 cDNA clones derived from stationary-phase promastigote RNA of a cloned isolate of Leishmania guyanensis, a member of the braziliensis complex. These genes, along with the previously published L. guyanensis gp63 gene sequence [15], appeared to be mosaics of different combinations of 5' and 3' untranslated regions and sequences encoding the propeptide, internal, and C-terminal regions of GP63. The predicted L. guyanensis GP63 isoforms shared as little as 55% sequence identity, comparable to the inter-species diversity of GP63. The genomic organization of gp63 genes in L. guyanensis is highly complex: there are at least 4 distinct polymorphic forms of tandemly linked gene clusters, with intra-gene cluster variation in gene sequence and in the number of gene repeats. Southern blot analysis suggested that the arrangement of gp63 genes in this L. guyanensis isolate did not differ from that in the parental lines.
Collapse
Affiliation(s)
- H B Steinkraus
- Department of Molecular Biology, University of Wyoming, Laramie 82071-3944
| | | | | | | |
Collapse
|