1
|
Galanti N, Galindo M, Sabaj V, Espinoza I, Toro GC. Histone genes in trypanosomatids. ACTA ACUST UNITED AC 2011; 14:64-70. [PMID: 17040700 DOI: 10.1016/s0169-4758(97)01162-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Histone genes in Trypanosomatids are of considerable interest because these flagellates do not condense their chromatin during mitosis. In contrast to higher eukaryotes, histone genes in Trypanosomatids are found on separate chromosomes, and their transcripts are polyadenylated. Sequence similarity of Trypanosomatid core histones with those of higher eukaryotes is found predominantly in the globular region; the N-terminal is highly divergent. Finally, in general, Trypanosomatid histones H1 are of low molecular weight, bearing closest homology to the C-terminal region of the higher eukaryote histones H1. These features constitute interesting targets for a rational approach to the study of these protozoa, as discussed here by Norbel Galanti and colleagues.
Collapse
|
2
|
Elias MC, Nardelli SC, Schenkman S. Chromatin and nuclear organization in Trypanosoma cruzi. Future Microbiol 2009; 4:1065-74. [DOI: 10.2217/fmb.09.74] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A total of 100 years have passed since the discovery of the protozoan Trypanosoma cruzi, the etiologic agent of Chagas’ disease. Since its discovery, the molecular and cellular biology of this early divergent eukaryote, as well as its interactions with the mammalian and insect hosts, has progressed substantially. It is now clear that this parasite presents unique mechanisms controlling gene expression, DNA replication, cell cycle and differentiation, generating several morphological forms that are adapted to survive in different hosts. In recent years, the relationship between the chromatin structure and nuclear organization with the unusual transcription, splicing, DNA replication and DNA repair mechanisms have been investigated in T. cruzi. This article reviews the relevant aspects of these mechanisms in relation to chromatin and nuclear organization.
Collapse
Affiliation(s)
| | - Sheila Cristina Nardelli
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| |
Collapse
|
3
|
Thomas S, Green A, Sturm NR, Campbell DA, Myler PJ. Histone acetylations mark origins of polycistronic transcription in Leishmania major. BMC Genomics 2009; 10:152. [PMID: 19356248 PMCID: PMC2679053 DOI: 10.1186/1471-2164-10-152] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 04/08/2009] [Indexed: 11/19/2022] Open
Abstract
Background Many components of the RNA polymerase II transcription machinery have been identified in kinetoplastid protozoa, but they diverge substantially from other eukaryotes. Furthermore, protein-coding genes in these organisms lack individual transcriptional regulation, since they are transcribed as long polycistronic units. The transcription initiation sites are assumed to lie within the 'divergent strand-switch' regions at the junction between opposing polycistronic gene clusters. However, the mechanism by which Kinetoplastidae initiate transcription is unclear, and promoter sequences are undefined. Results The chromosomal location of TATA-binding protein (TBP or TRF4), Small Nuclear Activating Protein complex (SNAP50), and H3 histones were assessed in Leishmania major using microarrays hybridized with DNA obtained through chromatin immunoprecipitation (ChIP-chip). The TBP and SNAP50 binding patterns were almost identical and high intensity peaks were associated with tRNAs and snRNAs. Only 184 peaks of acetylated H3 histone were found in the entire genome, with substantially higher intensity in rapidly-dividing cells than stationary-phase. The majority of the acetylated H3 peaks were found at divergent strand-switch regions, but some occurred at chromosome ends and within polycistronic gene clusters. Almost all these peaks were associated with lower intensity peaks of TBP/SNAP50 binding a few kilobases upstream, evidence that they represent transcription initiation sites. Conclusion The first genome-wide maps of DNA-binding protein occupancy in a kinetoplastid organism suggest that H3 histones at the origins of polycistronic transcription of protein-coding genes are acetylated. Global regulation of transcription initiation may be achieved by modifying the acetylation state of these origins.
Collapse
Affiliation(s)
- Sean Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
4
|
Respuela P, Ferella M, Rada-Iglesias A, Åslund L. Histone acetylation and methylation at sites initiating divergent polycistronic transcription in Trypanosoma cruzi. J Biol Chem 2008; 283:15884-92. [PMID: 18400752 PMCID: PMC3259629 DOI: 10.1074/jbc.m802081200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Indexed: 01/23/2023] Open
Abstract
Trypanosomes are ancient eukaryotic parasites in which the protein-coding genes, organized in large polycistronic clusters on both strands, are transcribed from as yet unidentified promoters. In an effort to reveal transcriptional initiation sites, we examined the Trypanosoma cruzi genome for histone modification patterns shown to be linked to active genes in various organisms. Here, we show that acetylated and methylated histones were found to be enriched at strand switch regions of divergent gene arrays, not at convergent clusters or intra- and intergenic regions within clusters. The modified region showed a bimodular profile with two peaks centered over the 5'-regions of the gene pair flanking the strand switch region. This pattern, which demarcates polycistronic transcription units originating from bidirectional initiation sites, is likely to be common in kinetoplastid parasites as well as in other organisms with polycistronic transcription. In contrast, no acetylation was found at promoters of the highly expressed rRNA and spliced leader genes or satellite DNA or at tested retrotransposonal elements. These results reveal, for the first time, the presence of specific epigenetic marks in T. cruzi with potential implications for transcriptional regulation; they indicate that both histone modifications and bidirectional transcription are evolutionarily conserved.
Collapse
Affiliation(s)
- Patricia Respuela
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| | - Marcela Ferella
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| | - Alvaro Rada-Iglesias
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| | - Lena Åslund
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| |
Collapse
|
5
|
Dávila López M, Samuelsson T. Early evolution of histone mRNA 3' end processing. RNA (NEW YORK, N.Y.) 2008; 14:1-10. [PMID: 17998288 PMCID: PMC2151031 DOI: 10.1261/rna.782308] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/27/2007] [Indexed: 05/20/2023]
Abstract
The replication-dependent histone mRNAs in metazoa are not polyadenylated, in contrast to the bulk of mRNA. Instead, they contain an RNA stem-loop (SL) structure close to the 3' end of the mature RNA, and this 3' end is generated by cleavage using a machinery involving the U7 snRNP and protein factors such as the stem-loop binding protein (SLBP). This machinery of 3' end processing is related to that of polyadenylation as protein components are shared between the systems. It is commonly believed that histone 3' end processing is restricted to metazoa and green algae. In contrast, polyadenylation is ubiquitous in Eukarya. However, using computational approaches, we have now identified components of histone 3' end processing in a number of protozoa. Thus, the histone mRNA stem-loop structure as well as the SLBP protein are present in many different protozoa, including Dictyostelium, alveolates, Trypanosoma, and Trichomonas. These results show that the histone 3' end processing machinery is more ancient than previously anticipated and can be traced to the root of the eukaryotic phylogenetic tree. We also identified histone mRNAs from both metazoa and protozoa that are polyadenylated but also contain the signals characteristic of histone 3' end processing. These results provide further evidence that some histone genes are regulated at the level of 3' end processing to produce either polyadenylated RNAs or RNAs with the 3' end characteristic of replication-dependent histone mRNAs.
Collapse
Affiliation(s)
- Marcela Dávila López
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Göteborg University, SE-405 30 Göteborg, Sweden
| | | |
Collapse
|
6
|
Jackson AP. Tandem gene arrays in Trypanosoma brucei: comparative phylogenomic analysis of duplicate sequence variation. BMC Evol Biol 2007; 7:54. [PMID: 17408475 PMCID: PMC1855330 DOI: 10.1186/1471-2148-7-54] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 04/04/2007] [Indexed: 11/23/2022] Open
Abstract
Background The genome sequence of the protistan parasite Trypanosoma brucei contains many tandem gene arrays. Gene duplicates are created through tandem duplication and are expressed through polycistronic transcription, suggesting that the primary purpose of long, tandem arrays is to increase gene dosage in an environment where individual gene promoters are absent. This report presents the first account of the tandem gene arrays in the T. brucei genome, employing several related genome sequences to establish how variation is created and removed. Results A systematic survey of tandem gene arrays showed that substantial sequence variation existed across the genome; variation from different regions of an array often produced inconsistent phylogenetic affinities. Phylogenetic relationships of gene duplicates were consistent with concerted evolution being a widespread homogenising force. However, tandem duplicates were not usually identical; therefore, any homogenising effect was coincident with divergence among duplicates. Allelic gene conversion was detected using various criteria and was apparently able to both remove and introduce sequence variation. Tandem arrays containing structural heterogeneity demonstrated how sequence homogenisation and differentiation can occur within a single locus. Conclusion The use of multiple genome sequences in a comparative analysis of tandem gene arrays identified substantial sequence variation among gene duplicates. The distribution of sequence variation is determined by a dynamic balance of conservative and innovative evolutionary forces. Gene trees from various species showed that intraspecific duplicates evolve in concert, perhaps through frequent gene conversion, although this does not prevent sequence divergence, especially where structural heterogeneity physically separates a duplicate from its neighbours. In describing dynamics of sequence variation that have consequences beyond gene dosage, this survey provides a basis for uncovering the hidden functionality within tandem gene arrays in trypanosomatids.
Collapse
Affiliation(s)
- Andrew P Jackson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
7
|
Arner E, Tammi MT, Tran AN, Kindlund E, Andersson B. DNPTrapper: an assembly editing tool for finishing and analysis of complex repeat regions. BMC Bioinformatics 2006; 7:155. [PMID: 16549006 PMCID: PMC1459207 DOI: 10.1186/1471-2105-7-155] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 03/20/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many genome projects are left unfinished due to complex, repeated regions. Finishing is the most time consuming step in sequencing and current finishing tools are not designed with particular attention to the repeat problem. RESULTS We have developed DNPTrapper, a shotgun sequence finishing tool, specifically designed to address the problems posed by the presence of repeated regions in the target sequence. The program detects and visualizes single base differences between nearly identical repeat copies, and offers the overview and flexibility needed to rapidly resolve complex regions within a working session. The use of a database allows large amounts of data to be stored and handled, and allows viewing of mammalian size genomes. The program is available under an Open Source license. CONCLUSION With DNPTrapper, it is possible to separate repeated regions that previously were considered impossible to resolve, and finishing tasks that previously took days or weeks can be resolved within hours or even minutes.
Collapse
Affiliation(s)
- Erik Arner
- Karolinska Institute, Center for Genomics and Bioinformatics, Stockholm, Sweden
| | - Martti T Tammi
- Karolinska Institute, Center for Genomics and Bioinformatics, Stockholm, Sweden
| | - Anh-Nhi Tran
- Karolinska Institute, Center for Genomics and Bioinformatics, Stockholm, Sweden
| | - Ellen Kindlund
- Karolinska Institute, Center for Genomics and Bioinformatics, Stockholm, Sweden
| | - Bjorn Andersson
- Karolinska Institute, Center for Genomics and Bioinformatics, Stockholm, Sweden
| |
Collapse
|
8
|
Westenberger SJ, Barnabé C, Campbell DA, Sturm NR. Two Hybridization Events Define the Population Structure of Trypanosoma cruzi. Genetics 2005; 171:527-43. [PMID: 15998728 PMCID: PMC1456769 DOI: 10.1534/genetics.104.038745] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
Genetic variation in Trypanosoma cruzi is likely a key determinant in transmission and pathogenesis of Chagas disease. We have examined nine loci as markers for the extant T. cruzi strains. Four distinct alleles were found for each locus, corresponding to the sequence classes present in the homozygous discrete typing units (DTUs) I, IIa, IIb, and IIc. The alleles in DTUs IIa and IIc showed a spectrum of polymorphism ranging from DTU I-like to DTU IIb-like, in addition to DTU-specific sequence variation. DTUs IId and IIe were indistinguishable, showing DTU homozygosity at one locus and heterozygosity with DTU IIb and IIc allelic sequences at eight loci. Recombination between the DTU IIb and IIc alleles is evidenced from mosaic polymorphisms. These data imply that two discrete hybridization events resulted in the formation of the current DTUs. We propose a model in which a fusion between ancestral DTU I and IIb strains gave rise to a heterozygous hybrid that homogenized its genome to become the homozygous progenitor of DTUs IIa and IIc. The second hybridization between DTU IIb and IIc strains that generated DTUs IId and IIe resulted in extensive heterozygosity with subsequent recombination of parental genotypes.
Collapse
Affiliation(s)
- Scott J Westenberger
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | | | | | | |
Collapse
|
9
|
da Cunha JPC, Nakayasu ES, Elias MC, Pimenta DC, Téllez-Iñón MT, Rojas F, Muñoz MJ, Manuel M, Almeida IC, Schenkman S. Trypanosoma cruzi histone H1 is phosphorylated in a typical cyclin dependent kinase site accordingly to the cell cycle. Mol Biochem Parasitol 2005; 140:75-86. [PMID: 15694489 DOI: 10.1016/j.molbiopara.2004.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 12/20/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
Histone H1 of most eukaryotes is phosphorylated during the cell cycle progression and seems to play a role in the regulation of chromatin structure, affecting replication and chromosome condensation. In trypanosomatids, histone H1 lacks the globular domain and is shorter when compared with the histone of other eukaryotes. We have previously shown that in Trypanosoma cruzi, the agent of Chagas' disease, histone H1 is phosphorylated and this increases its dissociation from chromatin. Here, we demonstrate using mass spectrometry analysis that T. cruzi histone H1 is only phosphorylated at the serine 12 in the sequence SPKK, a typical cyclin-dependent kinase site. We also found a correlation between the phosphorylation state of histone H1 and the cell cycle. Hydroxyurea and lactacystin, which, respectively, arrest parasites at the G1/S and G2/M stages of the cell cycle, increased the level of histone H1 phosphorylation. Cyclin-dependent kinase-related enzymes TzCRK3, and less intensely the TzCRK1 were able to phosphorylate histone H1 in vitro. Histone H1 dephosphorylation was prevented by treating the parasites with okadaic acid but not with calyculin A. These findings suggest that T. cruzi histone H1 phosphorylation is promoted by cyclin dependent kinases, present during S through G2 phase of the cell cycle, and its dephosphorylation is promoted by specific phosphatases.
Collapse
Affiliation(s)
- Julia Pinheiro Chagas da Cunha
- Departamento de Microbiologia, Imunologia e Parasitologia, R. Botucatu 862-8(a), EPM-UNIFESP, São Paulo, SP 04023-062, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bhatia V, Sinha M, Luxon B, Garg N. Utility of the Trypanosoma cruzi sequence database for identification of potential vaccine candidates by in silico and in vitro screening. Infect Immun 2004; 72:6245-54. [PMID: 15501750 PMCID: PMC523045 DOI: 10.1128/iai.72.11.6245-6254.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are abundantly expressed in the infective and intracellular stages of Trypanosoma cruzi and are recognized as antigenic targets by both the humoral and cellular arms of the immune system. Previously, we demonstrated the efficacy of genes encoding GPI-anchored proteins in eliciting partially protective immunity to T. cruzi infection and disease, suggesting their utility as vaccine candidates. For the identification of additional vaccine targets, in this study we screened the T. cruzi expressed sequence tag (EST) and genomic sequence survey (GSS) databases. By applying a variety of web-based genome-mining tools to the analysis of approximately 2,500 sequences, we identified 348 (37.6%) EST and 260 (17.4%) GSS sequences encoding novel parasite-specific proteins. Of these, 19 sequences exhibited the characteristics of secreted and/or membrane-associated GPI proteins. Eight of the selected sequences were amplified to obtain genes TcG1, TcG2, TcG3, TcG4, TcG5, TcG6, TcG7, and TcG8 (TcG1-TcG8) which are expressed in different developmental stages of the parasite and conserved in the genome of a variety of T. cruzi strains. Flow cytometry confirmed the expression of the antigens encoded by the cloned genes as surface proteins in trypomastigote and/or amastigote stages of T. cruzi. When delivered as a DNA vaccine, genes TcG1-TcG6 elicited a parasite-specific antibody response in mice. Except for TcG5, antisera to genes TcG1-TcG6 exhibited trypanolytic activity against the trypomastigote forms of T. cruzi, a property known to correlate with the immune control of T. cruzi. Taken together, our results validate the applicability of bioinformatics in genome mining, resulting in the identification of T. cruzi membrane-associated proteins that are potential vaccine candidates.
Collapse
Affiliation(s)
- Vandanajay Bhatia
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston 77555, USA
| | | | | | | |
Collapse
|
11
|
Abstract
The histones are responsible for packaging and regulating access to eukaryotic genomes. Trypanosomatids are flagellated protists that diverged early from the eukaryotic lineage and include parasites that cause disease in humans and other mammals. Here, we review the properties of histones in parasitic trypanosomatids, from gene organization and sequence to expression, post-translational modification and function within chromatin. Phylogenetic and experimental analysis indicates that certain specifically conserved histone sequence motifs, particularly within the N-terminal 'tail' domains, possibly represent functionally important modification substrates conserved throughout the eukaryotic lineage. For example, histone H3 contains a highly conserved methylation substrate. Trypanosomatids also possess at least three variant histones. Among these is an orthologue of H2A.Z, a histone involved in protecting 'active' chromatin from silencing in yeast. Histones provide docking platforms for a variety of regulatory factors. The presence of histone modification and variant histones in trypanosomatids therefore represents evidence for a network that provides the discrimination required to regulate transcription, recombination, repair and chromosome replication and segregation.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | |
Collapse
|
12
|
Galindo M, Varela N, Espinoza I, Toro GC, Hellman U, Wernstedt C, Galanti N. Chromatin from two classes of platyhelminthes display both protist H1 and higher eukaryote core histones. FEBS Lett 2004; 567:225-9. [PMID: 15178327 DOI: 10.1016/j.febslet.2004.04.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Revised: 04/20/2004] [Accepted: 04/23/2004] [Indexed: 11/25/2022]
Abstract
Histones from the parasitic platyhelminthes, Echinococcus granulosus and Fasciola hepatica, were systematically characterized. Core histones H2A, H2B, H3 and H4, which were identified on the basis of amino acid sequencing and mass spectrometry data, showed conserved electrophoretic patterns. Histones H1, identified on the basis of physicochemical properties, amino acid composition and amino acid sequencing, showed divergence, both in their number and electrophoretic mobilities, between the two species and among other organisms. According to these data, core histones but not H1 histones, would be stabilized during evolution at the level of platyhelminthes.
Collapse
Affiliation(s)
- Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70061, Correo 7, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
13
|
Sturm NR, Vargas NS, Westenberger SJ, Zingales B, Campbell DA. Evidence for multiple hybrid groups in Trypanosoma cruzi. Int J Parasitol 2003; 33:269-79. [PMID: 12670512 DOI: 10.1016/s0020-7519(02)00264-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A role for parasite genetic variability in the spectrum of Chagas disease is emerging but not yet evident, in part due to an incomplete understanding of the population structure of Trypanosoma cruzi. To investigate further the observed genotypic variation at the sequence and chromosomal levels in strains of standard and field-isolated T. cruzi we have undertaken a comparative analysis of 10 regions of the genome from two isolates representing T. cruzi I (Dm28c and Silvio X10) and two from T. cruzi II (CL Brener and Esmeraldo). Amplified regions contained intergenic (non-coding) sequences from tandemly repeated genes. Multiple nucleotide polymorphisms correlated with the T. cruzi I/T. cruzi II classification. Two intergenic regions had useful polymorphisms for the design of classification probes to test on genomic DNA from other known isolates. Two adjacent nucleotide polymorphisms in HSP 60 correlated with the T. cruzi I and T. cruzi II distinction. 1F8 nucleotide polymorphisms revealed multiple subdivisions of T. cruzi II: subgroups IIa and IIc displayed the T. cruzi I pattern; subgroups IId and IIe possessed both the I and II patterns. Furthermore, isolates from subgroups IId and IIe contained the 1F8 polymorphic markers on different chromosome bands supporting a genetic exchange event that resulted in chromosomes V and IX of T. cruzi strain CL Brener. Based on these analyses, T. cruzi I and subgroup IIb appear to be pure lines, while subgroups IIa/IIc and IId/IIe are hybrid lines. These data demonstrate for the first time that IIa/IIc are hybrid, consistent with the hypothesis that genetic recombination has occurred more than once within the T. cruzi lines.
Collapse
Affiliation(s)
- Nancy R Sturm
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095-1489, USA
| | | | | | | | | |
Collapse
|
14
|
Papageorgiou FT, Soteriadou KP. Expression of a novel Leishmania gene encoding a histone H1-like protein in Leishmania major modulates parasite infectivity in vitro. Infect Immun 2002; 70:6976-86. [PMID: 12438377 PMCID: PMC132950 DOI: 10.1128/iai.70.12.6976-6986.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe identification and characterization of a novel two-copy gene of the parasitic protozoan Leishmania that encodes a nuclear protein designated LNP18. This protein is highly conserved in the genus Leishmania, and it is developmentally regulated. It is an alanine- and lysine-rich protein with potential bipartite nuclear targeting sequence sites. LNP18 shows sequence similarity to H1 histones of trypanosomatids and of higher eukaryotes and in particular with histone H1 of Leishmania major. The nuclear localization of LNP18 was determined by indirect immunofluorescence and Western blot analysis of isolated nuclei by using antibodies raised against the recombinant protein as probes. The antibodies recognized predominantly a 18-kDa band or a 18-kDa-16-kDa doublet. Photochemical cross-linking of intact parasites followed by Western blot analysis provided evidence that LNP18 is indeed a DNA-binding protein. Generation of transfectants overexpressing LNP18 allowed us to determine the role of this protein in Leishmania infection of macrophages in vitro. These studies revealed that transfectants overexpressing LNP18 are significantly less infective than transfectants with the vector alone and suggested that the level of LNP18 expression modulates Leishmania infectivity, as assessed in vitro.
Collapse
|
15
|
Carmelo E, Martínez E, González AC, Piñero JE, Patarroyo ME, Del Castillo A, Valladares B. Antigenicity of Leishmania braziliensis histone H1 during cutaneous leishmaniasis: localization of antigenic determinants. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:808-11. [PMID: 12093677 PMCID: PMC120041 DOI: 10.1128/cdli.9.4.808-811.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The humoral immune response against Leishmania braziliensis histone H1 by patients with cutaneous leishmaniasis is described. For this purpose, the protein was purified as a recombinant protein in a prokaryotic expression system and was assayed by enzyme-linked immunosorbent assay (ELISA) with a collection of sera from patients with cutaneous leishmaniasis and Chagas' disease. The assays showed that L. braziliensis histone H1 was recognized by 66% of the serum samples from patients with leishmaniasis and by 40% of the serum samples from patients with Chagas' disease, indicating that it acts as an immunogen during cutaneous leishmaniasis. In order to locate the linear antigenic determinants of this protein, a collection of synthetic peptides covering the L. braziliensis histone H1sequence was tested by ELISA. The experiments showed that the main antigenic determinant is located in the central region of this protein. Our results show that the recombinant L. braziliensis histone H1 is recognized by a significant percentage of serum samples from patients with cutaneous leishmaniasis, but use of this protein as a tool for the diagnosis of cutaneous leishmaniasis is hampered by the cross-reaction with sera from patients with Chagas' disease.
Collapse
Affiliation(s)
- Emma Carmelo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de La Laguna, La Laguna, S/C de Tenerife, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Spadiliero B, Sánchez F, Slezynger TC, Henríquez DA. Differences in the nuclear chromatin among various stages of the life cycle of Trypanosoma cruzi. J Cell Biochem 2002; 84:832-9. [PMID: 11835407 DOI: 10.1002/jcb.10088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Trypanosoma cruzi is the etiological agent of Chagas. Although the nuclear chromatin of this parasite is organized in the form of nucleosome filaments, its chromatin is physically and enzymatically fragile, and no condensation into chromosomes occurs during mitosis. All previous investigations have been carried out with epimastigote form in its proliferate stage. It is not known whether these differences in chromatin structure are also found in the non-proliferate stationary epimastigote forms and in tissue derived trypomastigotes. Our results confirm that chromatin of logarithmic epimastigotes presents limited compaction when increasing salt concentrations from 1 to 100 mM NaCl, and no 30-nm fibers were formed. Contrary to these results, non-proliferative forms of the parasites showed a pattern of compactation similar to that observed in rat liver chromatin, where solenoids of 30-nm fibers are formed at 100-mM NaCl. In accordance with these results, digestion of the nuclear chromatin with DNase I revealed that the chromatin of logarithmic phase epimastigotes was more accessible to the enzyme. We conclude from these results that structural differences in the chromatin exist not only between T. cruzi and higher eukaryotes but also among various forms of the parasite. The functional significance of these differences are currently under investigation.
Collapse
Affiliation(s)
- Barbara Spadiliero
- Department of Cell Biology, Universidad Simón Bolívar, Caracas, Venezuela
| | | | | | | |
Collapse
|
17
|
Piontkivska H, Rooney AP, Nei M. Purifying selection and birth-and-death evolution in the histone H4 gene family. Mol Biol Evol 2002; 19:689-97. [PMID: 11961102 DOI: 10.1093/oxfordjournals.molbev.a004127] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histones are small basic proteins encoded by a multigene family and are responsible for the nucleosomal organization of chromatin in eukaryotes. Because of the high degree of protein sequence conservation, it is generally believed that histone genes are subject to concerted evolution. However, purifying selection can also generate a high degree of sequence homogeneity. In this study, we examined the long-term evolution of histone H4 genes to determine whether concerted evolution or purifying selection was the major factor for maintaining sequence homogeneity. We analyzed the proportion (p(S)) of synonymous nucleotide differences between the H4 genes from 59 species of fungi, plants, animals, and protists and found that p(S) is generally very high and often close to the saturation level (p(S) ranging from 0.3 to 0.6) even though protein sequences are virtually identical for all H4 genes. A small proportion of genes showed a low level of p(S) values, but this appeared to be caused by recent gene duplication. Our findings suggest that the members of this gene family evolve according to the birth-and-death model of evolution under strong purifying selection. Using histone-like genes in archaebacteria as outgroups, we also showed that H1, H2A, H2B, H3, and H4 histone genes in eukaryotes form separate clusters and that these classes of genes diverged nearly at the same time, before the eukaryotic kingdoms diverged.
Collapse
Affiliation(s)
- Helen Piontkivska
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, 328 Mueller Lab, University Park, PA 16802, USA.
| | | | | |
Collapse
|
18
|
Marques Porto R, Amino R, Elias MCQ, Faria M, Schenkman S. Histone H1 is phosphorylated in non-replicating and infective forms of Trypanosoma cruzi. Mol Biochem Parasitol 2002; 119:265-71. [PMID: 11814578 DOI: 10.1016/s0166-6851(01)00430-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nuclear structure changes during the differentiation from growing to infective stages of Trypanosoma cruzi. As histone modifications have been correlated with structural and functional changes of chromatin, we investigated whether histones in T. cruzi are modified during the life cycle of this protozoan parasite. We found that histone H1 isolated from proliferating forms (epimastigotes) and from differentiated/infective forms (trypomastigotes) have a distinct migrating pattern in Triton-acetic acid-urea gel electrophoresis. While epimastigotes contain predominantly a fast migrating form, a slow migrating band is prominent in trypomastigotes. By metabolically labeling the cells with radioactive phosphate, we demonstrated that the slow migrating histone H1 band is phosphorylated, and that after alkaline phosphatase treatment, it migrates as the fast form. Parasites arrested at the onset of the S phase of the cell cycle with hydroxyurea (HU) also predominantly have the phosphorylated form of histone H1, suggesting that phosphorylation occurs in non-replicating stages of T. cruzi. We also found that the phosphorylated histone H1 is more weakly associated with the chromatin, being preferentially released at 150 mM NaCl. Therefore, histone H1 phosphorylation varies during the life cycle of T. cruzi, and might be related to changes in the chromatin structure.
Collapse
Affiliation(s)
- Rafael Marques Porto
- Departamento de Microbiologia, Imunologia a Parasitologia, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
19
|
Martínez E, Thomas MC, Alonso V, Carmelo E, González AC, Del Castillo A, Valladares B. Cloning and molecular characterization of the cDNA encoding histone H1 from Leishmania braziliensis. J Parasitol 2002; 88:199-203. [PMID: 12053969 DOI: 10.1645/0022-3395(2002)088[0199:camcot]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The isolation and molecular characterization of the histone H1-encoding gene from Leishmania braziliensis was carried out. The gene is present in the genome as a single copy and transcribed as a polyadenylated transcript of 830 nucleotides. The deduced amino acid sequence has in its central region the DNA binding K-[K/R]-A-A-[A/P] motif, which is repeated in tandem 9 times.
Collapse
Affiliation(s)
- E Martínez
- Departamento de Parasitología, Ecología y Genética, Facultad de Farmacia, Universidad de La Laguna, Tenerife, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Triana O, Galanti N, Olea N, Hellman U, Wernstedt C, Lujan H, Medina C, Toro GC. Chromatin and histones from Giardia lamblia: a new puzzle in primitive eukaryotes. J Cell Biochem 2001; 82:573-82. [PMID: 11500935 DOI: 10.1002/jcb.1159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three deepest eukaryote lineages in small subunit ribosomal RNA phylogenies are the amitochondriate Microsporidia, Metamonada, and Parabasalia. They are followed by either the Euglenozoa (e.g., Euglena and Trypanosoma) or the Percolozoa as the first mitochondria-containing eukaryotes. Considering the great divergence of histone proteins in protozoa we have extended our studies of histones from Trypanosomes (Trypanosoma cruzi, Crithidia fasciculata and Leishmania mexicana) to the Metamonada Giardia lamblia, since Giardia is thought to be one of the most primitive eukaryotes. In the present work, the structure of G. lamblia chromatin and the histone content of the soluble chromatin were investigated and compared with that of higher eukaryotes, represented by calf thymus. The chromatin is present as nucleosome filaments which resemble the calf thymus array in that they show a more regular arrangement than those described for Trypanosoma. SDS-polyacrylamide gel electrophoresis and protein characterization revealed that the four core histones described in Giardia are in the same range of divergence with the histones from other lower eukaryotes. In addition, G. lamblia presented an H1 histone with electrophoretic mobility resembling the H1 of higher eukaryotes, in spite of the fact that H1 has a different molecular mass in calf thymus. Giardia also presents a basic protein which was identified as an HU-like DNA-binding protein usually present in eubacteria, indicating a chimaeric composition for the DNA-binding protein set in this species. Finally, the phylogenetic analysis of selected core histone protein sequences place Giardia divergence before Trypanosoma, despite the fact that Trypanosoma branch shows an acceleration in the evolutionary rate pointing to an unusual evolutionary behavior in this lineage.
Collapse
Affiliation(s)
- O Triana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7, Chile
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Histones, the basic proteins which compact DNA into the nucleosomal and solenoidal fibers are synthesized in correlation with DNA replication during the S-phase of the cell cycle. This behavior is controlled both at transcriptional and postranscriptional levels in higher eukaryotes and yeasts. We have found that histone synthesis in synchronized trypanosomes is controlled by fluctuations on the levels of their mRNAs. Though we cannot preclude the existence of a transcriptional regulatory mechanism, our results point to the participation of changes in the stability of histone mRNAs as a regulatory mechanism of their levels during the cell cycle in Trypanosoma. We have also found a postranscriptional regulatory mechanism which could be acting at the translational level. These results show both similarities and differences between Trypanosoma and higher eukaryotes regarding the expression of their histone genes.
Collapse
Affiliation(s)
- V Sabaj
- Program of Cellular and Molecular Biology, and Program of Parasitology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
22
|
Recinos RF, Kirchhoff LV, Donelson JE. Cell cycle expression of histone genes in Trypanosoma cruzi. Mol Biochem Parasitol 2001; 113:215-22. [PMID: 11295175 DOI: 10.1016/s0166-6851(01)00214-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In yeast and mammalian cells, the cell cycle-dependent histone genes are typically expressed at a 15- to 35-fold higher level during S phase than during other phases of the cell cycle due to increases in both their transcription rates (three- to 17-fold) and the stabilities of their mRNAs (three to fivefold). In the protozoan trypanosomatids, most life cycle stage-specific genes are not regulated by changes in transcription rates, but are controlled entirely by post-transcriptional events. In contrast, little is known about cell cycle-dependent regulation of trypanosomatid genes. To examine cell cycle-associated expression of histone genes in a trypanosomatid, Trypanosoma cruzi epimastigotes were synchronized with hydroxyurea. The steady state levels of histone mRNAs in the G1, S and G2 phases of the cell cycle were found to vary only two- to fourfold, peaking in S phase. Nuclear run on assays showed that the histone genes are transcribed by RNA polymerase II and that their transcription rates do not increase in S phase relative to G1 and G2. Thus, during S phase of T. cruzi the increase in histone mRNA stability is about the same as in mammals and yeast, but no corresponding increase in the transcription rates of the histone genes occurs.
Collapse
Affiliation(s)
- R F Recinos
- Department of Biochemistry, University of Iowa, 4-403 Bowen Science Research Building, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
23
|
Dujardin JC, Henriksson J, Victoir K, Brisse S, Gamboa D, Arevalo J, Le Ray D. Genomic rearrangements in trypanosomatids: an alternative to the "one gene" evolutionary hypotheses? Mem Inst Oswaldo Cruz 2000; 95:527-34. [PMID: 10904411 DOI: 10.1590/s0074-02762000000400015] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most molecular trees of trypanosomatids are based on point mutations within DNA sequences. In contrast, there are very few evolutionary studies considering DNA (re) arrangement as genetic characters. Waiting for the completion of the various parasite genome projects, first information may already be obtained from chromosome size-polymorphism, using the appropriate algorithms for data processing. Three illustrative models are presented here. First, the case of Leishmania (Viannia) braziliensis/L. (V.) peruviana is described. Thanks to a fast evolution rate (due essentially to amplification/deletion of tandemly repeated genes), molecular karyotyping seems particularly appropriate for studying recent evolutionary divergence, including eco-geographical diversification. Secondly, karyotype evolution is considered at the level of whole genus Leishmania. Despite the fast chromosome evolution rate, there is qualitative congruence with MLEE- and RAPD-based evolutionary hypotheses. Significant differences may be observed between major lineages, likely corresponding to major and less frequent rearrangements (fusion/fission, translocation). Thirdly, comparison is made with Trypanosoma cruzi. Again congruence is observed with other hypotheses and major lineages are delineated by significant chromosome rearrangements. The level of karyotype polymorphism within that "species" is similar to the one observed in "genus" Leishmania. The relativity of the species concept among these two groups of parasites is discussed.
Collapse
Affiliation(s)
- J C Dujardin
- Prins Leopold Instituut voor Tropische Geneeskunde, Belgium.
| | | | | | | | | | | | | |
Collapse
|
24
|
Doerig C, Chakrabarti D, Kappes B, Matthews K. The cell cycle in protozoan parasites. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:163-83. [PMID: 10740824 DOI: 10.1007/978-1-4615-4253-7_15] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research into cell cycle control in protozoan parasites, which are responsible for major public health problems in the developing world, has been hampered by the difficulties in performing classical genetic analysis with these organisms. Nevertheless, in a large part thanks to the data gathered in other eukaryotic systems and to the acquisition of the sequences of parasite genes homologous to cell cycle regulators, many molecular tools required for an in-depth study of the cell cycle in protozoan parasites have been collected over the past few years. Despite the considerable phylogenetic divergence between these organisms and other eukaryotes, and notwithstanding important specificities such as the apparent lack of checkpoints during cell cycle progression, available data indicate that the major families of cell cycle regulators appear to operate in protozoan parasites. Functional studies are now needed to define the precise role of these regulators in the life cycle of the parasites, and to possibly validate cell cycle control elements as potential targets for chemotherapy.
Collapse
Affiliation(s)
- C Doerig
- INSERM U313, Immunobiologie moléculaire et cellulaire des maladies parasitaires, Paris, France
| | | | | | | |
Collapse
|
25
|
Thomas MC, Olivares M, Escalante M, Marañón C, Montilla M, Nicholls S, López MC, Puerta C. Plasticity of the histone H2A genes in a Brazilian and six Colombian strains of Trypanosoma cruzi. Acta Trop 2000; 75:203-10. [PMID: 10708660 DOI: 10.1016/s0001-706x(00)00061-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The analysis of three recombinant clones containing the histone H2A locus isolated from a genomic library of Trypanosoma cruzi DNA shows that the H2A gene loci are formed by 1.2 and 0.76 kb long intercalated units organized in a head-to-tail tandem array. The difference in length between the two gene units is due to the presence of a short interspersed nucleotide element (SINE)-like DNA sequence inserted at the 3' end of some of these units. Southern, northern and chromosomal blot analysis of a Brazilian Y strain and six Colombian strains demonstrated the existence of polymorphisms regarding the relative copy number of the H2A gene units, the relative abundance of the H2A transcripts and their chromosomal location. These results show the existence of a dynamic organization in the H2A loci among T. cruzi strains in which a SINE-like sequence may be involved and support the fact that T. cruzi has a high degree of plasticity in its genome.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Brazil
- Cloning, Molecular
- Colombia
- DNA, Protozoan/analysis
- Electrophoresis, Gel, Pulsed-Field
- Escherichia coli/metabolism
- Gene Dosage
- Genes, Protozoan
- Genetic Vectors
- Genome, Protozoan
- Histones/biosynthesis
- Histones/genetics
- Humans
- Polymorphism, Genetic
- RNA, Protozoan/analysis
- Recombinant Proteins/biosynthesis
- Short Interspersed Nucleotide Elements
- Trypanosoma cruzi/genetics
Collapse
Affiliation(s)
- M C Thomas
- Instituto de Parasitología y Biomedicina 'López Neyra', Consejo Superior de Investigaciones Científicas, Calle Ventanilla 11, 18001, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
García-Salcedo JA, Gijón P, Pays E. Regulated transcription of the histone H2B genes of Trypanosoma brucei. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:717-23. [PMID: 10491117 DOI: 10.1046/j.1432-1327.1999.00592.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Trypanosoma brucei, the genes encoding histone H2B are organized in a cluster of about 10-15 tandemly linked copies per haploid genome. The H2B transcripts are processed by trans-splicing and polyadenylation, and encode a polypeptide of 111 residues with a molecular mass of 12.5 kDa. H2B mRNAs are differentially expressed during the parasite life-cycle and are present at higher levels in dividing procyclic and bloodstream slender forms than in the nondividing bloodstream stumpy forms. Analysis of H2B mRNA levels during the synchronous differentiation from stumpy to procyclics forms revealed that the abundance of these transcripts is regulated through the cell-cycle, reaching maximum levels during S-phase. Addition of hydroxyurea to procyclic forms in culture specifically decreased H2B mRNA levels by about twofold, an effect not linked to its 3' untranslated region. Inhibition of protein synthesis prevented this decrease.
Collapse
Affiliation(s)
- J A García-Salcedo
- Laboratory of Molecular Parasitology, Department of Molecular Biology, Free University of Brussels, Belgium.
| | | | | |
Collapse
|
27
|
Ersfeld K, Melville SE, Gull K. Nuclear and genome organization of Trypanosoma brucei. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:58-63. [PMID: 10234187 DOI: 10.1016/s0169-4758(98)01378-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this article, Klaus Ersfeld, Sara Melville and Keith Gull review current understanding of the structural organization of the nucleus of Trypanosoma brucei, and summarize recent data pertinent to the organization of its genome. Until recently, the cell biology of the trypanosome nucleus and issues of DNA organization and gene expression have often been treated as separate themes. However, recent work emphasizes the need for a more holistic approach to understanding these aspects of the biology of this parasite.
Collapse
Affiliation(s)
- K Ersfeld
- University of Manchester, School of Biological Sciences, 2.205 Stopford Building, Oxford Road, Manchester, UK M13 9PT.
| | | | | |
Collapse
|
28
|
Belli S, Formenton A, Noll T, Ivens A, Jacquet R, Desponds C, Hofer D, Fasel N. Leishmania major: histone H1 gene expression from the sw3 locus. Exp Parasitol 1999; 91:151-60. [PMID: 9990343 DOI: 10.1006/expr.1998.4378] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histone H1 in the parasitic protozoan Leishmania is a developmentally regulated protein encoded by the sw3 gene. Here we report that histone H1 variants exist in different Leishmania species and strains of L. major and that they are encoded by polymorphic genes. Amplification of the sw3 gene from the genome of three strains of L. major gave rise to different products in each strain, suggesting the presence of a multicopy gene family. In L. major, these genes were all restricted to a 50-kb Bg/II fragment found on a chromosomal band of 1.3 Mb (chromosome 27). The detection of RFLPs in this locus demonstrated its heterogeneity within several species and strains of Leishmania. Two different copies of sw3 (sw3.0 and sw3.1) were identified after screening a cosmid library containing L. major strain Friedlin genomic DNA. They were identical in their 5' UTRs and open reading frames, but differed in their 3' UTRs. With respect to the originally cloned copy of sw3 from L. major strain LV39, their open reading frames lacked a repeat unit of 9 amino acids. Immunoblots of L. guyanensis parasites transfected with these cosmids revealed that both copies could give rise to the histone H1 protein. The characterization of this locus will now make possible a detailed analysis of the function of histone H1 in Leishmania, as well as permit the dissection of the molecular mechanisms governing the developmental regulation of the sw3 gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- DNA Primers
- DNA, Protozoan/chemistry
- Electrophoresis, Gel, Pulsed-Field
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Developmental
- Gene Library
- Histones/chemistry
- Histones/genetics
- Leishmania major/chemistry
- Leishmania major/genetics
- Molecular Sequence Data
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- Rabbits
- Restriction Mapping
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- S Belli
- Biochemistry Institute, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wirtz E, Hoek M, Cross GA. Regulated processive transcription of chromatin by T7 RNA polymerase in Trypanosoma brucei. Nucleic Acids Res 1998; 26:4626-34. [PMID: 9753730 PMCID: PMC147901 DOI: 10.1093/nar/26.20.4626] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inability of T7 RNA polymerase to processively transcribe higher eukaryotic chromatin is interpreted as a correlate of its reported inhibition by nucleosomes on reconstituted templates in vitro . We used chromosomally integrated reporter cassettes to examine features of T7 transcription in a lower eukaryotic system. Luciferase reporters were targeted to rDNA in transgenic Trypanosoma brucei stably expressing the phage polymerase. Because trypanosome mRNAs are capped by RNA splicing in trans , T7 transcription could be gauged by luciferase activity. In contrast to findings from higher eukaryotes, T7 transcription is vigorous and processive on chromatin templates in T.brucei , surpassing levels achieved with endogenous promoters, including those recruiting RNA polymerase I. This may be a reflection of intrinsic differences in chromatin structure between differently evolved eukaryotes or of an integration site that is exceptionally permissive for T7 transcription due to a local accessible chromatin conformation. T7 transcription could be manipulated to achieve different levels of constitutive expression, through the use of promoter mutations. Moreover, T7 initiation could be regulated by the prokaryotic Tet repressor and elongation halted by T7 terminator sequences. We have exploited these features to construct a robust inducible expression system, whose utility potentially extends to other trans -splicing organisms.
Collapse
Affiliation(s)
- E Wirtz
- Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | | | | |
Collapse
|
30
|
Soto M, Quijada L, Alonso C, Requena JM. Molecular cloning and analysis of expression of the Leishmania infantum histone H4 genes. Mol Biochem Parasitol 1997; 90:439-47. [PMID: 9476792 DOI: 10.1016/s0166-6851(97)00178-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present work, we describe the sequence, organization and expression of histone H4 genes in the protozoan parasite Leishmania infantum. The predicted L. infantum histone H4 is a polypeptide of 100 amino acids with a molecular mass of 11.5 kDa. Comparison of the amino acid sequence of Leishmania histone H4 with the rest of histone H4 sequences indicates that this is the most divergent sequence reported to date. The genomic distribution analysis of histone H4 genes indicates that there must be up to seven gene copies. A single size-class histone H4 mRNA of 0.6 kb was detected, whose level dramatically decreases from logarithmic to stationary phase. However, the Leishmania histone H4 mRNAs do not decrease in abundance following treatment with inhibitors of DNA synthesis, suggesting a regulation by a replication-independent mechanism.
Collapse
Affiliation(s)
- M Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
31
|
Abstract
Trypanosoma cruzi is an ancient, parasitic eukaryote which does not undergo chromatin condensation during cell division. This behavior may be explained if one considers the strong amino acid sequence divergence of Trypanosoma histones compared to higher eukaryotes. In the latter organisms histone synthesis is coupled to DNA replication. Considering the nonconserved amino acid sequence of T. cruzi histones, as well as the absence of chromatin condensation in this organism, we have studied histone synthesis in relation to DNA replication in this parasite. We have found that core histones and a fraction of histone H1 are synthesized concomitantly to DNA replication. However, another fraction of histone H1 is constitutively synthesized.
Collapse
Affiliation(s)
- V Sabaj
- Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
32
|
Reverol L, Chirinos M, Henriquez DA. Presence of an unusually high concentration of an ubiquitinated histone-like protein in Trypanosoma cruzi. J Cell Biochem 1997; 66:433-40. [PMID: 9282321 DOI: 10.1002/(sici)1097-4644(19970915)66:4<433::aid-jcb2>3.0.co;2-m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The conjugation of ubiquitin to histones H2A and H2B has been established in higher eukaryotes and has been related to changes in chromatin organization. In Trypanosoma cruzi, no condensation of chromatin occurs during mitosis. In order to determine the presence of histone ubiquitination in T. cruzi epimastigotes, histones were extracted from chromatin and analyzed by three electrophoretic systems: acid-urea, triton-acid-urea and sodium-dodecyl-sulphate polyacrylamide gel. The immunochemical detection of ubiquitin-histone conjugates by Western blotting showed a strong reaction with a slow migrating band of M(r) 19 kDa. The high percentage of ubiquitin-histone conjugates present in T. cruzi chromatin may be related to the inability of this parasite to condense chromatin into a 30 nm fiber.
Collapse
Affiliation(s)
- L Reverol
- Department of Cell Biology, Universidad Simón Bolívar, Caracas, Venezuela
| | | | | |
Collapse
|
33
|
Tittawella I, Ljungkvist A, Kimdal M. The gene for histone H2A from the insect trypanosome Crithidia fasciculata. Mol Biochem Parasitol 1997; 88:259-62. [PMID: 9274887 DOI: 10.1016/s0166-6851(97)00080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I Tittawella
- Department of Cell and Molecular Biology, University of Umeå, Sweden.
| | | | | |
Collapse
|
34
|
Lesénéchal M, Duret L, Cano MI, Mortara RA, Jolivet M, Camargo ME, da Silveira JF, Paranhos-Baccalà G. Cloning and characterization of a gene encoding a novel immunodominant antigen of Trypanosoma cruzi. Mol Biochem Parasitol 1997; 87:193-204. [PMID: 9247930 DOI: 10.1016/s0166-6851(97)00068-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A Trypanosoma cruzi genomic expression library was screened with a pool of sera obtained from chronic chagasic patients. The recombinant antigen (Tc40) isolated from this library reacted with a large number of serum samples of chronic chagasic patients, suggesting that the presence of anti-Tc40 antibodies may be specifically associated to Chagas' disease. The full-length sequence of the Tc40 gene was determined after isolation of genomic and cDNA clones. The Tc40 cDNA includes a large open reading frame (2745 bp-long) that encodes a polypeptide of 100 kDa without any homology with previously described T. cruzi sequences. In contrast with other T. cruzi antigens whose immunodominant B-cell epitopes are composed by amino acid repetitive motifs, Tc40 does not show any amino acid repetition. Antibodies against the Tc40 recombinant protein reacted with three native polypeptides of 100, 41 and 38 kDa which are tightly associated with membranes or cytoskeleton and expressed in all developmental stages of the parasite life cycle. A transcript of 3.9-kb was detected in Northern blot analysis which is large enough to encode a 100 kDa polypeptide. Tc40 genes were mapped on a chromosomal band of 1.1 Mbp and in a few copies per haploid genome in the G strain.
Collapse
Affiliation(s)
- M Lesénéchal
- Unité Mixte CNRS-bio Mérieux, Ecole Normale Supéríeure de Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Noll TM, Desponds C, Belli SI, Glaser TA, Fasel NJ. Histone H1 expression varies during the Leishmania major life cycle. Mol Biochem Parasitol 1997; 84:215-27. [PMID: 9084041 DOI: 10.1016/s0166-6851(96)02801-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The deduced amino acid sequence of Leishmania major sw3 cDNA reveals the presence of characteristic histone H1 amino acid motifs. However, the open reading frame is of an unusually small size for histone H1 (105 amino acids) because it lacks the coding potential for the central hydrophobic globular domain of linker histones present in other eukaryotes. Here, we provide biochemical evidence that the SW3 protein is indeed a L. major nuclear histone H1, and that it is differentially expressed during the life cycle of the parasite. Due to its high lysine content, the SW3 protein can be purified to a high degree from L. major nuclear lysates with 5% perchloric acid, a histone H1 preparative method. Using an anti-SW3 antibody, this protein is detected as a 17 kDa or as a 17/19 kDa doublet in the nuclear subfraction in different L. major strains. The nuclear localization of the SW3 protein is further supported by immunofluorescence studies. During in vitro promastigote growth, both the sw3 cytoplasmic mRNA and its protein progressively accumulate within parasites from early log phase to stationary phase. Within amastigotes, the high level of H1 expression is maintained but decreases when amastigotes differentiate into promastigotes. Together, these observations suggest that the different levels of this histone H1 protein could influence the varying degrees of chromatin condensation during the life-cycle of the parasite, and provide us with tools to study this mechanism.
Collapse
Affiliation(s)
- T M Noll
- Biochemistry Institute, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Soto M, Requena JM, Quijada L, Alonso C. Organization, transcription and regulation of the Leishmania infantum histone H3 genes. Biochem J 1996; 318 ( Pt 3):813-9. [PMID: 8836124 PMCID: PMC1217691 DOI: 10.1042/bj3180813] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genomic organization and transcription of the genes encoding the histone H3 of the protozoan parasite Leishmania infantum have been studied. It was found that there are multiple copies of the histone H3 genes distributed in chromosomal bands XIX and XIV. The nucleotide sequence of two of the L. infantum H3 genes, each one located in a different chromosome, is reported. Although the nucleotide sequence of the coding region of both genes is identical, the sequence of the 3' untranslated region is highly divergent. It was found also that there exist two different size classes of histone H3 transcripts, each one derived from a different gene, and that they are polyadenylated. The steady-state level of the transcripts dramatically decreases when the parasites enter the stationary phase of growth, suggesting a mode of regulation which is linked to the proliferation status of the cell. Unlike the replication-dependent histones, the L. infantum H3 mRNA levels do not decrease after treatment with DNA synthesis inhibitors. A comparative analysis of the sensitivity of the histone mRNA levels to DNA inhibition in the parasites L. infantum and Trypanosoma cruzi revealed the existence of different control mechanisms in histone expression in these two phylogenetically related protozoan parasites.
Collapse
Affiliation(s)
- M Soto
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Schlimme W, Burri M, Betschart B, Hecker H. Properties of the histones and functional aspects of the soluble chromatin of epimastigote Trypanosoma cruzi. Acta Trop 1995; 60:141-54. [PMID: 8907392 DOI: 10.1016/0001-706x(95)00121-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The amino acid composition of all histones of Trypanosoma cruzi was analyzed, and the terminology of the histones of higher eukaryotes adopted. One chromatin associated protein, previously considered to be a variant of histone H1, could not be clearly identified, and shows features of core histones as well as of histone H1. An improved method for the isolation of intact nuclei and the production of soluble chromatin in T. cruzi was established. The chromatin of T. cruzi is relatively instable and histone H1 is easily lost during experimental manipulations. Histone H1 dissociates completely at a relatively low NaCl concentration of 380 mM, leading to an open nucleosome filament which does not condense. The influence of histone H1 of T. cruzi and of rat liver on the compaction pattern of the chromatin was investigated by homologous and heterologous reconstitution experiments, and analysed by electron microscopy. It could be shown that histone H1 of T. cruzi induces nucleosome filaments of T. cruzi as well as those of rat liver to condense. The same is true for histone H1 of rats. It can be concluded that T. cruzi has a functional histone H1.
Collapse
Affiliation(s)
- W Schlimme
- Swiss Tropical Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
38
|
Henriksson J, Porcel B, Rydåker M, Ruiz A, Sabaj V, Galanti N, Cazzulo JJ, Frasch AC, Pettersson U. Chromosome specific markers reveal conserved linkage groups in spite of extensive chromosomal size variation in Trypanosoma cruzi. Mol Biochem Parasitol 1995; 73:63-74. [PMID: 8577348 DOI: 10.1016/0166-6851(95)00096-j] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The karyotypes of three cloned stocks, CL Brener (CL), CA I/72 (CA) and Sylvio X10/7 (X10), of Trypanosoma cruzi were studied by pulsed-field gel electrophoresis followed by ethidium bromide staining and hybridization with 35 different probes, 30 of which identified single chromosomes. The chromosome-specific probes identified between 26 and 31 chromosomal bands in the three cloned stocks, corresponding to 20 unique chromosomes in CL and 19 in CA and X10. Considering the DNA content of the parasite, it was predicted that the markers recognise at least half of all T. cruzi chromosomes. A majority of identified chromosomes showed large differences in size among different strains, in some cases by up to 50%. Interestingly, CL had in general larger chromosomes than the two other studied cloned stocks. Several of the markers showed linkage and nine different linkage groups were identified, each comprising 2-4 markers. The linkage between the markers was maintained in 8 of the 9 linkage groups when a panel comprising 26 different T. cruzi strains representing major T. cruzi populations was tested. One linkage group was found to be maintained in some strains but not in others. This result shows that chromosomal rearrangements occur in the T. cruzi genome, albeit with a low frequency. Repetitive DNA, both non-coding and in one case coding, was more abundant in the cloned stock CL Brener than in CA and X10. The information presented will make it possible to select chromosomes for the construction of physical chromosomal maps required for the T. cruzi genome project.
Collapse
Affiliation(s)
- J Henriksson
- Department of Medical Genetics, University of Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Martínez J, Henriksson J, Rydåker M, Cazzulo JJ, Pettersson U. Genes for cysteine proteinases from Trypanosoma rangeli. FEMS Microbiol Lett 1995; 129:135-41. [PMID: 7607394 DOI: 10.1111/j.1574-6968.1995.tb07570.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PCR amplification of genomic DNA from the American trypanosome, Trypanosoma rangeli, using as primers oligonucleotides derived from the gene of cruzipain, the major cysteine proteinase (CP) from Trypanosoma cruzi, allowed the production of a probe which was used to obtain three clones encoding a CP with 70% overall identity with cruzipain. The genes are organized in tandem, with a monomere size of approximately 2 kbp, located on two chromosomes which, in some parasite isolates, have a high molecular mass (higher than 5.7 Mbp), and in others are much smaller (about 500 kbp). The low expression of this CP at the protein level correlates well with the low level of specific mRNA found in Northern blots.
Collapse
Affiliation(s)
- J Martínez
- Instituto de Investigaciones Bioquímicas, Fundación Campomar, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
40
|
Abstract
Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation.
Collapse
Affiliation(s)
- L Vanhamme
- Department of Molecular Biology, Free University of Brussels, Rhode Saint Genèse, Belgium
| | | |
Collapse
|
41
|
|
42
|
Bontempi EJ, Porcel BM, Henriksson J, Carlsson L, Rydåker M, Segura EL, Ruiz AM, Pettersson U. Genes for histone H3 in Trypanosoma cruzi. Mol Biochem Parasitol 1994; 66:147-51. [PMID: 7984178 DOI: 10.1016/0166-6851(94)90046-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- E J Bontempi
- Instituto Nacional de Diagnóstico e Investigación de la Enfermedad de Chagas, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|