1
|
Maldonado E, Canobra P, Oyarce M, Urbina F, Miralles VJ, Tapia JC, Castillo C, Solari A. In Vitro Identification of Phosphorylation Sites on TcPolβ by Protein Kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 and Effect of Phorbol Ester on Activation by TcPKC of TcPolβ in Trypanosoma cruzi Epimastigotes. Microorganisms 2024; 12:907. [PMID: 38792752 PMCID: PMC11124317 DOI: 10.3390/microorganisms12050907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Chagas disease is caused by the single-flagellated protozoan Trypanosoma cruzi, which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite's growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in T. cruzi could help to develop new drugs to treat the disease caused by these protozoa. In the present work, we have demonstrated that Fetal Calf Serum (FCS) can quickly increase the levels of both phosphorylated and unphosphorylated forms of T. cruzi DNA polymerase beta (TcPolβ) in tissue-cultured trypomastigotes. The in vitro phosphorylation sites on TcPolβ by protein kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 have been identified by Mass Spectrometry (MS) analysis and with antibodies against phosphor Ser-Thr-Tyr. MS analysis indicated that these protein kinases can phosphorylate Ser and Thr residues on several sites on TcPolβ. Unexpectedly, it was found that TcCK1 and TcPKC1 can phosphorylate a different Tyr residue on TcPolβ. By using a specific anti-phosphor Tyr monoclonal antibody, it was determined that TcCK1 can be in vitro autophosphorylated on Tyr residues. In vitro and in vivo studies showed that phorbol 12-myristate 13-acetate (PMA) can activate the PKC to stimulate the TcPolβ phosphorylation and enzymatic activity in T. cruzi epimastigotes.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Paz Canobra
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Matías Oyarce
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Vicente J. Miralles
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46110 Valencia, Spain;
| | - Julio C. Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| |
Collapse
|
2
|
Maldonado E, Morales-Pison S, Urbina F, Solari A. Molecular and Functional Characteristics of DNA Polymerase Beta-Like Enzymes From Trypanosomatids. Front Cell Infect Microbiol 2021; 11:670564. [PMID: 34422676 PMCID: PMC8375306 DOI: 10.3389/fcimb.2021.670564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Trypanosomatids are a group of primitive unicellular eukaryotes that can cause diseases in plants, insects, animals, and humans. Kinetoplast genome integrity is key to trypanosomatid cell survival and viability. Kinetoplast DNA (kDNA) is usually under attack by reactive oxygen and nitric species (ROS and RNS), damaging the DNA, and the cells must remove and repair those oxidatively generated lesions in order to survive and proliferate. Base excision repair (BER) is a well-conserved pathway for DNA repair after base damage, single-base loss, and single-strand breaks, which can arise from ROS, RSN, environmental genotoxic agents, and UV irradiation. A powerful BER system has been described in the T. cruzi kinetoplast and it is mainly carried out by DNA polymerase β (pol β) and DNA polymerase β-PAK (pol β-PAK), which are kinetoplast-located in T. cruzi as well as in other trypanosomatids. Both pol β and pol β-PAK belong to the X-family of DNA polymerases (pol X family), perform BER in trypanosomatids, and display intrinsic 5-deoxyribose phosphate (dRP) lyase and DNA polymerase activities. However, only Pol β-PAK is able to carry out trans-lesion synthesis (TLS) across 8oxoG lesions. T. cruzi cells overexpressing pol β are more resistant to ROS and are also more efficient to repair 8oxoG compared to control cells. Pol β seems to play a role in kDNA replication, since it associates with kinetoplast antipodal sites in those development stages in trypanosomatids which are competent for cell replication. ROS treatment of cells induces the overexpression of pol β, indicating that plays a role in kDNA repair. In this review, we will summarize the main features of trypanosomatid minicircle kDNA replication and the biochemical characteristics of pol β-like enzymes and their involvement in BER and kDNA replication. We also summarize key structural features of trypanosomatid pol β compared to their mammalian (human) counterpart.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Morales-Pison
- Laboratorio de Genética Molecular Humana, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Maldonado E, Rojas DA, Urbina F, Solari A. T. cruzi DNA polymerase beta (Tcpolβ) is phosphorylated in vitro by CK1, CK2 and TcAUK1 leading to the potentiation of its DNA synthesis activity. PLoS Negl Trop Dis 2021; 15:e0009588. [PMID: 34260580 PMCID: PMC8312956 DOI: 10.1371/journal.pntd.0009588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/26/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
The unicellular protozoan Trypanosoma cruzi is the causing agent of Chagas disease which affects several millions of people around the world. The components of the cell signaling pathways in this parasite have not been well studied yet, although its genome can encode several components able to transduce the signals, such as protein kinases and phosphatases. In a previous work we have found that DNA polymerase β (Tcpolβ) can be phosphorylated in vivo and this modification activates the synthesis activity of the enzyme. Tcpolβ is kinetoplast-located and is a key enzyme in the DNA base excision repair (BER) system. The polypeptide possesses several consensus phosphorylation sites for several protein kinases, however, a direct phosphorylation of those sites by specific kinases has not been reported yet. Tcpolβ has consensus phosphorylation sites for casein kinase 1 (CK1), casein kinase 2 (CK2) and aurora kinase (AUK). Genes encoding orthologues of those kinases exist in T. cruzi and we were able to identify the genes and to express them to investigate whether or no Tcpolβ could be a substrate for in vitro phosphorylation by those kinases. Both CK1 and TcAUK1 have auto-phosphorylation activities and they are able to phosphorylate Tcpolβ. CK2 cannot perform auto-phosphorylation of its subunits, however, it was able to phosphorylate Tcpolβ. Pharmacological inhibitors used to inhibit the homologous mammalian kinases can also inhibit the activity of T. cruzi kinases, although, at higher concentrations. The phosphorylation events carried out by those kinases can potentiate the DNA polymerase activity of Tcpolβ and it is discussed the role of the phosphorylation on the DNA polymerase and lyase activities of Tcpolβ. Taken altogether, indicates that CK1, CK2 and TcAUK1 can play an in vivo role regulating the function of Tcpolβ.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (EM); (AS)
| | - Diego A. Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (EM); (AS)
| |
Collapse
|
4
|
Rojas DA, Urbina F, Moreira-Ramos S, Castillo C, Kemmerling U, Lapier M, Maya JD, Solari A, Maldonado E. Endogenous overexpression of an active phosphorylated form of DNA polymerase β under oxidative stress in Trypanosoma cruzi. PLoS Negl Trop Dis 2018; 12:e0006220. [PMID: 29432450 PMCID: PMC5825160 DOI: 10.1371/journal.pntd.0006220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/23/2018] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
Trypanosoma cruzi is exposed during its life to exogenous and endogenous oxidative stress, leading to damage of several macromolecules such as DNA. There are many DNA repair pathways in the nucleus and mitochondria (kinetoplast), where specific protein complexes detect and eliminate damage to DNA. One group of these proteins is the DNA polymerases. In particular, Tc DNA polymerase β participates in kinetoplast DNA replication and repair. However, the mechanisms which control its expression under oxidative stress are still unknown. Here we describe the effect of oxidative stress on the expression and function of Tc DNA polymerase β To this end parasite cells (epimastigotes and trypomastigotes) were exposed to peroxide during short periods of time. Tc DNA polymerase β which was associated physically with kinetoplast DNA, showed increased protein levels in response to peroxide damage in both parasite forms analyzed. Two forms of DNA polymerase β were identified and overexpressed after peroxide treatment. One of them was phosphorylated and active in DNA synthesis after renaturation on polyacrylamide electrophoresis gel. This phosphorylated form showed 3-4-fold increase in both parasite forms. Our findings indicate that these increments in protein levels are not under transcriptional control because the level of Tc DNA polymerase β mRNA is maintained or slightly decreased during the exposure to oxidative stress. We propose a mechanism where a DNA repair pathway activates a cascade leading to the increment of expression and phosphorylation of Tc DNA polymerase β in response to oxidative damage, which is discussed in the context of what is known in other trypanosomes which lack transcriptional control. Exposure of Trypanosome cruzi to oxidative stress leads to damage of several macromolecules such as DNA. DNA polymerases play a very important role in DNA repair after oxidative damage. One of them is Tc DNA polymerase β. In this work, two form of this DNA polymerase were identified and overexpressed in T. cruzi cells after hydrogen peroxide treatment been one of them a phosphorylated and highly active form. The increment of Tc DNA polymerase β was not correlated with changes in mRNA levels, indicating absence of transcriptional control. We propose a mechanism where hydrogen peroxide treatment activates a pathway leading to expression and phosphorylation of Tc DNA polymerase β in response to oxidative damage.
Collapse
Affiliation(s)
- Diego A. Rojas
- Microbiology and Micology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fabiola Urbina
- Cellular and Molecular Biology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra Moreira-Ramos
- Cellular and Molecular Biology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Christian Castillo
- Anatomy and Developmental Biology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Anatomy and Developmental Biology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Michel Lapier
- Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Diego Maya
- Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Aldo Solari
- Cellular and Molecular Biology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Edio Maldonado
- Cellular and Molecular Biology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
5
|
Maldonado E, Rojas DA, Moreira-Ramos S, Urbina F, Miralles VJ, Solari A, Venegas J. Expression, purification, and biochemical characterization of recombinant DNA polymerase beta of the Trypanosoma cruzi TcI lineage: requirement of additional factors and detection of phosphorylation of the native form. Parasitol Res 2015; 114:1313-26. [PMID: 25566774 DOI: 10.1007/s00436-014-4308-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a major parasitic disease that affects millions of people in America. However, despite the high impact of this disease on human health, no effective and safe treatment has been found that eliminates the infecting parasite from human patients. Among the possible chemotherapeutic targets that could be considered for study in T. cruzi are the DNA polymerases, in particular DNA polymerase beta (polß), which previous studies have shown to be involved in kinetoplast DNA replication and repair. In this paper, we describe the expression, purification, and biochemical characterization of the Miranda clone polß, corresponding to lineage T. cruzi I (TcI). The recombinant enzyme purified to homogeneity displayed specific activity in the range described for a highly purified mammalian polß. However, the trypanosome enzyme exhibited important differences in biochemical properties compared to the mammalian enzymes, specifically an almost absolute dependency on KCl, high sensitivity to N-ethylmaleimide (NEM), and low sensitivity to ddTTP. Immuno-affinity purification of T. cruzi polymerase beta (Tcpolß) from epimastigote extracts showed that the native enzyme was phosphorylated. In addition, it was demonstrated that Tcpolß interacts with some proteins in a group of about 15 proteins which are required to repair 1-6 bases of gaps of a double strand damaged DNA. It is possible that these proteins form part of a DNA repair complex, analogous to that described in mammals and some trypanosomatids.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
6
|
Liao D, Shen J. Studies of quinapyramine-resistance of Trypanosoma brucei evansi in China. Acta Trop 2010; 116:173-7. [PMID: 20813092 DOI: 10.1016/j.actatropica.2010.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 10/19/2022]
Abstract
In the present article, we summarize our studies of antrycide-resistance of Trypanosoma brucei evansi in four aspects in the last recent several years, the analysis of quinapyramine-sensitive situation of T. b. evansi in China, biological characteristics of T. b. evansi population in quinapyramine-resistance and biological materials of quinapyramine-resistance in T. b. evansi population. Firstly, the correlative assays of effective dosage of quinapyramine on T. b. evansi disease between in vivo and in vitro methods showed that their relationship was parabolic with positive correlation. On the other hand, the IC(50) and CD(100) values of 12 T. b. evansi isolates, AHB, GDB1, GDB2, HNB, JSB1, JSB2, YNB, ZJB, GDH, GXM, HBM and XJCA, collected from buffaloes, horses, mules and camels across nine provinces of China were examined using the two methods, respectively. Among them, the nine isolates, AHB, GDB1, GDB2, HNB, JSB1, JSB2, YNB, ZJB and GDH, became quinapyramine-sensitive T. b. evansi. Secondly, T. evansi populations could rapidly obtain antrycide-resistance when they were passed through immunosuppressed mice treated with low doses of the drug. But, the replication rate of trypanosomes with antrycide-resistance decreases as the level of drug-resistance increases. Thirdly, the analysis of the HK, G6PDH, ALAT and ASAT isoenzymes showed that they were not involved in the quinapyramine-resistance of T. b. evansi. But the protein bands of 15.79kDa and 19.76kDa might be involved in the antrycide-resistance of T. b. evansi population. At genetic level, the gene, TbTA1, could be amplified from the T. b. evansi isolate sensitive to quinapyramine-sensitivity but the T. b. evansi isolate with quinapyramine-resistance using not only the RT-PCR technique, but also PCR technique. We used the SSH (Suppression Subtractive Hybridization) to clone highly or low expressed cDNA fragments caused by production of antrycide-resistance in T. b. evansi. The 5 low and 9 high expressed new cDNA fragments were amplified. Among them, the 3 low expressed cDNA fragments had the same sequence of 65 amino acids and the 3 high expressed cDNA fragments were located in chromosome VI, like T. brucei. Lastly, more work needs to be done in order to elucidate the mechanism of quinapyramine-resistance of T. b. evansi.
Collapse
|
7
|
Venegas JA, Aslund L, Solari A. Cloning and characterization of a DNA polymerase beta gene from Trypanosoma cruzi. Parasitol Int 2009; 58:187-92. [PMID: 19567232 DOI: 10.1016/j.parint.2009.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 01/21/2009] [Accepted: 01/23/2009] [Indexed: 11/15/2022]
Abstract
A gene coding for a DNA polymerase beta from the Trypanosoma cruzi Miranda clone, belonging to the TcI lineage, was cloned (Miranda Tcpol beta), using the information from eight peptides of the T. cruzi beta-like DNA polymerase purified previously. The gene encodes for a protein of 403 amino acids which is very similar to the two T. cruzi CL Brener (TcIIe lineage) sequences published, but has three different residues in highly conserved segments. At the amino acid level, the identity of TcI-pol beta with mitochondrial pol beta and pol beta-PAK from other trypanosomatids was between 68-80% and 22-30%, respectively. Miranda Tc-pol beta protein has an N-terminal sequence similar to that described in the mitochondrial Crithidia fasciculata pol beta, which suggests that the TcI-pol beta plays a role in the organelle. Northern and Western analyses showed that this T. cruzi gene is highly expressed both in proliferative and non-proliferative developmental forms. These results suggest that, in addition to replication of kDNA in proliferative cells, this enzyme may have another function in non-proliferative cells, such as DNA repair role similar to that which has extensively been described in a vast spectrum of eukaryotic cells.
Collapse
Affiliation(s)
- Juan A Venegas
- Programa de Biología Celular y Molecular, ICBM, Universidad de Chile, Casilla 70086, Santiago-7, Chile.
| | | | | |
Collapse
|
8
|
Lopes DDO, Schamber-Reis BLF, Regis-da-Silva CG, Rajão MA, Darocha WD, Macedo AM, Franco GR, Nardelli SC, Schenkman S, Hoffmann JS, Cazaux C, Pena SDJ, Teixeira SMR, Machado CR. Biochemical studies with DNA polymerase beta and DNA polymerase beta-PAK of Trypanosoma cruzi suggest the involvement of these proteins in mitochondrial DNA maintenance. DNA Repair (Amst) 2008; 7:1882-92. [PMID: 18761429 DOI: 10.1016/j.dnarep.2008.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 07/07/2008] [Accepted: 07/23/2008] [Indexed: 11/24/2022]
Abstract
Mammalian DNA polymerase beta is a nuclear enzyme involved in the base excision and single-stranded DNA break repair pathways. In trypanosomatids, this protein does not have a defined cellular localization, and its function is poorly understood. We characterized two Trypanosoma cruzi proteins homologous to mammalian DNA polymerasebeta, TcPolbeta and TcPolbetaPAK, and showed that both enzymes localize to the parasite kinetoplast. In vitro assays with purified proteins showed that they have DNA polymerization and deoxyribose phosphate lyase activities. Optimal conditions for polymerization were different for each protein with respect to dNTP concentration and temperature, and TcPolbetaPAK, in comparison to TcPolbeta, conducted DNA synthesis over a much broader pH range. TcPolbeta was unable to carry out mismatch extension or DNA synthesis across 8-oxodG lesions, and was able to discriminate between dNTP and ddNTP. These specific abilities of TcPolbeta were not observed for TcPolbetaPAK or other X family members, and are not due to a phenylalanine residue at position 395 in the C-terminal region of TcPolbeta, as assessed by a site-directed mutagenesis experiment reversing this residue to a well conserved tyrosine. Our data suggest that both polymerases from T. cruzi could cooperate to maintain mitochondrial DNA integrity through their multiple roles in base excision repair, gap filling and translesion synthesis.
Collapse
|
9
|
Peña-Diaz J, Akbari M, Sundheim O, Farez-Vidal ME, Andersen S, Sneve R, Gonzalez-Pacanowska D, Krokan HE, Slupphaug G. Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair. J Mol Biol 2004; 342:787-99. [PMID: 15342237 DOI: 10.1016/j.jmb.2004.07.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 07/08/2004] [Accepted: 07/12/2004] [Indexed: 11/23/2022]
Abstract
Enzymes involved in genomic maintenance of human parasites are attractive targets for parasite-specific drugs. The parasitic protozoan Trypanosoma cruzi contains at least two enzymes involved in the protection against potentially mutagenic uracil, a deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the highly conserved UNG-family. Uracil-DNA glycosylase activities excise uracil from DNA and initiate a multistep base-excision repair (BER) pathway to restore the correct nucleotide sequence. Here we report the biochemical characterisation of T.cruzi UNG (TcUNG) and its contribution to the total uracil repair activity in T.cruzi. TcUNG is shown to be the major uracil-DNA glycosylase in T.cruzi. The purified recombinant TcUNG exhibits substrate preference for removal of uracil in the order ssU>U:G>U:A, and has no associated thymine-DNA glycosylase activity. T.cruzi apparently repairs U:G DNA substrate exclusively via short-patch BER, but the DNA polymerase involved surprisingly displays a vertebrate POLdelta-like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and MBD4 were not found, underlying the importance of the TcUNG enzyme in protection against uracil in DNA and as a potential target for drug therapy.
Collapse
Affiliation(s)
- Javier Peña-Diaz
- Instituto de Parasitologia y Biomedicina "Lopez Neyra", Consejo Superior de Investigaciones Cientificas, C/Ventanilla 11, 18001 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Venegas J, Salas J, Gonzalez C, Zulantay I, Diaz E, Gajardo M, Sanchez G, Solari A. Isolation and partial characterization of three DNA polymerases from Trypanosoma cruzi. Comp Biochem Physiol B Biochem Mol Biol 2000; 127:11-9. [PMID: 11126746 DOI: 10.1016/s0305-0491(00)00229-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three distinct DNA polymerase fractions (A, B and C), were isolated from Trypanosoma cruzi epimastigote forms. Fraction A is a low molecular mass enzyme corresponding to beta-like DNA polymerase of T. cruzi. Fraction B co-purified along several purification steps with fraction A, but in the last step it was clearly separated by a phosphocellulose chromatography. Fraction C was separated from fractions A and B by binding to DEAE-cellulose column, since the other two fractions were eluted in the flowthrough. This enzyme has an apparent native molecular mass of 100 kDa and showed a high preference for poly(dC)-oligo(dG) among different template-primers tested as substrate. Western-blot and biochemical analysis strongly suggest that the three DNA polymerase fractions correspond to different molecular entities. These results are in agreement with the idea that fraction C is a new DNA polymerase of T. cruzi, not described before.
Collapse
Affiliation(s)
- J Venegas
- Programa tide Parasitología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fuenmayor J, Zhang J, Ruyechan W, Williams N. Identification and characterization of two DNA polymerase activities present in Trypanosoma brucei mitochondria. J Eukaryot Microbiol 1998; 45:404-10. [PMID: 9703676 DOI: 10.1111/j.1550-7408.1998.tb05091.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have identified and partially purified two DNA polymerase activities from purified Trypanosoma brucei mitochondrial extracts. The DNA polymerase activity eluted from the single-stranded DNA agarose column at 0.15 M KCl (polymerase M1) was significantly inhibited by salt concentrations greater than 100 mM, utilized Mg2+ in preference to Mn2+ as a cofactor on deoxyribonucleotide templates with deoxyribose primers, and in the presence of Mn2+ favored a ribonucleotide template with a deoxyribose primer. A 44 kDa peptide in this fraction crossreacted with antisera against the Crithidia fasciculata beta-like mitochondrial polymerase. In activity gels the catalytic peptide migrated at an apparent molecular weight of 35 kDa. The DNA polymerase activity present in the 0.3 M KCl DNA agarose fraction (polymerase M2) exhibited optimum activity at 120-180 mM KCl, used both Mg2+ and Mn2+ as cofactors, and used deoxyribonucleotide templates primed with either deoxyribose or ribose oligomers. Activity gel assays indicate that the native catalytic peptide(s) is approximately 80 kDa in size. The two polymerases showed different sensitivities to several inhibitors: polymerase M1 shows similarities to the Crithidia fasciculata beta-like mitochondrial polymerase while polymerase M2 is a novel, salt-activated enzyme of higher molecular weight.
Collapse
Affiliation(s)
- J Fuenmayor
- Department of Microbiology, State University of New York, Buffalo 14214, USA
| | | | | | | |
Collapse
|
12
|
Bischoff KM, Shi L, Kennelly PJ. The detection of enzyme activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 1998; 260:1-17. [PMID: 9648646 DOI: 10.1006/abio.1998.2680] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
More than a hundred different enzymes impinging on aspects of cell function ranging from carbohydrate and lipid metabolism to signal transduction and gene expression to biomolecule degradation have been detected by the assay of their enzymatic activities following SDS-PAGE. The strategies by which this has been accomplished are as varied as the enzymes themselves and offer testimony to the creativeness and ingenuity of life scientists. Assay of enzyme activity following SDS-PAGE is well adapted to identifying the source of catalytic activity in a heterogeneous protein mixture or a heterooligomeric protein (20), or determining if multiple catalytic activities reside in a single polypeptide (60). The alliance of versatile enzyme assay techniques with the molecular resolution of SDS-PAGE offers a powerful means for meeting the increasing demand for the high-throughput screening arising from protein engineering, combinatorial chemistry, and functional genomics.
Collapse
Affiliation(s)
- K M Bischoff
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | |
Collapse
|
13
|
|