1
|
Skogh A, Lesniak A, Sköld C, Karlgren M, Gaugaz FZ, Svensson R, Diwakarla S, Jonsson A, Fransson R, Nyberg F, Hallberg M, Sandström A. An imidazole based H-Phe-Phe-NH 2 peptidomimetic with anti-allodynic effect in spared nerve injury mice. Bioorg Med Chem Lett 2018; 28:2446-2450. [DOI: 10.1016/j.bmcl.2018.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 10/28/2022]
|
2
|
Furuya S, Furuya K. Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:133-89. [PMID: 23809436 DOI: 10.1016/b978-0-12-407696-9.00003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ingestion of food and water induces chemical and mechanical signals that trigger peristaltic reflexes and also villous movement in the gut. In the intestinal villi, subepithelial fibroblasts under the epithelium form contractile cellular networks and closely contact to the varicosities of substance P and nonsubstance P afferent neurons. Subepithelial fibroblasts of the duodenal villi possess purinergic receptor P2Y1 and tachykinin receptor NK1. ATP and substance P induce increase in intracellular Ca(2+) and cell contraction in subepithelial fibroblasts. They are highly mechanosensitive and release ATP by mechanical stimuli. Released ATP spreads to form an ATP "cloud" with nearly 1μM concentration and activates the surroundings via P2Y1 and afferent neurons via P2X receptors. These findings suggest that villous subepithelial fibroblasts and afferent neurons interact via ATP and substance P. This mutual interaction may play important roles in the signal transduction of mechano reflex pathways including a coordinate villous movement and also in the maturation of the structure and function of the intestinal villi.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.
| | | |
Collapse
|
3
|
Grant J. Tachykinins stimulate a subset of mouse taste cells. PLoS One 2012; 7:e31697. [PMID: 22363709 PMCID: PMC3283679 DOI: 10.1371/journal.pone.0031697] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/18/2012] [Indexed: 01/07/2023] Open
Abstract
The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca2+-imaging on isolated taste cells, it was observed that SP induces Ca2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca2+ responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.
Collapse
Affiliation(s)
- Jeff Grant
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida, United States of America.
| |
Collapse
|
4
|
Angiogenesis inhibition in cancer therapy: platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: biological functions and role in malignancy. Recent Results Cancer Res 2010; 180:51-81. [PMID: 20033378 DOI: 10.1007/978-3-540-78281-0_5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models. VEGF gene transcription is induced in particular in hypoxic cells. In developmental angiogenesis, the role of VEGF is demonstrated by the finding that the loss of a single VEGF allele results in defective vascularization and early embryonic lethality. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. In situ hybridization studies demonstrate expression of VEGF mRNA in the majority of human tumors. Platelet-derived growth factor (PDGF) is mainly believed to be an important mitogen for connective tissue, and also has important roles during embryonal development. Its overexpression has been linked to different types of malignancies. Thus, it is important to understand the physiology of VEGF and PDGF and their receptors as well as their roles in malignancies in order to develop antiangiogenic strategies for the treatment of malignant disease.
Collapse
|
5
|
Hilton KJ, Bateson AN, King AE. Neurotrophin-induced preprotachykinin-A gene promoter modulation in organotypic rat spinal cord culture. J Neurochem 2006; 98:690-9. [PMID: 16893415 DOI: 10.1111/j.1471-4159.2006.03910.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To study regulation of the preprotachykinin-A gene promoter, we utilised a biolistic gene transfer protocol to deliver a DNA construct that incorporates a portion of the preprotachykinin-A gene promoter and an enhanced green fluorescent protein reporter gene into neonatal rat spinal cord organotypic slices. The ability of the neurokinin-1 receptor agonist [Sar9,Met(O2)11]-substance P, nerve growth factor and brain derived neurotrophic factor to modulate positively preprotachykinin-A gene promoter construct activity, as indicated by de novo enhanced green fluorescent protein expression, was determined. Treatment of organotypic slices with [Sar9, Met(O2)11]-substance P (10 microm, P < 0.05), nerve growth factor (200 ng/mL, P < 0.001) or brain derived neurotrophic factor (200 ng/mL, P < 0.02) significantly increased the proportion of cytomegaloviral promoter-DsRed transfected cells (used to visualise total transfected cells) that co-expressed enhanced green fluorescent protein. The distribution of enhanced green fluorescent protein/DsRed-positive neurones across spinal laminae was broadly in line with the known distribution of spinal Trk and neurokinin-1 receptors. These data suggest a modulated activity of the preprotachykinin-A gene promoter in spinal neurones in vitro by substance P and/or neurotrophins. The functional consequences of such transcriptional changes within central peptidergic circuitry and their relevance to chronic pain are considered.
Collapse
Affiliation(s)
- Kathryn J Hilton
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
6
|
Ebner K, Singewald N. The role of substance P in stress and anxiety responses. Amino Acids 2006; 31:251-72. [PMID: 16820980 DOI: 10.1007/s00726-006-0335-9] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 02/21/2006] [Indexed: 12/18/2022]
Abstract
Substance P (SP) is one of the most abundant peptides in the central nervous system and has been implicated in a variety of physiological and pathophysiological processes including stress regulation, as well as affective and anxiety-related behaviour. Consistent with these functions, SP and its preferred neurokinin 1 (NK1) receptor has been found within brain areas known to be involved in the regulation of stress and anxiety responses. Aversive and stressful stimuli have been shown repeatedly to change SP brain tissue content, as well as NK1 receptor binding. More recently it has been demonstrated that emotional stressors increase SP efflux in specific limbic structures such as amygdala and septum and that the magnitude of this effect depends on the severity of the stressor. Depending on the brain area, an increase in intracerebral SP concentration (mimicked by SP microinjection) produces mainly anxiogenic-like responses in various behavioural tasks. Based on findings that SP transmission is stimulated under stressful or anxiety-provoking situations it was hypothesised that blockade of NK1 receptors may attenuate stress responses and exert anxiolytic-like effects. Preclinical and clinical studies have found evidence in favour of such an assumption. The status of this research is reviewed here.
Collapse
Affiliation(s)
- K Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
7
|
Springer J, Groneberg DA, Pregla R, Fischer A. Inflammatory cells as source of tachykinin-induced mucus secretion in chronic bronchitis. ACTA ACUST UNITED AC 2005; 124:195-201. [PMID: 15544859 DOI: 10.1016/j.regpep.2004.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 07/14/2004] [Accepted: 07/15/2004] [Indexed: 11/26/2022]
Abstract
Substance P and neurokinin A are regulatory peptides of the tachykinin family that influence many aspects of human airway function in health and diseases such as bronchial asthma or chronic obstructive pulmonary disease (COPD). Tachykinin-induced mucus secretion has been regarded as sensory nerve-dependent so far. We studied the distribution of tachykinin-mRNA and -peptide and its relation to NK-1 subtype-positive cells in human airway glands to assess if tachykinins may also be expressed in inflammatory cells. RT-PCR demonstrated the expression of tachykinin- and NK-1-mRNA in human airway tissues. In situ hybridisation resulted in preprotachykinin (PPT)-A mRNA-signal detection in inflammatory cells which were in close contact to myoepithelial cells of airway glands. NK-1 immunoreactivity was found in myoepithelial cells which were in direct contact to the PPT-A mRNA and tachykinin-positive cells. The present data directly demonstrate the presence of both PPT-A mRNA and tachykinin immunoreactivity in inflammatory airway cells which are in direct contact to NK-1 receptor positive glandular myoepithelium. Our findings indicate that besides neurally released tachykinins, also inflammatory cell-derived tachykinins may lead to glandular secretion via NK-1 receptor stimulation. This points to a major second source of these proinflammatory mediators in chronic inflammatory airway diseases such as COPD or asthma.
Collapse
Affiliation(s)
- Jochen Springer
- Otto-Heubner-Centre, Pneumology and Immunology, Charité School of Medicine, Free University and Humboldt-University, Augustenburger Platz 1 OR-1, D-13353 Berlin, Germany
| | | | | | | |
Collapse
|
8
|
Abstract
Neurogenic inflammation encompasses the release of neuropeptides from airway nerves leading to inflammatory effects. This neurogenic inflammatory response of the airways can be initiated by exogenous irritants such as cigarette smoke or gases and is characterized by a bi-directional linkage between airway nerves and airway inflammation. The event of neurogenic inflammation may participate in the development and progression of chronic inflammatory airway diseases such as allergic asthma or chronic obstructive pulmonary disease (COPD). The molecular mechanisms underlying neurogenic inflammation are orchestrated by a large number of neuropeptides including tachykinins such as substance P and neurokinin A, or calcitonin gene-related peptide. Also, other biologically active peptides such as neuropeptide tyrosine, vasoactive intestinal polypeptide or endogenous opioids may modulate the inflammatory response and recently, novel tachykinins such as virokinin and hemokinins were identified. Whereas the different aspects of neurogenic inflammation have been studied in detail in laboratory animal models, only little is known about the role of airway neurogenic inflammation in human diseases. However, different functional properties of airway nerves may be used as targets for future therapeutic strategies and recent clinical data indicates that novel dual receptor antagonists may be relevant new drugs for bronchial asthma or COPD.
Collapse
Affiliation(s)
- D A Groneberg
- Otto-Heubner-Centre, Pneumology and Immunology, Charité School of Medicine, Free University Berlin and Humboldt-University Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
9
|
Meeusen T, Mertens I, De Loof A, Schoofs L. G Protein-Coupled Receptors in Invertebrates: A State of the Art. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 230:189-261. [PMID: 14692683 DOI: 10.1016/s0074-7696(03)30004-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute one of the largest and most ancient superfamilies of membrane-spanning proteins. We focus on neuropeptide GPCRs, in particular on those of invertebrates. In general, such receptors mediate the responses of signaling molecules that constitute the highest hierarchical position in the regulation of physiological processes. Until recently, only a few of these receptors were identified in invertebrates. However, the availability of a plethora of genomic information has boosted the discovery of novel members in several invertebrate species, such as Drosophila, in which 18 neuropeptide GPCRs have been characterized. The finalization of genomic projects in other invertebrates will lead to a similar expansion of GPCR understanding. Many new insights regarding neuropeptide regulation have followed from the discovery of their cognate receptors. Furthermore, information on GPCR signaling is still fragmentary and the elucidation of these pathways in model insects such as Drosophila will lead to further insights in other species, including mammals. In this review we present the current status of what is known about invertebrate GPCRs, discuss some novel perceptions that follow from the identified members, and, finally, present some future prospects.
Collapse
Affiliation(s)
- Tom Meeusen
- Laboratory of Developmental Physiology, Genomics, and Proteomics, K.U. Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
10
|
Badie-Mahdavi H, Worsley MA, Ackley MA, Asghar AU, Slack JR, King AE. A role for protein kinase intracellular messengers in substance P- and nociceptor afferent-mediated excitation and expression of the transcription factor Fos in rat dorsal horn neurons in vitro. Eur J Neurosci 2001; 14:426-34. [PMID: 11553293 DOI: 10.1046/j.0953-816x.2001.01656.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the inducible transcription factor Fos in the spinal dorsal horn in vivo is associated with nociceptive afferent activation, but the underlying stimulation-transcription pathway is less clear. This in vitro spinal cord study concerns the role of protein kinase A and C second messengers in substance P receptor (NK1R)-mediated or nociceptive afferent-evoked neuronal excitation and Fos expression. Nociceptive afferent (dorsal root) stimulation of isolated spinal cords (10-14 day old rats) evoked a 'prolonged' excitatory polysynaptic potential (DR-EPSP) that was attenuated (P < 0.05) by: the protein kinase A inhibitor, Rp-cAMP; the protein kinase C inhibitor, bisindolymaleimide I; and the selective NK1R antagonist, GR82334. Neuronal excitations induced by the NK1R agonist [Sar9,Met(O2)11]-SP were attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. Effects of the protein kinase A and C inhibitors on the DR-EPSP or the [Sar9,Met(O2)11]-SP-induced depolarization were nonadditive, suggesting convergence of these intracellular signalling pathways onto a common final target. Nociceptor afferent-induced Fos, detected by immunohistochemistry in superficial and deep dorsal horn laminae, was attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. In spinal cords pretreated with TTX to eliminate indirect neuronal activation, [Sar9,Met(O2)11]-SP (1-20 microM) elicited a dose-related expression of Fos that was reduced by Rp-cAMP, bisindolymaleimide I and GR82334. The effects of these inhibitors were most pronounced in the deep laminae. These data support a causal relationship between protein kinase A- or C-dependent signal transduction, nociceptive afferent- or NK1R-induced neuronal excitation and Fos expression in dorsal horn. Implications for short- versus long-term modulation of nociceptive circuitry are discussed.
Collapse
Affiliation(s)
- H Badie-Mahdavi
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9NQ, UK
| | | | | | | | | | | |
Collapse
|
11
|
Torfs H, Shariatmadari R, Guerrero F, Parmentier M, Poels J, Van Poyer W, Swinnen E, De Loof A, Akerman K, Vanden Broeck J. Characterization of a receptor for insect tachykinin-like peptide agonists by functional expression in a stable Drosophila Schneider 2 cell line. J Neurochem 2000; 74:2182-9. [PMID: 10800964 DOI: 10.1046/j.1471-4159.2000.0742182.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
STKR is an insect G protein-coupled receptor, cloned from the stable fly Stomoxys calcitrans. It displays sequence similarity to vertebrate tachykinin [or neurokinin (NK)] receptors. Functional expression of the cloned STKR cDNA was obtained in cultured Drosophila melanogaster Schneider 2 (S2) cells. Insect tachykinin-like peptides or "insectatachykinins," such as Locusta tachykinin (Lom-TK) III, produced dose-dependent calcium responses in stably transfected S2-STKR cells. Vertebrate tachykinins (or neurokinins) did not evoke any effect at concentrations up to 10(-5) M, but an antagonist of mammalian neurokinin receptors, spantide II, inhibited the Lom-TK III-induced calcium response. Further analysis showed that the agonist-induced intracellular release of calcium ions was not affected by pretreatment of the cells with pertussis toxin. The calcium rise was blocked by the phospholipase C inhibitor U73122. In addition, Lom-TK III was shown to have a stimulatory effect on the accumulation of both inositol 1,4,5-trisphosphate and cyclic AMP. These are the same second messengers that are induced in mammalian neurokinin-dependent signaling processes.
Collapse
Affiliation(s)
- H Torfs
- Laboratory for Developmental Physiology and Molecular Biology, Zoological Institute, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vanden Broeck J, Torfs H, Poels J, Van Poyer W, Swinnen E, Ferket K, De Loof A. Tachykinin-like peptides and their receptors. A review. Ann N Y Acad Sci 2000; 897:374-87. [PMID: 10676464 DOI: 10.1111/j.1749-6632.1999.tb07907.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tachykinin-like peptides have been identified in many vertebrate and invertebrate species. On the basis of the data reviewed in this paper, these peptides can be classified into two distinct subfamilies, which are recognized by their respective sequence characteristics. All known vertebrate tachykinins and a few invertebrate ones share a common C-terminal sequence motif, -FXGLMa. The insect tachykinins, which have a common -GFX1GX2Ra C-terminus, display about 30% of sequence homology with the first group. Tachykinins are multifunctional brain/gut peptides. In mammals and insects, various isoforms play an important neuromodulatory role in the central nervous system. They are involved in the processing of sensory information and in the control of motor activities. In addition, members of both subfamilies elicit stimulatory responses on a variety of visceral muscles. The receptors for mammalian and insect tachykinins show a high degree of sequence conservation and their functional characteristics are very similar. In both mammals and insects, angiotensin-converting enzyme (ACE) plays a prominent role in tachykinin peptide metabolism.
Collapse
|
13
|
Chapter VI Neurokinin receptors in the CNS. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Vollmer JY, Alix P, Chollet A, Takeda K, Galzi JL. Subcellular compartmentalization of activation and desensitization of responses mediated by NK2 neurokinin receptors. J Biol Chem 1999; 274:37915-22. [PMID: 10608858 DOI: 10.1074/jbc.274.53.37915] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A functional fluorescent neurokinin NK2 receptor was constructed by joining enhanced green fluorescent protein to the amino-terminal end of the rat NK2 receptor and was expressed in human embryonic kidney cells. On cell suspensions, the binding of fluorescent Bodipy-labeled neurokinin A results in a saturatable and reversible decrease of NK2 receptor fluorescence via fluorescence resonance energy transfer. This can be quantified for nM to microM agonist concentrations and monitored in parallel with intracellular calcium responses. On single cells, receptor site occupancy and local agonist concentration can be determined in real time from the decrease in receptor fluorescence. Simultaneous measurement of intracellular calcium responses and agonist binding reveals that partial receptor site occupancy is sufficient to desensitize cellular response to a second agonist application to the same membrane area. Subsequent stimulation of a distal membrane area leads to a second response to agonist, provided that it had not been exposed to agonist during the first application. Together with persistent translocation of fluorescent protein kinase C to the membrane area exposed to agonist, the present data support that not only homologous desensitization but also heterologous desensitization of NK2 receptors is compartmentalized to discrete membrane domains.
Collapse
Affiliation(s)
- J Y Vollmer
- Département Récepteurs et Protéines Membranaires, CNRS UPR 9050, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400 Illkirch, France
| | | | | | | | | |
Collapse
|
15
|
Mileusnic D, Lee JM, Magnuson DJ, Hejna MJ, Krause JE, Lorens JB, Lorens SA. Neurokinin-3 receptor distribution in rat and human brain: an immunohistochemical study. Neuroscience 1999; 89:1269-90. [PMID: 10362314 DOI: 10.1016/s0306-4522(98)00349-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Autoradiographic and immunohistochemical studies have shown that the neurokinin-3 receptor is widely distributed in the rodent CNS. Expression of the neurokinin-3 receptor in human brain, however, has been debated. These conflicting findings, as well as the poor resolution of autoradiographic images, prompted us to develop a polyclonal antibody against an oligopeptide derived from the carboxy-terminus consensus sequence of both the rat and human neurokinin-3 receptor ([C]ASTTSSFISSPYTSVDEYS, amino acids 434-452 of the rat neurokinin-3 receptor). Western blot analysis of both human and rat brain tissue revealed a major band in the molecular weight range 65,000-67,000, the proposed molecular weight of the neurokinin-3 receptor based on its amino acid sequence and presumed glycosylation state. The distribution of selective high affinity neurokinin-3 receptor agonist [3H]senktide binding and neurokinin-3 receptor immunoreactivity were virtually identical in the brains of male Fischer 344 rats. The highest concentrations of neurokinin-3 receptors were observed in cortical layers IV-V; the basolateral amygdaloid nucleus; the hypothalamic paraventricular, perifornical and supraoptic nuclei; the zona incerta; and the entopeduncular and interpeduncular nuclei. [3H]senktide binding and neurokinin-3 receptor immunoreactivity were compared in homologous cortical areas of the human and rat brain. In contrast to the rat, autoradiographic analysis of normal control human brains (35-75 years) revealed a distinct and predominant superficial cortical labeling in the glia limitans and the cortical layer I. However, neurokinin-3 receptor immunoreactivity could be found not only in the superficial cortical layers, but also on pyramidal neurons and astrocytes in the neuropil and white matter. These findings suggest species differences in both the cellular and anatomical distribution of the neurokinin-3 receptor.
Collapse
Affiliation(s)
- D Mileusnic
- Department of Pathology, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Marvizón JC, Eskandari S, Ennes HS, Mayer EA. Substance P induces brief, localized increase in [Ca2+]i in dorsal horn neurons. Neuroreport 1998; 9:3369-74. [PMID: 9855282 DOI: 10.1097/00001756-199810260-00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We determined the spatial and temporal dynamics of the increase in intracellular Ca2+ levels [Ca2+]i produced by substance P (SP) in dorsal horn neurons. A microinjection technique was used to apply minute amounts of SP to small areas of cultured neurons loaded with the Ca2+ indicator fura-2. Five successive applications of SP to the soma produced short-lasting (< 50 s) increases in [Ca2+]i that became gradually smaller, indicating receptor desensitization. Focal application of SP to a distal locus in a neurite produced a brief (12 s) increase in [Ca2+]i that travelled down the dendrite but did not spread into cell soma. Prolonged application of SP to these neurons caused the appearance of varicosities in their dendrites.
Collapse
Affiliation(s)
- J C Marvizón
- Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles 90095, USA
| | | | | | | |
Collapse
|
17
|
Linden GJ, McKinnell J, Shaw C, Lundy FT. Substance P and neurokinin A in gingival crevicular fluid in periodontal health and disease. J Clin Periodontol 1997; 24:799-803. [PMID: 9402500 DOI: 10.1111/j.1600-051x.1997.tb01192.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aims of the present study were to investigate whether the tachykinins substance P and neurokinin A were present in gingival crevicular fluid in both periodontal health and disease and to study the relationship with periodontal inflammation. Gingival crevicular fluid (GCF) was collected from a healthy, a gingivitis and a periodontitis site in 20 subjects with periodontitis and from a healthy site in 20 subjects without periodontitis. The volume of GCF was measured and each sample subsequently analysed for substance P and neurokinin A by radioimmunoassay. There were significantly increased levels of substance P-like immunoreactivity (SP-LI) and neurokinin A-like immunoreactivity (NKA-LI) in gingivitis and periodontitis sites compared with healthy sites. Both tachykinins were significantly elevated in periodontitis affected subjects, with significantly more tachykinin-like immunoreactivity at healthy sites in periodontitis affected compared with periodontally-healthy subjects. Despite the considerable individual variation in the levels of SP-LI and NKA-LI, both tachykinins were present at levels at which they could have biological activity. It is concluded that substance P and neurokinin A may have a rôle in the pathogenesis of periodontal disease and that further investigations could prove useful in clarifying the mechanisms through which neuropeptides could modulate periodontal health and disease.
Collapse
Affiliation(s)
- G J Linden
- Division of Restorative Dentistry (Periodontics), School of Clinical Dentistry, Queen's University, Northern Ireland, UK
| | | | | | | |
Collapse
|
18
|
Reynolds PN, Holmes MD, Scicchitano R. Role of tachykinins in bronchial hyper-responsiveness. Clin Exp Pharmacol Physiol 1997; 24:273-80. [PMID: 9131297 DOI: 10.1111/j.1440-1681.1997.tb01819.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Sensory afferent fibres mediate important protective reflexes in the lung. Small, unmyelinated C-fibre nerves have both sensory afferent and effector functions. C-fibres contain a number of neuropeptides, including the tachykinins, which have pro-inflammatory effects in the airways. Following stimulation with capsaicin and other stimuli, neuropeptides are released from the nerve endings, either directly or by axonal reflexes. 2. Important tachykinin effects include smooth muscle contraction, vasodilatation and oedema, mucus secretion and inflammatory cell activation. There are also trophic effects, including proliferation of fibroblasts, smooth muscle and epithelial cells. 3. Tachykinins mediate their effects by binding to G-proteinlinked receptors. Receptor-specific agonists and antagonists are available, which have helped clarify the effects of tachykinins. These agents may have therapeutic potential. 4. Tachykinins are degraded by the enzyme neutral endo-peptidase. 5. Studies in humans in vivo show an increase in airways resistance following challenge with tachykinins. There is some evidence for an increase in tachykinins and their receptors in airway inflammation, but this has not been found in all studies. A reduction in neutral endopeptidase has been seen in some animal models of airway inflammation, but this has not been shown in human disease. 6. Trials of tachykinin receptor antagonists in human asthma have begun, but it is too early to say what their therapeutic impact will be.
Collapse
Affiliation(s)
- P N Reynolds
- Department of Thoracic Medicine Lung Research Laboratory, Hanson Centre for Cancer Research, Royal Adelaide Hospital, Australia
| | | | | |
Collapse
|
19
|
Abstract
Tachykinins belong to an evolutionarily conserved family of peptide neurotransmitters. The mammalian tachykinins include substance P, neurokinin A and neurokinin B, which exert their effects by binding to specific receptors. These tachykinin receptors are divided into three types, designated NK1, NK2 and NK3, respectively. Tachykinin receptors have been cloned and contain seven segments spanning the cell membrane, indicating their inclusion in the G-protein-linked receptor family. The continued development of selective agonists and antagonists for each receptor has helped elucidate roles for these mediators, ranging from effects in the central nervous system to the perpetuation of the inflammatory response in the periphery. Various selective ligands have shown both inter- and intraspecies differences in binding potencies, indicating distinct binding sites in the tachykinin receptor. The interaction of tachykinin with its receptor activates Gq, which in turn activates phospholipase C to break down phosphatidyl inositol bisphosphate into inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 acts on specific receptors in the sarcoplasmic reticulum to release intracellular stores of Ca2+, while DAG acts via protein kinase C to open L-type calcium channels in the plasma membrane. The rise in intracellular [Ca2+] induces the tissue response. With an array of actions as diverse as that seen with tachykinins, there is scope for numerous therapeutic possibilities. With the development of potent, selective non-peptide antagonists, there could be potential benefits in the treatment of a variety of clinical conditions, including chronic pain, Parkinson's disease, Alzheimer's disease, depression, rheumatoid arthritis, irritable bowel syndrome and asthma.
Collapse
Affiliation(s)
- A M Khawaja
- National Heart and Lung Institute (Imperial College), London, U.K
| | | |
Collapse
|
20
|
Abstract
The main classes of transmembrane signaling receptor proteins are well conserved during evolution and are encountered in vertebrates as well as in invertebrates. All members of the G-protein-coupled receptor superfamily share a number of basic structural and functional characteristics. In both insects and mammals, this receptor class is involved in the perception and transduction of many important extracellular signals, including a great deal of paracrine, endocrine, and neuronal messengers and visual, olfactory and gustatory stimuli. Therefore, most of the receptor subclasses appear to have originated several hundred million years ago, before the divergence of the major animal Phyla took place. Nevertheless, many insect-specific molecular interactions are encountered and these could become interesting tools for future applications, e.g., in insect pest control. Insect cell lines are well suited for large-scale expression and characterization of cloned receptor genes. Furthermore, novel methods for the production of stably transformed insect cells may form a major breakthrough for insect signal transduction research.
Collapse
|
21
|
Wagner U, Fehmann HC, Bredenbröker D, Yu F, Barth PJ, von Wichert P. Galanin and somatostatin inhibition of neurokinin A and B induced airway mucus secretion in the rat. Life Sci 1995; 57:283-9. [PMID: 7541102 DOI: 10.1016/0024-3205(95)00271-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neurokinin A and B are present in neurons situated in lung and NK-1 receptors have been described on tracheal submucosal gland cells. In the present study we compared the ability of substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) to stimulate airway mucus secretion. Furthermore, we characterized the interaction of NKA and NKB with galanin and somatostatin. The rank order of the tachykinins to stimulate airway mucus secretion was SP > NKA > NKB suggesting that NK-1 receptors mediate these effects(EC50:SP: 50 nmol/l, NKA: 200 nmol/l, NKB: 400 nmol/l). Galanin and somatostatin were equally potent to inhibit NK-A and NK-B stimulated airway mucus release. These results suggest that NK-A and NK-B are potent stimulators of airway macromolecule secretion. Galanin and somatostatin potently inhibit these actions of the tachykinins. Therefore, airway mucus secretion is controlled by a complex network of several different mediators.
Collapse
Affiliation(s)
- U Wagner
- Department of Internal Medicine, Philipps-University of Marburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
For a long time research on the action of TKs on gastrointestinal tissue has been demonstrating the importance of the TKs as non-cholinergic stimulators of motility in most parts of the mammalian gastrointestinal tract. The past years witnessed the development of TK agonists and antagonists selective for the various receptor types, which prompted a wealth of new insight into the pharmacology and molecular biology of the TK receptors. This knowledge now allows a more specific elucidation of the role of TKs and their receptors in the various aspects of gastrointestinal motility, not only in normal tissue but also under pathological conditions.
Collapse
Affiliation(s)
- U Holzer-Petsche
- Department of Experimental and Clinical Pharmacology, Karl-Franzens-University, Graz, Austria
| |
Collapse
|
23
|
Wagner U, Fehmann HC, Bredenbröker D, Yu F, Barth PJ, von Wichert P. Galanin and somatostatin inhibition of substance P-induced airway mucus secretion in the rat. Neuropeptides 1995; 28:59-64. [PMID: 7538203 DOI: 10.1016/0143-4179(95)90075-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Substance P is present in several neurons innervating the lung. Tachykinin receptors are expressed on submucosal gland cells. Substance P is known to be a potent stimulator of airway mucus secretion. In the present study we characterized the effects of galanin and somatostatin on basal and substance P-induced mucus secretion. The stimulatory effect of substance P was concentration-dependent (100 pmol/l: 112%, 1 nmol/l: 120%, 10 nmol/l: 153%, 100 nmol/l: 223%, 1 mumol/l: 275%, 10 mumol/l: 172%) and was inhibited by galanin and somatostatin (1 mumol/l substance P: 277%; 1 mumol/l substance P + 1 mumol/l somatostatin: 190%, p < 0.01; 1 mumol/l substance P + 1 mumol/l galanin: 206%, p < 0.05). In the presence of lower concentrations of substance P 1 mumol/l somatostatin and 1 mumol/l galanin did not modify mucus secretion. Lower concentrations of galanin and somatostatin did not significantly change mucus secretion stimulated by 1 mumol/l substance P. Both, galanin and somatostatin at 1 mumol/l left basal airway mucus secretion unaltered. These data suggest that mucus secretion into airways is regulated by a complex network of peptidergic stimulators and inhibitors including substance P, somatostatin and galanin.
Collapse
Affiliation(s)
- U Wagner
- Department of Internal Medicine, Philipps-University of Marburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Cell Surface Receptors and the G Protein-Coupled Receptor Superfamily. G PROTEIN-COUPLED RECEPTORS 1995. [DOI: 10.1007/978-3-662-21930-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
|
26
|
Agro A, Stanisz AM. Neuroimmunomodulation: classical and non-classical cellular activation. ADVANCES IN NEUROIMMUNOLOGY 1995; 5:311-9. [PMID: 8748074 DOI: 10.1016/0960-5428(95)00018-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As neuroimmunologists, we are often faced with the fact that some substances can either enhance or inhibit particular immune/inflammatory cell functions. This 'duality' could only partially be explained by dose-dependency and the fact that in a variety of systems, heterogenous cell populations are commonly used. For example it has been repetitively shown that cell proliferation, immunoglobulin synthesis and NK (natural killer) activity could be enhanced, inhibited or not affected at all by such neuropeptides as somatostatin (SOM) or vasoactive intestinal peptide (VIP), depending on the experimental conditions. Even substance P (SP), which, in general, stimulates lymphocyte activity, can, under certain conditions, possess an inhibitory activity. These apparent discrepancies between various groups and experimental conditions met with a strong reservation among 'classical' immunologists as they questioned the true physiological role that neuro-immune interactions play in normal and disease states. However, upon a detailed analysis of the data, it become obvious why such discrepancies abounded. Not only are we comparing totally different responses in different species, but almost always we compare different experimental conditions. In lieu of this, the reproducibility of the experiments within the same laboratory is in fact very high. One fundamental and striking observation is the fact that at the level of a homogeneous cell population, a differential response could be evoked by the same neuropeptide over a range of concentrations. For the purpose of this brief report we will focus on the cellular responses to the neuropeptide substance P and we will try to illustrate why such differential responses are possible. Some of the physiological data relating to the effects of SP on cell function will be discussed. This will be followed by a synopsis of SP receptor mechanisms on effector cells and finally the mechanism by which SP activates secondary messenger systems in these cells.
Collapse
Affiliation(s)
- A Agro
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|