1
|
Mikami A, Erande N, Matsuda S, Kel'in A, Woods LB, Chickering T, Pallan PS, Schlegel MK, Zlatev I, Egli M, Manoharan M. Synthesis, chirality-dependent conformational and biological properties of siRNAs containing 5'-(R)- and 5'-(S)-C-methyl-guanosine. Nucleic Acids Res 2020; 48:10101-10124. [PMID: 32990754 PMCID: PMC7544225 DOI: 10.1093/nar/gkaa750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Various chemical modifications have been identified that enhance potency of small interfering RNAs (siRNAs) and that reduce off-target effects, immune stimulation, and toxicities of metabolites of these therapeutic agents. We previously described 5′-C-methyl pyrimidine nucleotides also modified at the 2′ position of the sugar. Here, we describe the synthesis of 2′-position unmodified 5′-(R)- and 5′-(S)-C-methyl guanosine and evaluation of these nucleotides in the context of siRNA. The (R) isomer provided protection from 5′ exonuclease and the (S) isomer provided protection from 3′ exonuclease in the context of a terminally modified oligonucleotide. siRNA potency was maintained when these modifications were incorporated at the tested positions of sense and antisense strands. Moreover, the corresponding 5′ triphosphates were not substrates for mitochondrial DNA polymerase. Models generated based on crystal structures of 5′ and 3′ exonuclease oligonucleotide complexes with 5′-(R)- and 5′-(S)-C-methyl substituents attached to the 5′- and 3′-terminal nucleotides, respectively, provided insight into the origins of the observed protections. Structural properties of 5′-(R)-C-methyl guanosine incorporated into an RNA octamer were analysed by X-ray crystallography, and the structure explains the loss in duplex thermal stability for the (R) isomer compared with the (S) isomer. Finally, the effect of 5′-C-methylation on endoribonuclease activity has been explained.
Collapse
Affiliation(s)
- Atsushi Mikami
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Namrata Erande
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Alexander Kel'in
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Lauren Blair Woods
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Tyler Chickering
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Pradeep S Pallan
- Department of Biochemistry Vanderbilt University, School of Medicine Nashville, TN 37232, USA
| | - Mark K Schlegel
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Martin Egli
- Department of Biochemistry Vanderbilt University, School of Medicine Nashville, TN 37232, USA
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
2
|
Shen W, De Hoyos CL, Sun H, Vickers TA, Liang XH, Crooke ST. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res 2019; 46:2204-2217. [PMID: 29390093 PMCID: PMC5861398 DOI: 10.1093/nar/gky060] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/23/2018] [Indexed: 01/06/2023] Open
Abstract
We reported previously that a 2′ fluoro-modified (2′ F) phosphorothioate (PS) antisense oligonucleotides (ASOs) with 5–10–5 gapmer configuration interacted with proteins from Drosophila behavior/human splicing (DBHS) family with higher affinity than PS-ASOs modified with 2′-O-(2-methoxyethyl) (2′ MOE) or 2′,4′-constrained 2′-O-ethyl (cEt) did. Rapid degradation of these proteins and cytotoxicity were observed in cells treated with 2′ F PS-ASO. Here, we report that 2′ F gapmer PS-ASOs of different sequences caused reduction in levels of DBHS proteins and hepatotoxicity in mice. 2′ F PS-ASOs induced activation of the P53 pathway and downregulation of metabolic pathways. Altered levels of RNA and protein markers for hepatotoxicity, liver necrosis, and apoptosis were observed as early as 24 to 48 hours after a single administration of the 2′ F PS-ASO. The observed effects were not likely due to the hybridization-dependent RNase H1 cleavage of on- or potential off-target RNAs, or due to potential toxicity of 2′ F nucleoside metabolites. Instead, we found that 2′ F PS-ASO associated with more intra-cellular proteins including proteins from DBHS family. Our results suggest that protein-binding correlates positively with the 2′ F modification-dependent loss of DBHS proteins and the toxicity of gapmer 2′ F PS-ASO in vivo.
Collapse
Affiliation(s)
- Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Cheryl L De Hoyos
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Timothy A Vickers
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
3
|
Peng CG, Damha MJ. Probing DNA polymerase activity with stereoisomeric 2′-fluoro-β-D-arabinose (2′F-araNTPs) and 2′-fluoro-β-D-ribose (2′F-rNTPs) nucleoside 5′-triphosphates. CAN J CHEM 2008. [DOI: 10.1139/v08-089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
2′-Deoxy-2′-fluoro-β-D-ribonucleosides (2′F-rN) and 2′-deoxy-2′-fluoro-β-D-arabinonucleosides (2′F-araN) differ solely in the stereochemistry at the 2′-carbon of the furanose sugar ring. 2′F-rN 5′-triphosphates (2′F-rNTPs) are among the most commonly used sugar-modified nucleoside 5′-triphosphates (NTPs) for in vitro selection; however, the epimeric 2′F-araN 5′-triphosphates (2′F-araNTPs) have only recently been applied to polymerase-directed biosynthesis [C.G. Peng and M.J. Damha. J. Am. Chem. Soc. 129, 5310 (2007)]. The present study describes primer extension assays that compare, for the first time, the incorporation efficiency of the two isomeric NTPs, namely, 2′F-araNTPs or 2′F-rNTPs, by four DNA polymerases [Deep Vent (exo-), 9°Nm, HIV-1 RT, and MMLV-RT]. Under the conditions used, incorporation of 2′F-araTTP proceeded more efficiently relative to 2′F-rUTP, while the incorporation of 2′F-araCTP is comparable or slightly less efficient than that observed with 2′F-rCTP. Interestingly, these preferences were observed for all four of the DNA polymerases tested. Unexpected differences in NTP incorporation were observed for 2′F-rCTP vs. rCTP. Despite their seemingly similar conformation, they behaved striking differently in the in vitro polymerization assays. 2′F-rCTP is a much better substrate than the native counterpart (rCTP), an observation first made with human DNA polymerases [F.C. Richardson, R.D. Kuchta, A. Mazurkiewicz, K.A. Richardson. Biochem. Pharmacol. 59, 1045 (2000)]. In contrast, 2′F-rUTP behaved like rUTP, providing poor yield of full-length products. Taken together, this indicates that 2′F-rCTP is very unusual with regard to enzyme/substrate recognition; an observation that can be exploited for the production of DNA oligomers enriched with both ribose and arabinose modifications. These findings are timely given the significant interest and growing need to develop chemically modified oligonucleotides for therapeutic and diagnostic research. By examining the structure-activity relationship (SAR) of the ribose and arabinose sugar, this study furthers our understanding of how the nature of the 2′ substituent (e.g., α vs. β; F vs. OH) and the heterocyclic base affect NTP selection (specificity) by DNA polymerases.Key words: 2′F-rNTPs, 2′F-araNTPs, DNA polymerases, biosynthesis, modified nucleoside triphosphates.
Collapse
|
4
|
Richardson FC, Kuchta RD, Mazurkiewicz A, Richardson KA. Polymerization of 2'-fluoro- and 2'-O-methyl-dNTPs by human DNA polymerase alpha, polymerase gamma, and primase. Biochem Pharmacol 2000; 59:1045-52. [PMID: 10704933 DOI: 10.1016/s0006-2952(99)00414-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studies were undertaken to assess the ability of human polymerase alpha (pol alpha) and polymerase gamma (pol gamma) to incorporate 2'-fluoro- and 2'-O-methyldeoxynucleotides into DNA. In vitro DNA synthesis systems were used to detect incorporation and determine K(m) and V(max) for 2'-FdATP, 2'-FdUTP, 2'-FdCTP, 2'-FdGTP, 2'-O-MedATP, 2'-O-MedCTP, 2'-O-MedGTP, 2'-O-MedUTP, dUTP, UTP, and FIAUTP, in addition to normal deoxynucleotides. Pol alpha incorporated all 2'-FdNTPs except 2'-FdATP, but not 2'-O-MedNTPs. Pol gamma incorporated all 2'-FdNTPs, but not 2'-O-MedNTPs. In general, 2'-fluorine substitution decreased V(max)/K(m) 2'-FdUTP. Because kinetics of insertion of pol alpha can be affected by the nature of the primer, we examined the ability of pol alpha to polymerize 2'-fluoro- and 2'-O-MedATP and dGTP when elongating a primer synthesized by DNA primase. Under these conditions, both 2'-FdATP and 2'-FdGTP were polymerized, but 2'-O-MedATP and 2'-O-MedGTP were not. Primase alone could not readily polymerize these analogs into RNA primers. Previous studies showed that 2'-deoxy-2'-fluorocytosine (2'-FdC) is incorporated by several non-human DNA polymerases. The current studies showed that human polymerases can polymerize numerous 2'-FdNTPs but cannot polymerize 2'-O-MedNTPs.
Collapse
|
5
|
Abstract
Inhibitory and substrate properties of analogs of deoxyribonucleoside triphosphates toward DNA polymerases are reviewed. A general introduction is followed by a description of DNA polymerases and the reaction that they catalyze, and sites at which substrate analogs may inhibit them. Effects of modifications in the major family of compounds, nucleotide derivatives, at the base, sugar and triphosphate portions of the molecule, are summarized with respect to retention of substrate properties and generation of inhibitory properties. Structure-activity relationships and the basis of selectivity in the second family of compounds, deoxyribonucleotide mimics, are also presented. Conclusions are drawn regarding the structural basis of inhibitor selectivity and mechanism, relationship between in vitro and in vivo effects of inhibitors, and the promise of inhibitors as probes for study of active sites of DNA polymerases.
Collapse
Affiliation(s)
- G E Wright
- Department of Pharmacology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
6
|
Wohlrab F, Jamieson AT, Hay J, Mengel R, Guschlbauer W. The effect of 2'-fluoro-2'-deoxycytidine on herpes virus growth. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 824:233-42. [PMID: 2982405 DOI: 10.1016/0167-4781(85)90053-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of 2'-fluoro-2'-deoxycytidine (dCfl) on the growth of certain viruses of the herpes type was investigated. It is shown that the compound has considerable anti-viral activity against HSV-I, HSV-II, pseudorabies virus and equine abortion virus. It has an effect comparable to that of araC and is more efficient than br5dC, but less so than acyclovir. Experiments with thymidine kinase-negative strains of HSV-I indicated that dCfl was phosphorylated by the viral kinase, and its Km appears to be low and close to that of thymidine. Density gradient centrifugation enabled us to show that dCfl was incorporated into cellular and viral DNA and RNA. The cytotoxic activity of dCfl appears to be about 10-times smaller than that of araC. Removal of the nucleoside analog, washing and replacement with deoxycytidine reversed this effect, indicating rather a cytostatic than cytotoxic effect.
Collapse
|