1
|
Vékony RG, Tamás A, Lukács A, Ujfalusi Z, Lőrinczy D, Takács-Kollár V, Bukovics P. Exploring the Role of Neuropeptide PACAP in Cytoskeletal Function Using Spectroscopic Methods. Int J Mol Sci 2024; 25:8063. [PMID: 39125632 PMCID: PMC11311697 DOI: 10.3390/ijms25158063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The behavior and presence of actin-regulating proteins are characteristic of various clinical diseases. Changes in these proteins significantly impact the cytoskeletal and regenerative processes underlying pathological changes. Pituitary adenylate cyclase-activating polypeptide (PACAP), a cytoprotective neuropeptide abundant in the nervous system and endocrine organs, plays a key role in neuron differentiation and migration by influencing actin. This study aims to elucidate the role of PACAP as an actin-regulating polypeptide, its effect on actin filament formation, and the underlying regulatory mechanisms. We examined PACAP27, PACAP38, and PACAP6-38, measuring their binding to actin monomers via fluorescence spectroscopy and steady-state anisotropy. Functional polymerization tests were used to track changes in fluorescent intensity over time. Unlike PACAP27, PACAP38 and PACAP6-38 significantly reduced the fluorescence emission of Alexa488-labeled actin monomers and increased their anisotropy, showing nearly identical dissociation equilibrium constants. PACAP27 showed weak binding to globular actin (G-actin), while PACAP38 and PACAP6-38 exhibited robust interactions. PACAP27 did not affect actin polymerization, but PACAP38 and PACAP6-38 accelerated actin incorporation kinetics. Fluorescence quenching experiments confirmed structural changes upon PACAP binding; however, all studied PACAP fragments exhibited the same effect. Our findings indicate that PACAP38 and PACAP6-38 strongly bind to G-actin and significantly influence actin polymerization. Further studies are needed to fully understand the biological significance of these interactions.
Collapse
Affiliation(s)
- Roland Gábor Vékony
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Andrea Tamás
- Department of Anatomy, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - András Lukács
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Zoltán Ujfalusi
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Dénes Lőrinczy
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Veronika Takács-Kollár
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Péter Bukovics
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| |
Collapse
|
2
|
Karsan N, Edvinsson L, Vecsei L, Goadsby PJ. Pituitary cyclase-activating polypeptide targeted treatments for the treatment of primary headache disorders. Ann Clin Transl Neurol 2024; 11:1654-1668. [PMID: 38887982 PMCID: PMC11251486 DOI: 10.1002/acn3.52119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Migraine is a complex and disabling neurological disorder. Recent years have witnessed the development and emergence of novel treatments for the condition, namely those targeting calcitonin gene-related peptide (CGRP). However, there remains a substantial need for further treatments for those unresponsive to current therapies. Targeting pituitary adenylate cyclase-activating polypeptide (PACAP) as a possible therapeutic strategy in the primary headache disorders has gained interest over recent years. METHODS This review will summarize what we know about PACAP to date: its expression, receptors, roles in migraine and cluster headache biology, insights gained from preclinical and clinical models of migraine, and therapeutic scope. RESULTS PACAP shares homology with vasoactive intestinal polypeptide (VIP) and is one of several vasoactive neuropeptides along with CGRP and VIP, which has been implicated in migraine neurobiology. PACAP is widely expressed in areas of interest in migraine pathophysiology, such as the thalamus, trigeminal nucleus caudalis, and sphenopalatine ganglion. Preclinical evidence suggests a role for PACAP in trigeminovascular sensitization, while clinical evidence shows ictal release of PACAP in migraine and intravenous infusion of PACAP triggering attacks in susceptible individuals. PACAP leads to dural vasodilatation and secondary central phenomena via its binding to different G-protein-coupled receptors, and intracellular downstream effects through cyclic adenosine monophosphate (cAMP) and phosphokinase C (PKC). Targeting PACAP as a therapeutic strategy in headache has been explored using monoclonal antibodies developed against PACAP and against the PAC1 receptor, with initial positive results. INTERPRETATION Future clinical trials hold considerable promise for a new therapeutic approach using PACAP-targeted therapies in both migraine and cluster headache.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Lars Edvinsson
- Department of Medicine, Institute of Clinical SciencesLund University221 84LundSweden
| | - Laszlo Vecsei
- Department of Neurology, Albert Szent‐Györgyi Medical School, and HUN‐REN‐SZTE Neuroscience Research Group, Hungarian Research NetworkUniversity of SzegedSemmelweis u. 6SzegedH‐6725Hungary
| | - Peter J Goadsby
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Department of NeurologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Wang Q, Wang Y, Li S, Shi J. PACAP-Sirtuin3 alleviates cognitive impairment through autophagy in Alzheimer's disease. Alzheimers Res Ther 2023; 15:184. [PMID: 37891608 PMCID: PMC10605376 DOI: 10.1186/s13195-023-01334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Autophagy is vital in the pathogenesis of neurodegeneration. Thus far, no studies have specifically investigated the relationship between pituitary adenylate cyclase-activating polypeptide (PACAP) and autophagy, particularly in the context of Alzheimer's disease (AD). This study used in vitro and in vivo models, along with clinical samples, to explore interactions between PACAP and autophagy in AD. METHODS AD model mice were administered 6 μl of 0.1 mg/ml PACAP liquid intranasally for 4 weeks, then subjected to behavioral analyses to assess the benefits of PACAP treatment. The underlying mechanisms of PACAP-induced effects were investigated by methods including real-time quantitative polymerase chain reaction, RNA sequencing, immunofluorescence, and western blotting. Exosomes were extracted from human serum and subjected to enzyme-linked immunosorbent assays to examine autophagy pathways. The clinical and therapeutic implications of PACAP and autophagy were extensively investigated throughout the experiment. RESULTS Impaired autophagy was a critical step in amyloid β (Aβ) and Tau deposition; PACAP enhanced autophagy and attenuated cognitive impairment. RNA sequencing revealed three pathways that may be involved in AD progression: PI3K-AKT, mTOR, and AMPK. In vivo and in vitro studies showed that sirtuin3 knockdown diminished the ability of PACAP to restore normal autophagy function, resulting in phagocytosis dysregulation and the accumulation of pTau, Tau, and Aβ. Additionally, the autophagic biomarker MAP1LC3 demonstrated a positive association with PACAP in human serum. CONCLUSIONS PACAP reverses AD-induced cognitive impairment through autophagy, using sirtuin3 as a key mediator. MAP1LC3 has a positive relationship with PACAP in humans. These findings provide insights regarding potential uses of intranasal PACAP and sirtuin3 agonists in AD treatment. TRIAL REGISTRATION NCT04320368.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yue Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shiping Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Jiong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
High plasma calcitonin gene-related peptide and serum pituitary adenylate cyclase-activating polypeptide levels in patients with neuropathic pain. Rev Neurol (Paris) 2023; 179:289-296. [PMID: 36754669 DOI: 10.1016/j.neurol.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Based on animal studies, calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are thought to play a role in neurobiological events such as neuropathic pain, neuroprotection, neurotransmission, neural plasticity, and neurotrophic effects. The aim of the study is to investigate whether there is a change in the blood level of CGRP and PACAP in patients with neuropathic pain and to look for clues about the utility of these peptides as pharmacological targets in the treatment of neuropathic pain in humans. METHODS The study included 60 polyneuropathy patients with neuropathic pain, 30 polyneuropathy patients without neuropathic pain (NNP) and 29 healthy subjects as control group. Polyneuropathy patients with neuropathic pain were divided into two groups as diabetic (D-PNP) and non-diabetic polyneuropathy (ND-PNP) patients. Plasma CGRP and serum PACAP levels were measured from venous blood samples of the patients and healthy controls. RESULTS The CGRP level was significantly higher in the D-PNP and ND-PNP groups compared to the control and NNP groups (P<0.05). PACAP levels were significantly higher in the D-PNP and ND-PNP groups compared to the control and NNP groups (P<0.05). There was no significant correlation between CGRP and PACAP levels and neuropathic pain scale (NPS). CONCLUSIONS This study is the first to demonstrate elevated plasma CGRP and serum PACAP levels in polyneuropathy patients with neuropathic pain. The results of this study are important in terms of showing that both CGRP and PACAP can be new pharmacological targets in the treatment of neuropathic pain and polyneuropathy in humans.
Collapse
|
5
|
Guo S, Jansen-Olesen I, Olesen J, Christensen SL. Role of PACAP in migraine: An alternative to CGRP? Neurobiol Dis 2023; 176:105946. [PMID: 36481434 DOI: 10.1016/j.nbd.2022.105946] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a widespread and debilitating neurological condition affecting more than a billion people worldwide. Thus, more effective migraine therapies are highly needed. In the last decade, two endogenous neuropeptides, calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP), were identified to be implicated in migraine. Recently, introduction of monoclonal antibodies (mAbs) blocking the CGRP is the most important advance in migraine therapy for decades. However, 40% of patients are unresponsive to these new drugs. We believe that PACAP may be involved in these patients. Like CGRP, PACAP is located to sensory nerve fibers, it dilates cranial arteries, it causes migraine when infused into patients and it is a peptide that lends itself to antibody therapy. Also, recent studies suggest that the PACAP pathway is independent of the CGRP pathway. Understanding the signaling pathways of PACAP may therefore lead to identification of novel therapeutic targets of particular interest in patients unresponsive to anti-CGRP therapy. Accordingly, neutralizing mAb to PACAP is currently in clinical phase II development. The aim of the present review is, therefore, to give a thorough account of the existing data on PACAP, its receptors and its relation to migraine.
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
6
|
Kurahashi M, Baker SA, Kito Y, Bartlett A, Hara M, Takeyama H, Hashitani H, Sanders KM. PDGFRα + Interstitial Cells are Effector Cells of PACAP Signaling in Mouse and Human Colon. Cell Mol Gastroenterol Hepatol 2022; 14:357-373. [PMID: 35569815 PMCID: PMC9250024 DOI: 10.1016/j.jcmgh.2022.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PIC) are interposed between enteric nerve fibers and smooth muscle cells (SMCs) in the tunica muscularis of the gastrointestinal tract. PIC have robust expression of small conductance Ca2+ activated K+ channels 3 (SK3 channels) and transduce inhibitory inputs from purinergic and sympathetic nerves in mouse and human colon. We investigated whether PIC also express pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, PAC1 (PAC1R), and are involved in mediating inhibitory regulation of colonic contractions by PACAP in mouse and human colons. METHODS Gene expression analysis, Ca2+ imaging, and contractile experiments were performed on mouse colonic muscles. Ca2+ imaging, intracellular electrical recordings, and contractile experiments were performed on human colonic muscles. RESULTS Adcyap1r1 (encoding PAC1R) is highly expressed in mouse PIC. Interstitial cells of Cajal (ICC) and SMCs expressed far lower levels of Adcyap1r. Vipr1 and Vipr2 were expressed at low levels in PIC, ICC, and SMCs. PACAP elicited Ca2+ transients in mouse PIC and inhibited spontaneous phasic contractions via SK channels. In human colonic muscles, PAC1R agonists elicited Ca2+ transients in PIC, hyperpolarized SMCs through SK channels and inhibited spontaneous phasic contractions. CONCLUSIONS PIC of mouse and human colon utilize PAC1R-SK channel signal pathway to inhibit colonic contractions in response to PACAP. Effects of PACAP are in addition to the previously described purinergic and sympathetic inputs to PIC. Thus, PIC integrate inhibitory inputs from at least 3 neurotransmitters and utilize several types of receptors to activate SK channels and regulate colonic contractile behaviors.
Collapse
Affiliation(s)
- Masaaki Kurahashi
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa, Iowa City, Iowa, USA,Correspondence Address correspondence to: Masaaki Kurahashi, MD, PhD, 200 Hawkins Dr, University of Iowa, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Iowa City, IA 52242. tel: (319) 467-8963.
| | - Salah A. Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Yoshihiko Kito
- Department of Pharmacology, Faculty of Medicine, Saga University, Saga, Japan
| | - Allison Bartlett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Masayasu Hara
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromitsu Takeyama
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
7
|
Simonetta I, Riolo R, Todaro F, Tuttolomondo A. New Insights on Metabolic and Genetic Basis of Migraine: Novel Impact on Management and Therapeutical Approach. Int J Mol Sci 2022; 23:3018. [PMID: 35328439 PMCID: PMC8955051 DOI: 10.3390/ijms23063018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a hereditary disease, usually one-sided, sometimes bilateral. It is characterized by moderate to severe pain, which worsens with physical activity and may be associated with nausea and vomiting, may be accompanied by photophobia and phonophobia. The disorder can occur at any time of the day and can last from 4 to 72 h, with and without aura. The pathogenic mechanism is unclear, but extensive preclinical and clinical studies are ongoing. According to electrophysiology and imaging studies, many brain areas are involved, such as cerebral cortex, thalamus, hypothalamus, and brainstem. The activation of the trigeminovascular system has a key role in the headache phase. There also appears to be a genetic basis behind the development of migraine. Numerous alterations have been identified, and in addition to the genetic cause, there is also a close association with the surrounding environment, as if on the one hand, the genetic alterations may be responsible for the onset of migraine, on the other, the environmental factors seem to be more strongly associated with exacerbations. This review is an analysis of neurophysiological mechanisms, neuropeptide activity, and genetic alterations that play a fundamental role in choosing the best therapeutic strategy. To date, the goal is to create a therapy that is as personalized as possible, and for this reason, steps forward have been made in the pharmacological field in order to identify new therapeutic strategies for both acute treatment and prophylaxis.
Collapse
Affiliation(s)
- Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Renata Riolo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
8
|
A Broad Overview on Pituitary Adenylate Cyclase-Activating Polypeptide Role in the Eye: Focus on Its Repairing Effect in Cornea. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is a neuropeptide with widespread distribution throughout the central and peripheral nervous system as well as in many other peripheral organs. It plays cytoprotective effects mediated mainly through the activation of specific receptors. PACAP is known to play pleiotropic effects on the eye, including the cornea, protecting it against different types of insult. This review firstly provides an overview of the anatomy of the cornea and summarizes data present in literature about PACAP’s role in the eye and, in particular, in the cornea, either in physiological or pathological conditions.
Collapse
|
9
|
Rodríguez A, Velázquez J, González L, Rodríguez-Ramos T, Dixon B, Miyares FH, Morales A, González O, Estrada MP, Carpio Y. PACAP modulates the transcription of TLR-1/TLR-5/MyD88 pathway genes and boosts antimicrobial defenses in Clarias gariepinus. FISH & SHELLFISH IMMUNOLOGY 2021; 115:150-159. [PMID: 34146673 DOI: 10.1016/j.fsi.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide that belongs to the secretin/glucagon/GHRH/VIP superfamily. Some of these molecules have antimicrobial activity and they are capable of stimulating the immune system. The present work studied the antibacterial and immunostimulatory activity of PACAP-38 from African catfish Clarias gariepinus against the Gram-negative bacterium Pseudomonas aeruginosa in an in vivo test. PACAP-38 improved antimicrobial activity of skin mucus molecules against P. aeruginosa. The peptide modulates the gene expression profile of TLR-1, TLR-5, MyD88, IL-1β, TNF-ɑ, IL-8, pardaxin, hepcidin and G/C-type lysozymes in skin, spleen and head kidney. The influenced exerted depended on the time after infection and tissue analyzed. This study provides the first evidence of a link between PACAP and antimicrobial peptides hepcidin and pardaxin. Our results suggest further use of PACAP as antimicrobial agent that could potentially be used to control disease in aquaculture.
Collapse
Affiliation(s)
- Alianet Rodríguez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Janet Velázquez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Luis González
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Fidel Herrera Miyares
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Antonio Morales
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Osmany González
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Pablo Estrada
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Yamila Carpio
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
10
|
Guo X, Tian Y, Yang Y, Li S, Guo L, Shi J. Pituitary Adenylate Cyclase-Activating Polypeptide Protects Against Cognitive Impairment Caused by Chronic Cerebral Hypoperfusion. Mol Neurobiol 2021; 58:4309-4322. [PMID: 33999349 DOI: 10.1007/s12035-021-02381-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) has beneficial effects in learning and memory. However, the mechanism by which PACAP improves cognitive impairment of vascular dementia (VaD) is not clear. METHODS We established a VaD model by bilateral common carotid stenosis (BCAS) to investigate the molecular mechanism of cognitive impairment. Protein levels of PACAP, Sirtuin 3 (Sirt3), brain-derived neurotrophic factor (BDNF), and postsynaptic density 95 (PSD-95) were assessed by Western blot. In vitro, oxygen glucose deprivation (OGD) was used to simulate the ischemia/hypoxia state. HT22 cells were transfected with Sirt3 knockdown and overexpression to study the relationship between PACAP, Sirt3, and BDNF. In vivo, PACAP was administered intranasally to assess its protective effects on BCAS. RESULTS The study showed that the levels of PACAP, Sirt3, BDNF, and PSD-95 were decreased in the BCAS model of VaD. PACAP increased the protein levels of Sirt3, BDNF, PSD-95, Bcl-2, and Bax under OGD condition in vitro. Sirt3 regulated BDNF and synaptic plasticity. Intranasal PACAP increased the protein levels of PAC1, Sirt3, BDNF, and PSD-95 in vivo. CONCLUSIONS This study provides evidence that PACAP regulates synaptic plasticity and plays an antiapoptotic role through Sirt3.
Collapse
Affiliation(s)
- Xiaosu Guo
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ye Tian
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaping Yang
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shiping Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Guo
- The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jiong Shi
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China. .,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide (Part 2): biology and clinical importance in central nervous system and inflammatory disorders. Curr Opin Endocrinol Diabetes Obes 2021; 28:206-213. [PMID: 33481421 PMCID: PMC7961158 DOI: 10.1097/med.0000000000000621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide (VIP/PACAP) receptors in the selected central nervous system (CNS) and inflammatory disorders. RECENT FINDINGS Recent studies provide evidence that PACAP plays an important role in a number of CNS disorders, particularly the pathogenesis of headaches (migraine, etc.) as well as posttraumatic stress disorder and drug/alcohol/smoking addiction. VIP has important therapeutic effects in a number of autoimmune/inflammatory disorder such as rheumatoid arthritis. In some cases, these insights have advanced to therapeutic trials. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both CNS disorders (migraine, posttraumatic stress disorder, addiction [drugs, alcohol, smoking]) and inflammatory disorders [such as rheumatoid arthritis] are suggesting new treatment approaches. The elucidation of the importance of VIP/PACAP system in these disorders combined recent development of specific drugs acting on this system (i.e., monoclonal VIP/PACAP antibodies) will likely lead to importance novel treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human services, National Cancer Institute, Center for Cancer Training. Bethesda, Maryland, USA
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide [Part 1]: biology, pharmacology, and new insights into their cellular basis of action/signaling which are providing new therapeutic targets. Curr Opin Endocrinol Diabetes Obes 2021; 28:198-205. [PMID: 33449573 PMCID: PMC7957349 DOI: 10.1097/med.0000000000000617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in pharmacology, cell biology, and intracellular signaling in cancer. RECENT FINDINGS Recent studies provide new insights into the pharmacology, cell biology of the VIP/PACAP system and show they play important roles in a number of human cancers, as well as in tumor growth/differentiation and are providing an increased understanding of their signaling cascade that is suggesting new treatment targets/approaches. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both central nervous system disorders and inflammatory disorders suggest possible new treatment approaches. Elucidation of the exact roles of VIP/PACAP in these disorders and development of new therapeutic approaches involving these peptides have been limited by lack of specific pharmacological tools, and exact signaling mechanisms involved, mediating their effects. Reviewed here are recent insights from the elucidation of structural basis for VIP/PACAP receptor activation as well as the signaling cascades mediating their cellular effects (using results primarily from the study of their effects in cancer) that will likely lead to novel targets and treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Nonaka N, Banks WA, Shioda S. Pituitary adenylate cyclase-activating polypeptide: Protective effects in stroke and dementia. Peptides 2020; 130:170332. [PMID: 32445876 DOI: 10.1016/j.peptides.2020.170332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/24/2020] [Accepted: 05/18/2020] [Indexed: 01/05/2023]
Abstract
Evidence shows that pituitary adenylate cyclase-activating polypeptide (PACAP) improves stroke outcomes and dementia. The blood-brain barrier (BBB) controls the peptide and regulatory protein exchange between the central nervous system and the blood; the transport of these regulatory substances across the BBB has been altered in animal models of stroke and Alzheimer's disease (AD). PACAP is a powerful neurotrophin that can cross the BBB, which may aid in the therapy of neurodegenerative diseases, including stroke and AD. PACAP may function as a potential drug in the treatment, prevention, or management of stroke and AD and other neurodegenerative conditions. Here, we review the effects of PACAP in studies on stroke and dementias.
Collapse
Affiliation(s)
- Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan.
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Seiji Shioda
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan.
| |
Collapse
|
14
|
Stojakovic A, Ahmad SM, Malhotra S, Afzal Z, Ahmed M, Lutfy K. The role of pituitary adenylyl cyclase-activating polypeptide in the motivational effects of addictive drugs. Neuropharmacology 2020; 171:108109. [PMID: 32325064 DOI: 10.1016/j.neuropharm.2020.108109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Pituitary adenylyl cyclase activating polypeptide (PACAP) was originally isolated from the hypothalamus and found to stimulate adenylyl cyclase in the pituitary. Later studies showed that this peptide and its receptors (PAC1, VPAC1, and VPAC2) are widely expressed in the central nervous system (CNS). Consistent with its distribution in the CNS, the PACAP/PAC1 receptor system is involved in several physiological responses, such as mediation of the stress response, modulation of nociception, regulation of prolactin release, food intake, etc. This system is also implicated in different pathological states, e.g., affective component of nociceptive processing, anxiety, depression, schizophrenia, and post-traumatic stress disorders. A review of the literature on PubMed revealed that PACAP and its receptors also play a significant role in the actions of addictive drugs. The goal of this review is to discuss the literature regarding the involvements of PACAP and its receptors in the motivational effects of addictive drugs. We particularly focus on the role of this peptide in the motivational effects of morphine, alcohol, nicotine, amphetamine, methamphetamine, and cocaine. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Andrea Stojakovic
- Department of Pharmaceutical Sciences College of Pharmacy, Western University of Health Sciences, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Syed Muzzammil Ahmad
- Department of Pharmaceutical Sciences College of Pharmacy, Western University of Health Sciences, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Shreya Malhotra
- Department of Pharmaceutical Sciences College of Pharmacy, Western University of Health Sciences, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Zakia Afzal
- Department of Pharmaceutical Sciences College of Pharmacy, Western University of Health Sciences, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Mudassir Ahmed
- Department of Pharmaceutical Sciences College of Pharmacy, Western University of Health Sciences, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences College of Pharmacy, Western University of Health Sciences, 309 East 2nd Street, Pomona, CA, 91766, USA.
| |
Collapse
|
15
|
Zhang L, Eiden LE. Progress in regulatory peptide research. Ann N Y Acad Sci 2019; 1455:5-11. [PMID: 31646651 DOI: 10.1111/nyas.14260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 09/28/2019] [Indexed: 12/20/2022]
Abstract
The field of regulatory peptide research has developed significant momentum owing to several recent converging trends. Dozens of peptide-based drugs have been approved by the U.S. Food and Drug Administration in the past decade, the majority for the treatment of metabolic disorders, including diabetes. These are the "tip of the spear" for peptide therapeutics, revealing that impediments of delivery, stability, and bioavailability inherent in peptide drugs have in many cases been overcome. While most are orally available, and directed at peripheral targets, pharmaceutical delivery of peptides to the central nervous system through nasal mucosal routes has also seen much progress. Cell-based high-throughput drug discovery methods, the X-ray crystallographic structural definition of G protein-coupled receptors, and deorphanization of peptide-liganded receptors have contributed to the emergence of new targets for pharmacological intervention and accelerated the development of peptide-based as well as nonpeptide congeners for existing ones. Finally, the recognition that peptides act at their receptors, in a cellular context, in conjunction with other peptides and other first messengers, including neurotransmitters, hormones, and autocrine and paracrine factors, has led to an increased appreciation for the combinatorial possibilities of regulatory peptide action, now penetrating to drug design and discovery efforts. The fifteen reviews, reports, and perspectives collected in this special issue of Annals of the New York Academy of Sciences provide a snapshot of the frontiers of the field of regulatory peptide research as they expand physiologically, pharmacologically, and therapeutically.
Collapse
Affiliation(s)
- Limei Zhang
- Departmento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Carbone E, Borges R, Eiden LE, García AG, Hernández‐Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Lugo JM, Tafalla C, Oliva A, Pons T, Oliva B, Aquilino C, Morales R, Estrada MP. Evidence for antimicrobial and anticancer activity of pituitary adenylate cyclase-activating polypeptide (PACAP) from North African catfish (Clarias gariepinus): Its potential use as novel therapeutic agent in fish and humans. FISH & SHELLFISH IMMUNOLOGY 2019; 86:559-570. [PMID: 30481557 DOI: 10.1016/j.fsi.2018.11.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulatory neuropeptide that belongs to the secretin/glucagon superfamily, of which some members have shown antimicrobial activities. Contrasting to mammals, published studies on the action of PACAP in non-mammalian vertebrate immune system remain scarce. Some of our recent studies added this peptide to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in teleost fish. Regulation of PACAP and expression of its receptor genes has been demonstrated during an immune response mounted against acute bacterial infection in fish, though the direct effect of PACAP against fish pathogenic bacteria has never been addressed. Current work provides evidence of antimicrobial activity of Clarias gariepinus PACAP against a wide spectrum of Gram-negative and Gram-positive bacteria and fungi of interest for human medicine and aquaculture, in which computational prediction studies supported the putative PACAP therapeutic activity. Results also indicated that catfish PACAP not only exhibits inhibitory effects on pathogen growth, but also affects the proliferation of human non-small cell lung cancer cell line H460 in a dose-dependent manner. The observed cytotoxic activity of catfish PACAP against human tumor cells and pathogenic microorganisms, but not healthy fish and mammalian erythrocytes support a potential physiological role of this neuropeptide in selective microbial and cancer cell killing. All together, our findings extend the mechanisms by which PACAP could contribute to immune responses, and open up new avenues for future therapeutic application of this bioactive neuropeptide.
Collapse
Affiliation(s)
- Juana Maria Lugo
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba; Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Ayme Oliva
- Animal Biotechnology Department, Veterinary Clinical Research Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Tirso Pons
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Brizaida Oliva
- Pharmaceutical Department. Laboratory of Cancer Biology. Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Carolina Aquilino
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Reynold Morales
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba.
| |
Collapse
|
18
|
Liu Q, Wong-Riley MTT. Pituitary adenylate cyclase-activating polypeptide: Postnatal development in multiple brain stem respiratory-related nuclei in the rat. Respir Physiol Neurobiol 2018; 259:149-155. [PMID: 30359769 DOI: 10.1016/j.resp.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/26/2018] [Accepted: 10/20/2018] [Indexed: 11/17/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in anterior pituitary hormone secretion, neurotransmission, and the control of breathing. Mice lacking PACAP die suddenly mainly in the 2nd postnatal week, coinciding temporally with a critical period of respiratory development uncovered by our laboratory in the rat. The goal of the current study was to test our hypothesis that PACAP expression is reduced during the critical period in normal rats. We undertook immunohistochemistry and optical densitometry of PACAP (specifically PACAP38) in several brain stem respiratory-related nuclei of postnatal days P2-21 rats, and found that PACAP immunoreactivity was significantly reduced at P12 in the pre-Bötzinger complex, nucleus ambiguus, hypoglossal nucleus, and the ventrolateral subnucleus of the nucleus tractus solitarius. No changes were observed in the control, non-respiratory cuneate nucleus at P12. Results imply that the down-regulation of PACAP during normal postnatal development may contribute to the critical period of vulnerability, when the animals' response to hypoxia is at its weakest.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
19
|
Ormerod KG, Jung J, Mercier AJ. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. J Neurogenet 2018; 32:183-194. [PMID: 30303434 DOI: 10.1080/01677063.2018.1502761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the past four decades, Drosophila melanogaster has become an increasingly important model system for studying the modulation of chemical synapses and muscle contraction by cotransmitters and neurohormones. This review describes how advantages provided by Drosophila have been utilized to investigate synaptic modulation, and it discusses key findings from investigations of cotransmitters and neurohormones that act on body wall muscles of 3rd instar Drosophila larvae. These studies have contributed much to our understanding of how neuromuscular systems are modulated by neuropeptides and biogenic amines, but there are still gaps in relating these peripheral modulatory effects to behavior.
Collapse
Affiliation(s)
- Kiel G Ormerod
- a Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - JaeHwan Jung
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| | - A Joffre Mercier
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| |
Collapse
|
20
|
Eiden LE, Jiang SZ. What's New in Endocrinology: The Chromaffin Cell. Front Endocrinol (Lausanne) 2018; 9:711. [PMID: 30564193 PMCID: PMC6288183 DOI: 10.3389/fendo.2018.00711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Recent advances in understanding the intracellular and intercellular features of adrenal chromatin cells as stress transducers are reviewed here, along with their implications for endocrine function in other tissues and organs participating in endocrine regulation in the mammalian organism.
Collapse
|
21
|
Akerman S, Romero-Reyes M, Holland PR. Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacol Ther 2017; 172:151-170. [PMID: 27919795 DOI: 10.1016/j.pharmthera.2016.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Migraine headache and its associated symptoms have plagued humans for two millennia. It is manifest throughout the world, and affects more than 1/6 of the global population. It is the most common brain disorder, and is characterized by moderate to severe unilateral headache that is accompanied by vomiting, nausea, photophobia, phonophobia, and other hypersensitive symptoms of the senses. While there is still a clear lack of understanding of its neurophysiology, it is beginning to be understood, and it seems to suggest migraine is a disorder of brain sensory processing, characterized by a generalized neuronal hyperexcitability. The complex symptomatology of migraine indicates that multiple neuronal systems are involved, including brainstem and diencephalic systems, which function abnormally, resulting in premonitory symptoms, ultimately evolving to affect the dural trigeminovascular system, and the pain phase of migraine. The migraineur also seems to be particularly sensitive to fluctuations in homeostasis, such as sleep, feeding and stress, reflecting the abnormality of functioning in these brainstem and diencephalic systems. Implications for therapeutic development have grown out of our understanding of migraine neurophysiology, leading to major drug classes, such as triptans, calcitonin gene-related peptide receptor antagonists, and 5-HT1F receptor agonists, as well as neuromodulatory approaches, with the promise of more to come. The present review will discuss the current understanding of the neurophysiology of migraine, particularly migraine headache, and novel insights into the complex neural networks responsible for associated neurological symptoms, and how interaction of these networks with migraine pain pathways has implications for the development of novel therapeutics.
Collapse
Affiliation(s)
- Simon Akerman
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY 10010, USA.
| | - Marcela Romero-Reyes
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY 10010, USA
| | - Philip R Holland
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
22
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1071] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
|
24
|
Guo S, Vollesen ALH, Hansen YBL, Frandsen E, Andersen MR, Amin FM, Fahrenkrug J, Olesen J, Ashina M. Part II: Biochemical changes after pituitary adenylate cyclase-activating polypeptide-38 infusion in migraine patients. Cephalalgia 2016; 37:136-147. [PMID: 26994298 DOI: 10.1177/0333102416639517] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Intravenous infusion of pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) provokes migraine attacks in 65-70% of migraine without aura (MO) patients. We investigated whether PACAP38 infusion causes changes in the endogenous production of PACAP38, vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), tumour necrosis factor alpha (TNFα), S100 calcium binding protein B (S100B), neuron-specific enolase and pituitary hormones in migraine patients. Methods We allocated 32 previously genotyped MO patients to receive intravenous infusion PACAP38 (10 pmol/kg/minute) for 20 minutes and recorded migraine-like attacks. Sixteen of the patients were carriers of the risk allele rs2274316 ( MEF2D), which confers increased risk of MO and may regulate PACAP38 expression, and 16 were non-carriers. We collected blood samples at baseline and 20, 30, 40, 60 and 90 minutes after the start of the infusion. A control group of six healthy volunteers received intravenous saline. Results PACAP38 infusion caused significant changes in plasma concentrations of VIP ( p = 0.026), prolactin ( p = 0.011), S100B ( p < 0.001) and thyroid-stimulating hormone (TSH; p = 0.015), but not CGRP ( p = 0.642) and TNFα ( p = 0.535). We found no difference in measured biochemical variables after PACAP38 infusion in patients who later developed migraine-like attacks compared to those who did not ( p > 0.05). There was no difference in the changes of biochemical variables between patients with and without the MEF2D-associated gene variant ( p > 0.05). Conclusion PACAP38 infusion elevated the plasma levels of VIP, prolactin, S100B and TSH, but not CGRP and TNFα. Development of delayed migraine-like attacks or the presence of the MEF2D gene variant was not associated with pre-ictal changes in plasma levels of neuropeptides, TNFα and pituitary hormones.
Collapse
Affiliation(s)
- Song Guo
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Luise Haulund Vollesen
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Young Bae Lee Hansen
- 2 Department of Clinical Biochemistry, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Frandsen
- 3 Department of Diagnostics, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malene Rohr Andersen
- 4 Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Gentofte, Denmark
| | - Faisal Mohammad Amin
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- 5 Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jes Olesen
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Matoba Y, Nonaka N, Takagi Y, Imamura E, Narukawa M, Nakamachi T, Shioda S, Banks WA, Nakamura M. Pituitary adenylate cyclase-activating polypeptide enhances saliva secretion via direct binding to PACAP receptors of major salivary glands in mice. Anat Rec (Hoboken) 2016; 299:1293-9. [PMID: 27339371 DOI: 10.1002/ar.23388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 11/06/2022]
Abstract
Xerostomia, or dry mouth, is a common syndrome that is generally treated with artificial saliva; however, no other effective methods have yet been established. Saliva secretion is mainly under the control of the autonomic nervous system. Pituitary adenylate cyclase-activating polypeptide (PACAP) is recognized as a multifunctional neuropeptide in various organs. In this study, we examined the effect of PACAP on saliva secretion, and detected the distribution of the PACAP type 1 receptor (PAC1R) in major salivary glands, including the parotid, submandibular, and sublingual glands, in 9-week-old male C57BL/6 mice. Intranasal administration of PACAP 38 increased the amount of saliva secreted, which was not inhibited by atropine pretreatment. Immunohistochemical analysis showed that PAC1R was distributed in the three major salivary glands. In the parotid and sublingual glands, PAC1R was detected in striated duct cells, whereas in the submandibular gland, a strong PAC1R immunoreaction was detected in tall columnar epithelial cells in the granular ducts (i.e., pillar cells), as well as in some striated duct cells. PACAP significantly increased the concentration of epidermal growth factor in saliva. These results suggest that PACAP directly regulates saliva secretion by controlling the absorption activity in the ducts, and that pillar cells regulate the function of granular epithelial cells in the granular duct, such as the secretion of growth factors into the saliva. Collectively, these results suggest the possibility of PACAP as a new effective treatment of xerostomia. Anat Rec, 299:1293-1299, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuko Matoba
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Shinagawa-Ku, Tokyo, Japan.,Division of Oral Surgery, Yokohama General Hospital, Aoba-Ku, Yokohama, Japan
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Shinagawa-Ku, Tokyo, Japan.,Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Yoshitoki Takagi
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Shinagawa-Ku, Tokyo, Japan
| | - Eisaku Imamura
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Shinagawa-Ku, Tokyo, Japan.,Division of Oral Surgery, Yokohama General Hospital, Aoba-Ku, Yokohama, Japan
| | - Masayuki Narukawa
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Shinagawa-Ku, Tokyo, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Japan
| | - Seiji Shioda
- Global Research Center for Innovative Life Science, Hoshi University, Shinagawa-Ku, Tokyo, Japan
| | - William A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Shinagawa-Ku, Tokyo, Japan
| |
Collapse
|
26
|
Moody TW, Nuche-Berenguer B, Jensen RT. Vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide, and their receptors and cancer. Curr Opin Endocrinol Diabetes Obes 2016; 23:38-47. [PMID: 26702849 PMCID: PMC4844466 DOI: 10.1097/med.0000000000000218] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To summarize the roles of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating polypeptide (PACAP) and their receptors (VPAC1, VPAC2, PAC1) in human tumors as well as their role in potential novel treatments. RECENT FINDINGS Considerable progress has been made in understanding of the effects of VIP/PACAP on growth of various tumors as well as in the signaling cascades involved, especially in the role of transactivation of the epidermal growth factor family. The overexpression of VPAC1/2 and PAC1 on a number of common neoplasms (breast, lung, prostate, central nervous system and neuroblastoma) is receiving increased attention both as a means of tumor imaging the location and extent of these tumors, as well as for targeted directed treatment, by coupling cytotoxic agents to VIP/PACAP analogues. SUMMARY VIP/PACAP has prominent growth effects on a number of common neoplasms, which frequently overexpressed the three subtypes of their receptors. The increased understanding of their signaling cascades, effect on tumor growth/differentiation and the use of the overexpression of these receptors for localization/targeted cytotoxic delivery are all suggesting possible novel tumor treatments.
Collapse
Affiliation(s)
- Terry W Moody
- aDepartment of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of the Director bNational Institutes of Health, National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, Maryland, USA
| | | | | |
Collapse
|
27
|
Moody TW, Moreno P, Jensen RT. Neuropeptides as lung cancer growth factors. Peptides 2015; 72:106-11. [PMID: 25836991 DOI: 10.1016/j.peptides.2015.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 12/28/2022]
Abstract
This manuscript is written in honor of the Festschrift for Abba Kastin. I met Abba at a Society for Neuroscience meeting and learned that he was Editor-in-Chief of the Journal Peptides. I submitted manuscripts to the journal on "Neuropeptides as Growth Factors in Cancer" and subsequently was named to the Editorial Advisory Board. Over the past 30 years I have published dozens of manuscripts in Peptides and reviewed hundreds of submitted manuscripts. It was always rewarding to interact with Abba, a consummate professional. When I attended meetings in New Orleans I would sometimes go out to dinner with him at the restaurant "Commanders Palace". When I chaired the Summer Neuropeptide Conference we were honored to have him receive the Fleur Strand Award one year in Israel. I think that his biggest editorial contribution has been the "Handbook of Biologically Active Peptides." I served as a Section Editor on "Cancer/Anticancer Peptides" and again found that it was a pleasure working with him. This review focuses on the mechanisms by which bombesin-like peptides, neurotensin and vasoactive intestinal peptide regulate the growth of lung cancer.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of the Director, Bethesda, MD 20892, USA.
| | - Paola Moreno
- National Institute of Diabetes, Digestive, and Kidney Disease, Digestive Diseases Branch, Bethesda, MD 20892, USA
| | - Robert T Jensen
- National Institute of Diabetes, Digestive, and Kidney Disease, Digestive Diseases Branch, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Shioda S, Nakamachi T. PACAP as a neuroprotective factor in ischemic neuronal injuries. Peptides 2015; 72:202-7. [PMID: 26275482 DOI: 10.1016/j.peptides.2015.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert pleiotropic effects on the nervous system. This review provides an overview of current knowledge regarding the neuroprotective effects, mechanisms of action, and therapeutic potential of PACAP in response to ischemic brain injuries.
Collapse
Affiliation(s)
- Seiji Shioda
- Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
29
|
Tajti J, Szok D, Majláth Z, Tuka B, Csáti A, Vécsei L. Migraine and neuropeptides. Neuropeptides 2015; 52:19-30. [PMID: 26094101 DOI: 10.1016/j.npep.2015.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.
Collapse
Affiliation(s)
- János Tajti
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary.
| | - Délia Szok
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Bernadett Tuka
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Anett Csáti
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary; MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| |
Collapse
|
30
|
|
31
|
Meredith ME, Salameh TS, Banks WA. Intranasal Delivery of Proteins and Peptides in the Treatment of Neurodegenerative Diseases. AAPS JOURNAL 2015; 17:780-7. [PMID: 25801717 DOI: 10.1208/s12248-015-9719-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/12/2015] [Indexed: 12/28/2022]
Abstract
The blood-brain barrier (BBB) is a major impediment to the therapeutic delivery of peptides and proteins to the brain. Intranasal delivery often provides a non-invasive means to bypass the BBB. Advantages of using intranasal delivery include minimizing exposure to peripheral organs and tissues, thus reducing systemic side effects. It also allows substances that typically have rapid degradation in the blood time to exert their effect. Intranasal delivery provides the ability to target proteins and peptides to specific regions of the brain when administered with substrates like cyclodextrins. In this review, we examined the use of intranasal delivery of various proteins and peptides that have implications in the treatment of neurodegenerative diseases, focusing especially on albumin, exendin/GLP-1, GALP, insulin, leptin, and PACAP. We have described their rationale for use, distribution in the brain after intranasal injection, how intranasal administration differed from other modes of delivery, and their use in clinical trials, if applicable. Intranasal delivery of drugs, peptides, and other proteins could be very useful in the future for the prevention or treatment of brain related diseases.
Collapse
|
32
|
Zagami AS, Edvinsson L, Goadsby PJ. Pituitary adenylate cyclase activating polypeptide and migraine. Ann Clin Transl Neurol 2014; 1:1036-40. [PMID: 25574477 PMCID: PMC4284128 DOI: 10.1002/acn3.113] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 01/15/2023] Open
Abstract
Pituitary adenylate cyclase activating peptide (PACAP) is found in human trigeminocervical complex and can trigger migraine. PACAP levels were measured using a sensitive radioimmunoassay. Stimulation of the superior sagittal sinus (SSS) in cat elevated PACAP levels in cranial blood. Patients with moderate or severe migraine headache had elevated PACAP in the external jugular vein during headache (n = 15), that was reduced 1 h after treatment with sumatriptan 6 mg (n = 11), and further reduced interictally (n = 9). The data suggest PACAP, or its receptors, are a promising target for migraine therapeutics.
Collapse
Affiliation(s)
- Alessandro S Zagami
- Institute of Neurological Sciences, Prince of Wales Hospitals and Prince of Wales Clinical School, University of New South Wales Sydney, Australia
| | - Lars Edvinsson
- Department of Internal Medicine, University Hospital Lund, Sweden
| | - Peter J Goadsby
- Headache Group and NIHR-Wellcome Trust Clinical Research Facility, King's College London, United Kingdom
| |
Collapse
|
33
|
Lugo JM, Carpio Y, Morales R, Rodríguez-Ramos T, Ramos L, Estrada MP. First report of the pituitary adenylate cyclase activating polypeptide (PACAP) in crustaceans: conservation of its functions as growth promoting factor and immunomodulator in the white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1788-1796. [PMID: 24036332 DOI: 10.1016/j.fsi.2013.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/02/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
The high conservation of the pituitary adenylate cyclase activating polypeptide (PACAP) sequence indicates that this peptide fulfills important biological functions in a broad spectrum of organisms. However, in invertebrates, little is known about its presence and its functions remain unclear. Up to now, in non-mammalian vertebrates, the majority of studies on PACAP have focused mainly on the localization, cloning and structural evolution of this peptide. As yet, little is known about its biological functions as growth factor and immunomodulator in lower vertebrates. Recently, we have shown that PACAP, apart from its neuroendocrine role, influences immune functions in larval and juvenile fish. In this work, we isolated for the first time the cDNA encoding the mature PACAP from a crustacean species, the white shrimp Litopenaeus vannamei, corroborating its high degree of sequence conservation, when compared to sequences reported from tunicates to mammalian vertebrates. Based on this, we have evaluated the effects of purified recombinant Clarias gariepinus PACAP administrated by immersion baths on white shrimp growth and immunity. We demonstrated that PACAP improves hemocyte count, superoxide dismutase, lectins and nitric oxide synthase derived metabolites in treated shrimp related with an increase in total protein concentration and growth performance. From our results, PACAP acts as a regulator of shrimp growth and immunity, suggesting that in crustaceans, as in vertebrate organisms, PACAP is an important molecule shared by both the endocrine and the immune systems.
Collapse
Affiliation(s)
- Juana María Lugo
- Aquatic Biotechnology Project, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | | | | | | | | | | |
Collapse
|
34
|
Goadsby PJ. Therapeutic prospects for migraine: Can paradise be regained? Ann Neurol 2013; 74:423-34. [DOI: 10.1002/ana.23996] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/04/2013] [Accepted: 08/04/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Peter J. Goadsby
- Headache Group, Department of Neurology; University of California, San Francisco; San Francisco CA
| |
Collapse
|
35
|
Barberi M, Di Paolo V, Latini S, Guglielmo MC, Cecconi S, Canipari R. Expression and functional activity of PACAP and its receptors on cumulus cells: effects on oocyte maturation. Mol Cell Endocrinol 2013; 375:79-88. [PMID: 23684890 DOI: 10.1016/j.mce.2013.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 01/15/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R (PACAP type 1 receptor) are transiently expressed in granulosa cells (GCs) of mouse preovulatory follicles and affect several parameters associated with the ovulatory process. We investigated the expression of PACAP and its receptors in cumulus cells (CCs) after the LH surge and their role on cumulus expansion/apoptosis and oocyte maturation. PACAP and PAC1-R expression increased in CCs isolated at different times after treatment with human chorionic gonadotropin (hCG). Moreover, PACAP was able to reverse the inhibition of oocyte meiotic maturation caused by hypoxantine in cumulus cell-oocyte complexes (COCs) and efficiently promoted male pronuclear formation after fertilisation. PACAP was also able to induce cumulus expansion and prevent CC apoptosis. Our results demonstrated the induction of PACAP and its receptors in CCs by LH and EGF, suggesting that PACAP may play a significant role in the complex interactions of gonadotropin and growth factors during ovulation and fertilisation.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Amphiregulin
- Animals
- Apoptosis
- Cell Nucleus/physiology
- Cell Proliferation
- Cells, Cultured
- Chorionic Gonadotropin/physiology
- Cumulus Cells/drug effects
- Cumulus Cells/metabolism
- Cytoplasm/metabolism
- EGF Family of Proteins
- Epidermal Growth Factor/physiology
- Female
- Fertilization in Vitro
- Follicle Stimulating Hormone/physiology
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Oocytes/physiology
- Ovulation/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Sperm Head/physiology
Collapse
Affiliation(s)
- Marzia Barberi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Goadsby PJ. All that is obvious is not clear: What is the origin of throbbing pain in migraine? Pain 2013; 154:970-971. [DOI: 10.1016/j.pain.2013.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/09/2013] [Indexed: 11/26/2022]
|
37
|
Goadsby PJ. Sphenopalatine (pterygopalatine) ganglion stimulation and cluster headache: new hope for ye who enter here. Cephalalgia 2013; 33:813-5. [PMID: 23575817 PMCID: PMC3724280 DOI: 10.1177/0333102413482195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Peter J Goadsby
- Headache Group, Department of Neurology, University of California – San Francisco, USA
| |
Collapse
|
38
|
Autonomic nervous system control of the cerebral circulation. HANDBOOK OF CLINICAL NEUROLOGY 2013; 117:193-201. [DOI: 10.1016/b978-0-444-53491-0.00016-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Thomas RL, Crawford NM, Grafer CM, Halvorson LM. Pituitary Adenylate Cyclase–Activating Polypeptide (PACAP) in the Hypothalamic–Pituitary–Gonadal Axis. Reprod Sci 2012; 20:857-71. [DOI: 10.1177/1933719112466310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robin L. Thomas
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Natalie M. Crawford
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Constance M. Grafer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Lisa M. Halvorson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| |
Collapse
|
40
|
Agnese M, Valiante S, Laforgia V, Andreuccetti P, Prisco M. Cellular localization of PACAP and its receptors in the ovary of the spotted ray Torpedo marmorata Risso 1880 (Elasmobranchii: Torpediniformes). ACTA ACUST UNITED AC 2012; 319:1-9. [PMID: 23027597 DOI: 10.1002/jez.1764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/01/2012] [Accepted: 08/15/2012] [Indexed: 11/12/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) is a member of the glucagon-related family and occurs in two amidated forms, PACAP38 and PACAP27, with 38 and 27 amino acids, respectively. PACAP acts by binding to three different receptors, that are classified by their binding affinity for PACAP and VIP (vasoactive intestinal polypeptide): PAC(1)R (PACAP-specific receptor) exclusively binds PACAP, while VPAC(1)R (VIP/PACAP receptor, subtype 1) and VPAC(2)R (VIP/PACAP receptor, subtype 2) bind both PACAP and VIP. PACAP, first discovered in the brain, was then localized in several peripheral tissues of mammals, including the ovary. Besides mammals, PACAP and its receptors have been reported in fish too; however, less is known about the presence of PACAP in the fish ovary and the studies are limited to teleosts. The aim of our work was to study the distribution of the PACAP/PACAP-Rs system in the ovary of the cartilaginous fish Torpedo marmorata. Using in situ hybridization (ISH) and immunohistochemistry techniques, we demonstrated that PACAP and its receptors are widely represented in the Torpedo ovary in a stage-dependent manner. Moreover, our findings suggest an involvement of this peptide in the whole follicologenesis, probably influencing steroidogenesis, follicle development, and oocyte growth.
Collapse
Affiliation(s)
- Marisa Agnese
- Evolutionary and Comparative Biology Division, Department of Biological Sciences, University of Naples Federico II, Napoli, Italy
| | | | | | | | | |
Collapse
|
41
|
Moody TW, Osefo N, Nuche-Berenguer B, Ridnour L, Wink D, Jensen RT. Pituitary adenylate cyclase-activating polypeptide causes tyrosine phosphorylation of the epidermal growth factor receptor in lung cancer cells. J Pharmacol Exp Ther 2012; 341:873-81. [PMID: 22389426 DOI: 10.1124/jpet.111.190033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an autocrine growth factor for some lung cancer cells. The activated PACAP receptor (PAC1) causes phosphatidylinositol turnover, elevates cAMP, and increases the proliferation of lung cancer cells. PAC1 and epidermal growth factor receptor (EGFR) are present in non-small-cell lung cancer (NSCLC) cells, and the growth of NSCLC cells is inhibited by the PAC1 antagonist PACAP(6-38) and the EGFR tyrosine kinase inhibitor gefitinib. Here, the ability of PACAP to transactivate the EGFR was investigated. Western blot analysis indicated that the addition of PACAP but not the structurally related vasoactive intestinal peptide increased EGFR tyrosine phosphorylation in NCI-H838 or H345 cells. PACAP-27, in a concentration-dependent manner, increased EGFR transactivation 4-fold 2 min after addition to NCI-H838 cells. The ability of 100 nM PACAP-27 to increase EGFR or extracellular signal-regulated kinase tyrosine phosphorylation in NCI-H838 cells was inhibited by PACAP(6-38), gefitinib, 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2; Src inhibitor), (R)-N4-hydroxy-N1-[(S)-2-(1H-indol-3-yl)-1-methylcarbamoyl-ethyl]-2-isobutyl-succinamide (GM6001; matrix metalloprotease inhibitor), or antibody to transforming growth factor α (TGFα). By enzyme-linked immunosorbent assay, PACAP addition to NCI-H838 cells increased TGFα secretion into conditioned media. EGFR transactivation caused by the addition of PACAP to NCI-H838 cells was inhibited by N-acetyl-cysteine (antioxidant), tiron (superoxide scavenger), diphenylene iodonium (NADPH oxidase inhibitor), or 1-[6-[[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122; phospholipase C inhibitor), but not N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide (H89; protein kinase A inhibitor). PACAP addition to NCI-H838 cells significantly increased reactive oxygen species, and the increase was inhibited by tiron. The results indicate that PACAP causes transactivation of the EGFR in NSCLC cells in an oxygen-dependent manner that involves phospholipase C but not protein kinase A.
Collapse
Affiliation(s)
- Terry W Moody
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 31, Room 4A48, 31 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Lipták N, Dochnal R, Babits A, Csabafi K, Szakács J, Tóth G, Szabó G. The effect of pituitary adenylate cyclase-activating polypeptide on elevated plus maze behavior and hypothermia induced by morphine withdrawal. Neuropeptides 2012; 46:11-7. [PMID: 22226680 DOI: 10.1016/j.npep.2011.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 12/12/2011] [Accepted: 12/12/2011] [Indexed: 11/30/2022]
Abstract
The aim of the present investigation was to study the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on morphine withdrawal-induced behavioral changes and hypothermia in male CFLP mice. Elevated plus maze (EPM) and jump tests were used to assess naloxone-precipitated morphine withdrawal-induced behavior responses. Different doses of subcutaneous (s.c.) naloxone, (0.1 and 0.2 mg/kg, respectively) were used to precipitate the emotional and psychical aspects of withdrawal on EPM and 1 mg/kg (s.c.) was used to induce the somatic withdrawal signs such as jumping, and the changes in body temperature. In our EPM studies, naloxone proved to be anxiolytic in mice treated with morphine. Chronic intracerebroventricular (i.c.v.) administration of PACAP alone had no significant effect on withdrawal-induced anxiolysis and total activity at doses of 500 ng and 1 μg. At dose of 500 ng, however, PACAP significantly counteracted the reduced motor activity in the EPM test in mice treated with morphine and diminished the hypothermia and shortened jump latency induced by naloxone in mice treated with morphine. These findings indicate that anxiolytic-like behavior may be mediated via a PACAP-involved pathway and PACAP may play an important role in chronic morphine withdrawal-induced hypothermia as well.
Collapse
Affiliation(s)
- Nándor Lipták
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
43
|
Kano M, Shimizu Y, Suzuki Y, Furukawa Y, Ishida H, Oikawa M, Kanetaka H, Ichikawa H, Suzuki T. Pituitary adenylatecyclase-activating polypeptide-immunoreactive nerve fibers in the rat epiglottis and pharynx. Ann Anat 2011; 193:494-9. [DOI: 10.1016/j.aanat.2011.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/24/2011] [Accepted: 08/09/2011] [Indexed: 11/28/2022]
|
44
|
Moody TW, Ito T, Osefo N, Jensen RT. VIP and PACAP: recent insights into their functions/roles in physiology and disease from molecular and genetic studies. Curr Opin Endocrinol Diabetes Obes 2011; 18:61-7. [PMID: 21157320 PMCID: PMC3075877 DOI: 10.1097/med.0b013e328342568a] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as well as the three classes of G-protein-coupled receptors mediating their effects, are widely distributed in the central nervous system (CNS) and peripheral tissues. These peptides are reported to have many effects in different tissues, which are physiological or pharmacological, and which receptor mediates which effect, has been difficult to determine, primarily due to lack of potent, stable, selective agonists/antagonists. Recently the use of animals with targeted knockout of the peptide or a specific receptor has provided important insights into their role in normal physiology and disease states. RECENT FINDINGS During the review period, considerable progress and insights has occurred in the understanding of the role of VIP/PACAP as well as their receptors in a number of different disorders/areas. Particularly, insights into their roles in energy metabolism, glucose regulation, various gastrointestinal processes including gastrointestinal inflammatory conditions and motility and their role in the CNS as well as CNS diseases has greatly expanded. SUMMARY PACAP/VIP as well as their three classes of receptors are important in many physiological/pathophysiological processes, some of which are identified in these studies using knockout animals. These studies may lead to new novel treatment approaches. Particularly important are their roles in glucose metabolism and on islets leading to possible novel approaches in diabetes; their novel anti-inflammatory, cytoprotective effects, their CNS neuroprotective effects, and their possible roles in diseases such as schizophrenia and chronic depression.
Collapse
Affiliation(s)
- Terry W. Moody
- Department of Health and Human Services, National Cancer Institute Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Nuramy Osefo
- Department of Health and Human Services, National Cancer Institute Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
45
|
Chung CY, Licznerski P, Alavian KN, Simeone A, Lin Z, Martin E, Vance J, Isacson O. The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons. ACTA ACUST UNITED AC 2010; 133:2022-31. [PMID: 20573704 DOI: 10.1093/brain/awq142] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease. Here, we demonstrate elevated expression of the transcription factor orthodenticle homeobox 2 in A10 dopaminergic neurons of embryonic and adult mouse, primate and human midbrain. Overexpression of orthodenticle homeobox 2 using lentivirus increased levels of known A10 elevated genes, including neuropilin 1, neuropilin 2, slit2 and adenylyl cyclase-activating peptide in both MN9D cells and ventral mesencephalic cultures, whereas knockdown of endogenous orthodenticle homeobox 2 levels via short hairpin RNA reduced expression of these genes in ventral mesencephalic cultures. Lack of orthodenticle homeobox 2 in the ventral mesencephalon of orthodenticle homeobox 2 conditional knockout mice caused a reduction of midbrain dopaminergic neurons and selective loss of A10 dopaminergic projections. Orthodenticle homeobox 2 overexpression protected dopaminergic neurons in ventral mesencephalic cultures from Parkinson's disease-relevant toxin, 1-methyl-4-phenylpyridinium, whereas downregulation of orthodenticle homeobox 2 using short hairpin RNA increased their susceptibility. These results show that orthodenticle homeobox 2 is important for establishing subgroup phenotypes of post-mitotic midbrain dopaminergic neurons and may alter neuronal vulnerability.
Collapse
Affiliation(s)
- Chee Yeun Chung
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Latini S, Chiarpotto M, Muciaccia B, Vaccari S, Barberi M, Guglielmo MC, Stefanini M, Cecconi S, Canipari R. Inhibitory effect of pituitary adenylate cyclase activating polypeptide on the initial stages of rat follicle development. Mol Cell Endocrinol 2010; 320:34-44. [PMID: 20138961 DOI: 10.1016/j.mce.2010.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is transiently expressed in preovulatory follicles of different species and positively affects parameters correlated with the ovulatory process. It has also been shown to be expressed in the interstitial tissue and in interstitial glandular cells in the proximity of primordial and preantral follicles. The aim of the present study was to investigate whether PACAP influences the recruitment of primordial follicles and the growth and differentiation of preantral follicles. Rat ovaries from 2-day-old animals were cultured for 5 days in the presence of PACAP. This treatment significantly inhibited the primordial to primary follicle transition. PACAP inhibited granulosa cell proliferation without affecting cell viability. PACAP also inhibited the growth of isolated preantral follicles cultured under basal conditions or in the presence of follicle-stimulating hormone (FSH). These results suggest that PACAP is significantly involved in the cyclic recruitment of primordial follicles and in the FSH-dependent growth of preantral follicles.
Collapse
Affiliation(s)
- Stefania Latini
- Department of Histology and Medical Embryology, La Sapienza University of Rome, Via A. Scarpa, 16, Rome 00161, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Levy G, Jackson K, Degani G. Association between pituitary adenylate cyclase-activating polypeptide and reproduction in the blue gourami. Gen Comp Endocrinol 2010; 166:83-93. [PMID: 19825374 DOI: 10.1016/j.ygcen.2009.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/30/2009] [Accepted: 09/25/2009] [Indexed: 11/21/2022]
Abstract
In order to gain a better understanding of the roles of pituitary adenylate cyclase-activating polypeptide (PACAP) in reproduction and growth, the expression of the PACAP gene during the reproduction cycle and its potential role in regulating gonadotropin and growth hormone (GH) gene transcription in blue gourami were investigated. The cDNA sequences of the full-length blue gourami brain PACAP and that of its related peptide (PRP) were acquired. PACAP cDNA had two variants, obtainable by alternative splicing: a long form encoding for both PRP and PACAP and a short form encoding only for PACAP. In females, mRNA levels of PACAP were very high only in individuals with oocytes in the maturation stage, as compared to levels in unpaired vitellogenic and non-vitellogenic fish. The PACAP mRNA levels in males were high only in nest builders, as opposed to in non-nest building males and juveniles. In pituitary culture cells from high vitellogenic females, PACAP38 (the 38 amino acid form) only brought about an increase in betaFSH levels, without altering GH and betaLH mRNA levels. On the other hand, in adult non-reproductive male pituitary cells, PACAP38 decreased the GH mRNA level. Based on these results, we propose that in the blue gourami, PACAP is involved in the final oocyte maturation stage in females, whereas in males, it is associated with sexual behavior. In addition, the effect of PACAP38 on pituitary hormone gene expression is different in females and males, indicating that PACAP38 is potentially a hypophysiotropic regulator of reproduction, which mediates pituitary hormone expression.
Collapse
Affiliation(s)
- Gal Levy
- School of Science and Technology, Tel-Hai Academic College, Upper Galilee 12210, Israel
| | | | | |
Collapse
|
48
|
May V, Vizzard MA. Bladder dysfunction and altered somatic sensitivity in PACAP-/- mice. J Urol 2010; 183:772-9. [PMID: 20022034 DOI: 10.1016/j.juro.2009.09.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Indexed: 12/24/2022]
Abstract
PURPOSE PACAP and receptors are expressed in micturition pathways. Studies show that PACAP has a role in detrusor smooth muscle contraction to facilitate adenosine triphosphate release from urothelium and PACAP antagonism decreases cyclophosphamide induced bladder hyperreflexia. MATERIALS AND METHODS PACAP contributions to micturition and somatic sensation were studied in PACAP knockout (PACAP(-/-)), litter mate heterozygote (PACAP(+/-)) and WT mice by conscious cystometry with continuous intravesical saline or acetic acid (0.5%) instillation, urination patterns, somatic sensitivity testing of hind paw and pelvic regions with calibrated von Frey filaments, and morphological bladder assessments. RESULTS PACAP(-/-) mice had an increased bladder mass with fewer but larger urine spots. In PACAP(-/-) mice the lamina propria and detrusor smooth muscle were significantly thicker but the urothelium was unchanged. PACAP(-/-) mice had increased bladder capacity, voided volume and intercontraction interval with significantly increased detrusor contraction duration and large residual volume. WT mice responded to acetic acid (0.5%) with a decrease in voided volume and intercontraction interval but PACAP(+/-) and PACAP(-/-) mice did not respond. PACAP(-/-) mice were less responsive to somatic stimulation. PACAP(+/-) mice also had bladder dysfunction, and somatic and visceral sensory abnormalities but to a lesser degree. CONCLUSIONS PACAP gene disruption contributes to changes in bladder morphology and function, and somatic and visceral hypoalgesia.
Collapse
Affiliation(s)
- Victor May
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | |
Collapse
|
49
|
Onoue S, Hanato J, Yamada S. Pituitary adenylate cyclase-activating polypeptide attenuates streptozotocin-induced apoptotic death of RIN-m5F cells through regulation of Bcl-2 family protein mRNA expression. FEBS J 2008; 275:5542-51. [PMID: 18959742 DOI: 10.1111/j.1742-4658.2008.06672.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oxidative stress, followed by the apoptotic death of pancreatic beta cells, is considered to be one of causative agents in the evolution of the type 2 diabetic state; therefore, the protection of beta cells can comprise an efficacious strategy for preventing type 2 diabetes. In the present study, RIN-m5F cells (i.e. the rat insulinoma beta cell line) were stimulated with streptozotocin, resulting in a time- and concentration-dependent release of lactate dehydrogenase. There appeared to be significant apoptotic cell death after 2 h of treatment with streptozotocin at 10 mM, as demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining and 2.6-fold activation of cellular caspase-3, an apoptotic enzyme. By contrast, some neuropeptides of the glucagon-secretin family and coenzyme Q(10), an endogenous mitochondrial antioxidant, could attenuate streptozotocin cytotoxicity, and especially pituitary adenylate cyclase-activating polypeptide (PACAP), at a concentration of 10(-7) M, exhibited 34% attenuation of lactate dehydrogenase release from streptozotocin-treated RIN-m5F cells. Quantitative RT-PCR experiments indicated the inhibitory effect of PACAP on streptozotocin-evoked up-regulation of pro-apoptotic factor (Noxa and Bax) and a 2.3-fold enhancement of Bcl-2 mRNA expression, a pro-survival protein, was also observed after addition of PACAP. The data obtained suggest the anti-apoptotic role of PACAP in streptozotocin-treated RIN-m5F cells through the regulation of pro-apoptotic and pro-survival factors.
Collapse
Affiliation(s)
- Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics and Global Center of Excellence Program, School of Pharmaceutical Sciences, University of Shizuoka, Japan.
| | | | | |
Collapse
|
50
|
Morelli MB, Barberi M, Gambardella A, Borini A, Cecconi S, Coticchio G, Canipari R. Characterization, expression, and functional activity of pituitary adenylate cyclase-activating polypeptide and its receptors in human granulosa-luteal cells. J Clin Endocrinol Metab 2008; 93:4924-32. [PMID: 18782879 DOI: 10.1210/jc.2007-2621] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are found in the ovary of mammalian species, although nothing is known about the possible role of PACAP and VIP in the human ovary. OBJECTIVE We investigated the expression of PACAP and PACAP/VIP receptors in human granulosa-luteal (GL) cells obtained from consenting in vitro fertilization patients attending a private fertility clinic and assessed a possible antiapoptotic effect of these molecules. MAIN OUTCOME MEASURES We measured the expression of PACAP and PACAP/VIP receptor mRNAs in GL cells in response to FSH or LH, as well as the effects of PACAP and VIP on apoptosis. We also evaluated the levels of procaspase-3 in GL cells cultured in the absence of serum. RESULTS After 7 d in culture, GL cells displayed increased responsiveness to FSH and LH (100 ng/ml). FSH and LH promoted PACAP expression, LH doing so in a time-dependent fashion. VIP receptor (VPAC1-R and VPAC2-R) mRNAs were also induced by gonadotropin stimulation. Although PACAP receptor (PAC1-R) mRNA was barely detectable, Western blot analysis revealed its presence. The apoptotic effect of serum withdrawal from the culture environment was reverted by both PACAP and VIP. Both peptides showed the ability to reverse a decrease in procaspase-3 levels induced by culture in the absence of serum. CONCLUSIONS PACAP and VIP appear to play a role in maintenance of follicle viability as a consequence of the antiapoptotic effect. Further studies are warranted to evaluate the respective roles of PACAP and VIP in ovarian physiology and to identify their mechanism of action.
Collapse
Affiliation(s)
- Maria Beatrice Morelli
- Department of Histology and Medical Embryology, "La Sapienza" University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|