1
|
Ma L, Zhang X, Li C, Ma X, Zhao X, Zhao X, Zhang P, Zhu X. A U2 snRNP-specific protein, U2A', is involved in stress response and drug resistance in Cryptococcus deneoformans. Biochimie 2024; 220:179-187. [PMID: 37806618 DOI: 10.1016/j.biochi.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
The spliceosome, a large complex containing five conserved small ribonucleoprotein particles (snRNPs) U1, U2, U4, U5 and U6, plays important roles in precursor messenger RNA splicing. However, the function and mechanism of the spliceosomal snRNPs have not been thoroughly studied in the pathogenic yeast Cryptococcus deneoformans. In this study, we identified a U2A' homologous protein as a component of the cryptococcal U2 snRNP, which was encoded by the LEA1 gene. Using the "suicide" CRISPR-Cas9 tool, we deleted the LEA1 gene in C. deneoformans JEC21 strain and obtained the disruption mutant lea1Δ. The mutant showed a hypersensitivity to 0.03 % sodium dodecyl sulfate, as well as disordered chitin distribution in cell wall observed with Calcofluor White staining, which collectively illustrated the function of U2A' in maintenance of cell wall integrity. Further examination showed that lea1Δ displayed a decreased tolerance to lower or elevated temperatures, osmotic pressure and oxidative stress. The lea1Δ still exhibited susceptibility to geneticin and 5-flucytosine, and increased resistance to ketoconazole. Even, the mutant had a reduced capsule, and the virulence of lea1Δ in the Galleria mellonella model was decreased. Our results indicate that the U2A'-mediated RNA-processing has a particular role in the processing of gene products involved in response to stresses and virulence.
Collapse
Affiliation(s)
- Lan Ma
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xueqing Zhang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chenxi Li
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaoyu Ma
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xuan Zhao
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xueru Zhao
- Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ping Zhang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Simoes-Barbosa A, Pinheiro J. Unconventional features in the transcription and processing of spliceosomal small nuclear RNAs in the protozoan parasite Trichomonas vaginalis. Int J Parasitol 2024; 54:257-266. [PMID: 38452964 DOI: 10.1016/j.ijpara.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Trichomonas vaginalis is a medically important protozoan parasite, and a deep-branching, evolutionarily divergent unicellular eukaryote that has conserved several key features of eukaryotic gene expression. Trichomonas vaginalis possesses a metazoan/plant-like capping apparatus, mRNAs with a cap 1 structure and spliceosomes containing the five small nuclear RNAs (snRNAs). However, in contrast to metazoan and plant snRNAs, the structurally conserved T. vaginalis snRNAs were initially identified as lacking the canonical guanosine cap nucleotide. To explain this unusual condition, we sought to investigate transcriptional and processing features of the spliceosomal snRNAs in this protist. Here, we show that T. vaginalis spliceosomal snRNA genes mostly lack typical eukaryotic promoters. In contrast to other eukaryotes, the putative TATA box in the T. vaginalis U6 snRNA gene was found to be dispensable for transcription or RNA polymerase selectivity. Moreover, U6 transcription in T. vaginalis was virtually insensitive to tagetitoxin compared with other cellular transcripts produced by the same RNA polymerase III. Most important and unexpected, snRNA transcription in T. vaginalis appears to bypass capping as we show that these transcripts retain their original 5'-triphosphate groups. In conclusion, transcription and processing of spliceosomal snRNAs in T. vaginalis deviate considerably from the conventional rules of other eukaryotes.
Collapse
Affiliation(s)
- Augusto Simoes-Barbosa
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand.
| | - Jully Pinheiro
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Yang XC, Desotell A, Lin MH, Paige AS, Malinowska A, Sun Y, Aik WS, Dadlez M, Tong L, Dominski Z. In vitro methylation of the U7 snRNP subunits Lsm11 and SmE by the PRMT5/MEP50/pICln methylosome. RNA (NEW YORK, N.Y.) 2023; 29:1673-1690. [PMID: 37562960 PMCID: PMC10578488 DOI: 10.1261/rna.079709.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023]
Abstract
U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.
Collapse
Affiliation(s)
- Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Anthony Desotell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Andrew S Paige
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Agata Malinowska
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yadong Sun
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Michał Dadlez
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Warsaw University, 02-106 Warsaw, Poland
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
4
|
Inguscio CR, Lacavalla MA, Cisterna B, Zancanaro C, Malatesta M. Physical Training Chronically Stimulates the Motor Neuron Cell Nucleus in the Ts65Dn Mouse, a Model of Down Syndrome. Cells 2023; 12:1488. [PMID: 37296609 PMCID: PMC10252427 DOI: 10.3390/cells12111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Down syndrome (DS) is a genetically-based disease based on the trisomy of chromosome 21 (Hsa21). DS is characterized by intellectual disability in association with several pathological traits among which early aging and altered motor coordination are prominent. Physical training or passive exercise were found to be useful in counteracting motor impairment in DS subjects. In this study we used the Ts65Dn mouse, a widely accepted animal model of DS, to investigate the ultrastructural architecture of the medullary motor neuron cell nucleus taken as marker of the cell functional state. Using transmission electron microscopy, ultrastructural morphometry, and immunocytochemistry we carried out a detailed investigation of possible trisomy-related alteration(s) of nuclear constituents, which are known to vary their amount and distribution as a function of nuclear activity, as well as the effect of adapted physical training upon them. Results demonstrated that trisomy per se affects nuclear constituents to a limited extent; however, adapted physical training is able to chronically stimulate pre-mRNA transcription and processing activity in motor neuron nuclei of trisomic mice, although to a lesser extent than in their euploid mates. These findings are a step towards understanding the mechanisms underlying the positive effect of physical activity in DS.
Collapse
Affiliation(s)
| | | | | | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (C.R.I.); (M.A.L.); (B.C.); (M.M.)
| | | |
Collapse
|
5
|
Yang XC, Desotell A, Lin MH, Paige AS, Malinowska A, Sun Y, Aik WS, Dadlez M, Tong L, Dominski Z. In vitro methylation of the U7 snRNP subunits Lsm11 and SmE by the PRMT5/MEP50/pICln methylosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540203. [PMID: 37215023 PMCID: PMC10197641 DOI: 10.1101/2023.05.10.540203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
U7 snRNP is a multi-subunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50 and pICln known to methylate arginines in the C-terminal regions of the Sm proteins B, D1 and D3 during the spliceosomal Sm ring assembly. Both biochemical and Cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the N-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an N-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.
Collapse
|
6
|
Mabonga L, Masamba P, Kappo AP. Inhibitory potential of a benzoxazole derivative, 4FI against SNRPG∼RING finger domain protein complex as a lead compound in the discovery of anti-cancer drugs: A molecular dynamics simulation approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Role and Perspective of Molecular Simulation-Based Investigation of RNA-Ligand Interaction: From Small Molecules and Peptides to Photoswitchable RNA Binding. Molecules 2021; 26:molecules26113384. [PMID: 34205049 PMCID: PMC8199858 DOI: 10.3390/molecules26113384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant RNA–protein complexes are formed in a variety of diseases. Identifying the ligands that interfere with their formation is a valuable therapeutic strategy. Molecular simulation, validated against experimental data, has recently emerged as a powerful tool to predict both the pose and energetics of such ligands. Thus, the use of molecular simulation may provide insight into aberrant molecular interactions in diseases and, from a drug design perspective, may allow for the employment of less wet lab resources than traditional in vitro compound screening approaches. With regard to basic research questions, molecular simulation can support the understanding of the exact molecular interaction and binding mode. Here, we focus on examples targeting RNA–protein complexes in neurodegenerative diseases and viral infections. These examples illustrate that the strategy is rather general and could be applied to different pharmacologically relevant approaches. We close this study by outlining one of these approaches, namely the light-controllable association of small molecules with RNA, as an emerging approach in RNA-targeting therapy.
Collapse
|
8
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|
9
|
Malatesta M, Costanzo M, Cisterna B, Zancanaro C. Satellite Cells in Skeletal Muscle of the Hibernating Dormouse, a Natural Model of Quiescence and Re-Activation: Focus on the Cell Nucleus. Cells 2020; 9:cells9041050. [PMID: 32340154 PMCID: PMC7226265 DOI: 10.3390/cells9041050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Satellite cells (SCs) participate in skeletal muscle plasticity/regeneration. Activation of SCs implies that nuclear changes underpin a new functional status. In hibernating mammals, periods of reduced metabolic activity alternate with arousals and resumption of bodily functions, thereby leading to repeated cell deactivation and reactivation. In hibernation, muscle fibers are preserved despite long periods of immobilization. The structural and functional characteristics of SC nuclei during hibernation have not been investigated yet. Using ultrastructural and immunocytochemical analysis, we found that the SCs of the hibernating edible dormouse, Glis glis, did not show apoptosis or necrosis. Moreover, their nuclei were typical of quiescent cells, showing similar amounts and distributions of heterochromatin, pre-mRNA transcription and processing factors, as well as paired box protein 7 (Pax7) and the myogenic differentiation transcription factor D (MyoD), as in euthermia. However, the finding of accumulated perichromatin granules (i.e., sites of storage/transport of spliced pre-mRNA) in SC nuclei of hibernating dormice suggested slowing down of the nucleus-to-cytoplasm transport. We conclude that during hibernation, SC nuclei maintain similar transcription and splicing activity as in euthermia, indicating an unmodified status during immobilization and hypometabolism. Skeletal muscle preservation during hibernation is presumably not due to SC activation, but rather to the maintenance of some functional activity in myofibers that is able to counteract muscle wasting.
Collapse
Affiliation(s)
- Manuela Malatesta
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8 I-37134 Verona, Italy; (M.M.); (M.C.); (C.Z.)
| | - Manuela Costanzo
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8 I-37134 Verona, Italy; (M.M.); (M.C.); (C.Z.)
| | - Barbara Cisterna
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8 I-37134 Verona, Italy; (M.M.); (M.C.); (C.Z.)
- Correspondence:
| | - Carlo Zancanaro
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8 I-37134 Verona, Italy; (M.M.); (M.C.); (C.Z.)
| |
Collapse
|
10
|
Li X, Chen Y, Zhang S, Su L, Xu X, Chen X, Lai Z, Lin Y. Genome-wide identification and expression analyses of Sm genes reveal their involvement in early somatic embryogenesis in Dimocarpus longan Lour. PLoS One 2020; 15:e0230795. [PMID: 32243451 PMCID: PMC7122786 DOI: 10.1371/journal.pone.0230795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/08/2020] [Indexed: 01/25/2023] Open
Abstract
The Sm proteins are a conserved protein family with Sm motifs. The family includes Sm and Sm-like proteins, which play important roles in pre-mRNA splicing. Most research on the Sm proteins have been conducted in herbaceous plants, and less in woody plants such as Dimocarpus longan (longan). And the embryo development status significantly affects the quality and yield of longan. In this study, we conducted a genome-wide analysis of longan Sm genes (DlSm) to clarify their roles during somatic embryogenesis (SE) and identified 29 Sm genes. Phylogenetic analysis deduced longan Sm proteins clustered into 17 phylogenetic groups with the homologous Sm proteins of Arabidopsis thaliana. We also analyzed the gene structures, motif compositions, and conserved domains of the longan Sm proteins. The promoter sequences of the DlSm genes contained many light, endosperm development, hormone, and temperature response elements, which suggested their possible functions. In the non-embryogenic callus(NEC) and during early SE in longan, the alternative splicing(AS) events of DlSm genes indicated that these genes may influence SE development by changing gene structures and sequences. The kinetin(KT) hormone, and blue and white light treatments affected the differentiation and growth of longan embryonic callus(EC) probably by affecting the AS events of DlSm genes. Expression profiles showed the possible functional divergence among Sm genes, and different hormones and light qualities affected their expression levels. The expression trends of the DlSm genes determined by RNA sequencing as fragments per kilobase of exon model per million mapped reads (FPKM) and by real-time quantitative PCR(qRT-PCR) during early SE in longan showed that the expression of the DlSm genes was affected by the growth and differentiation of longan SE, and decreased as the somatic embryo differentiation progressed. The results will contributed to understanding the longan Sm gene family and provide a basis for future functional validation studies.
Collapse
Affiliation(s)
- Xue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liyao Su
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoping Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohui Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
11
|
Hollander D, Naftelberg S, Lev-Maor G, Kornblihtt AR, Ast G. How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing? Trends Genet 2016; 32:596-606. [PMID: 27507607 DOI: 10.1016/j.tig.2016.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 11/19/2022]
Abstract
The splice sites (SSs) delimiting an intron are brought together in the earliest step of spliceosome assembly yet it remains obscure how SS pairing occurs, especially when introns are thousands of nucleotides long. Splicing occurs in vivo in mammals within minutes regardless of intron length, implying that SS pairing can instantly follow transcription. Also, factors required for SS pairing, such as the U1 small nuclear ribonucleoprotein (snRNP) and U2AF65, associate with RNA polymerase II (RNAPII), while nucleosomes preferentially bind exonic sequences and associate with U2 snRNP. Based on recent publications, we assume that the 5' SS-bound U1 snRNP can remain tethered to RNAPII until complete synthesis of the downstream intron and exon. An additional U1 snRNP then binds the downstream 5' SS, whereas the RNAPII-associated U2AF65 binds the upstream 3' SS to facilitate SS pairing along with exon definition. Next, the nucleosome-associated U2 snRNP binds the branch site to advance splicing complex assembly. This may explain how RNAPII and chromatin are involved in spliceosome assembly and how introns lengthened during evolution with a relatively minimal compromise in splicing.
Collapse
Affiliation(s)
- Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Alberto R Kornblihtt
- IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
12
|
Pelz JP, Schindelin H, van Pee K, Kuper J, Kisker C, Diederichs K, Fischer U, Grimm C. Crystallizing the 6S and 8S spliceosomal assembly intermediates: a complex project. ACTA ACUST UNITED AC 2015; 71:2040-53. [PMID: 26457428 DOI: 10.1107/s1399004715014832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022]
Abstract
The small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/6 and U5 are major constituents of the pre-mRNA processing spliceosome. They contain a common RNP core that is formed by the ordered binding of Sm proteins onto the single-stranded Sm site of the snRNA. Although spontaneous in vitro, assembly of the Sm core requires assistance from the PRMT5 and SMN complexes in vivo. To gain insight into the key steps of the assembly process, the crystal structures of two assembly intermediates of U snRNPs termed the 6S and 8S complexes have recently been reported. These multimeric protein complexes could only be crystallized after the application of various rescue strategies. The developed strategy leading to the crystallization and solution of the 8S crystal structure was subsequently used to guide a combination of rational crystal-contact optimization with surface-entropy reduction of crystals of the related 6S complex. Conversely, the resulting high-resolution 6S crystal structure was used during the restrained refinement of the 8S crystal structure.
Collapse
Affiliation(s)
- Jann Patrick Pelz
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hermann Schindelin
- Rudolf-Virchow-Zentrum, DFG Research Centre for Experimental Medicine, University of Würzburg, Josef-Schneider-Strasse 2/Haus D15, 97080 Würzburg, Germany
| | - Katharina van Pee
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jochen Kuper
- Rudolf-Virchow-Zentrum, DFG Research Centre for Experimental Medicine, University of Würzburg, Josef-Schneider-Strasse 2/Haus D15, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf-Virchow-Zentrum, DFG Research Centre for Experimental Medicine, University of Würzburg, Josef-Schneider-Strasse 2/Haus D15, 97080 Würzburg, Germany
| | - Kay Diederichs
- Protein Crystallography and Molecular Bioinformatics, University of Konstanz, 78457 Konstanz, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
13
|
Abstract
As an experimentally well-studied nuclear-retained RNA, CTN-RNA plays a significant role in many aspects of mouse cationic amino acid transporter 2 (mCAT2) gene expression, but relevant dynamical mechanisms have not been completely clarified. Here we first show that CTN-RNA nuclear retention can not only reduce pre-mCAT2 RNA noise but also mediate its coding partner noise. Then, by collecting experimental observations, we conjecture a heterodimer formed by two proteins, p54(nrb) and PSP1, named p54(nrb)-PSP1, by which CTN-RNA can positively regulate the expression of nuclear mCAT2 RNA. Therefore, we construct a sequestration model at the molecular level. By analyzing the dynamics of this model system, we demonstrate why most nuclear-retained CTN-RNAs stabilize at the periphery of paraspeckles, how CTN-RNA regulates its protein-coding partner, and how the mCAT2 gene can maintain a stable expression. In particular, we obtain results that can easily explain the experimental phenomena observed in two cases, namely, when cells are stressed and unstressed. Our entire analysis not only reveals that CTN-RNA nuclear retention may play an essential role in indirectly preventing diseases but also lays the foundation for further study of other members of the nuclear-regulatory RNA family with more complicated molecular mechanisms.
Collapse
Affiliation(s)
- Qianliang Wang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | | |
Collapse
|
14
|
Weichenrieder O. RNA binding by Hfq and ring-forming (L)Sm proteins: a trade-off between optimal sequence readout and RNA backbone conformation. RNA Biol 2014; 11:537-49. [PMID: 24828406 PMCID: PMC4152361 DOI: 10.4161/rna.29144] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The eukaryotic Sm and the Sm-like (LSm) proteins form a large family that includes LSm proteins in archaea and the Hfq proteins in bacteria. Commonly referred to as the (L)Sm protein family, the various members play important roles in RNA processing, decay, and riboregulation. Particularly interesting from a structural point of view is their ability to assemble into doughnut-shaped rings, which allows them to bind preferentially the uridine-rich 3′-end of RNA oligonucleotides. With an emphasis on Hfq, this review compares the RNA-binding properties of the various (L)Sm rings that were recently co-crystallized with RNA substrates, and it discusses how these properties relate to physiological function.
Collapse
Affiliation(s)
- Oliver Weichenrieder
- Department of Biochemistry; Max Planck Institute for Developmental Biology; Tübingen, Germany
| |
Collapse
|
15
|
Abstract
RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.
Collapse
|
16
|
Murina VN, Nikulin AD. RNA-binding Sm-like proteins of bacteria and archaea. similarity and difference in structure and function. BIOCHEMISTRY (MOSCOW) 2012; 76:1434-49. [PMID: 22339597 DOI: 10.1134/s0006297911130050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins play a significant role in many processes of RNA metabolism, such as splicing and processing, regulation of DNA transcription and RNA translation, etc. Among the great number of RNA-binding proteins, so-called RNA-chaperones occupy an individual niche; they were named for their ability to assist RNA molecules to gain their accurate native spatial structure. When binding with RNAs, they possess the capability of altering (melting) their secondary structure, thus providing a possibility for formation of necessary intramolecular contacts between individual RNA sites for proper folding. These proteins also have an additional helper function in RNA-RNA and RNA-protein interactions. Members of such class of the RNA-binding protein family are Sm and Sm-like proteins (Sm-Like, LSm). The presence of these proteins in bacteria, archaea, and eukaryotes emphasizes their biological significance. These proteins are now attractive for researchers because of their implication in many processes associated with RNAs in bacterial and archaeal cells. This review is focused on a comparison of architecture of bacterial and archaeal LSm proteins and their interaction with different RNA molecules.
Collapse
Affiliation(s)
- V N Murina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
17
|
Malatesta M, Giagnacovo M, Renna LV, Cardani R, Meola G, Pellicciari C. Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence. Eur J Histochem 2011; 55:e26. [PMID: 22073373 PMCID: PMC3203470 DOI: 10.4081/ejh.2011.e26] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/05/2011] [Indexed: 01/19/2023] Open
Abstract
Myotonic dystrophy type 2 (DM2) is an autosomal dominant disorder caused by the expansion of the tetranucleotidic repeat (CCTG)n in the first intron of the Zinc Finger Protein-9 gene. In DM2 tissues, the expanded mutant transcripts accumulate in nuclear focal aggregates where splicing factors are sequestered, thus affecting mRNA processing. Interestingly, the ultrastructural alterations in the splicing machinery observed in the myonuclei of DM2 skeletal muscles are reminiscent of the nuclear changes occurring in age-related muscle atrophy. Here, we investigated in vitro structural and functional features of satellite cell-derived myoblasts from biceps brachii, in the attempt to investigate cell senescence indices in DM2 patients by ultrastructural cytochemistry. We observed that in satellite cell-derived DM2 myoblasts, cell-senescence alterations such as cytoplasmic vacuolization, reduction of the proteosynthetic apparatus, accumulation of heterochromatin and impairment of the pre-mRNA maturation pathways occur earlier than in myoblasts from healthy patients. These results, together with preliminary in vitro observations on the early onset of defective structural features in DM2 myoblast derived-myotubes, suggest that the regeneration capability of DM2 satellite cells may be impaired, thus contributing to the muscular dystrophy in DM2 patients.
Collapse
Affiliation(s)
- M Malatesta
- Dipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e Motorie, Sezione di Anatomia e Istologia, University of Verona, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Malatesta M, Giagnacovo M, Cardani R, Meola G, Pellicciari C. RNA processing is altered in skeletal muscle nuclei of patients affected by myotonic dystrophy. Histochem Cell Biol 2011; 135:419-25. [PMID: 21387185 DOI: 10.1007/s00418-011-0797-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 01/07/2023]
Abstract
Myotonic dystrophies (DMs) are characterised by highly variable clinical manifestations consisting of muscle weakness and atrophy, and a wide spectrum of extramuscular manifestations. In both DM1 and DM2 forms, expanded nucleotide sequences cause the accumulation of mutant transcripts in the nucleus, thus deregulating the function of some RNA-binding proteins and providing a plausible explanation for the multifactorial phenotype of DM patients. However, at the skeletal muscle level, no mechanistic explanation for the muscle wasting has so far been proposed. We therefore performed a study in situ by immunoelectron microscopy on biceps brachii biopsies from DM1, DM2 and healthy subjects, providing the first ultrastructural evidence on the distribution of some nuclear ribonucleoprotein (RNP)-containing structures and molecular factors involved in pre-mRNA transcription and maturation in dystrophic myonuclei. Our results demonstrated an accumulation of splicing and cleavage factors in myonuclei of both DM1 and DM2 patients, suggesting an impairment of post-transcriptional pre-mRNA pathways. The transcription of the expanded sequences in DM myonuclei would therefore hamper functionality of the whole splicing machinery, slowing down the intranuclear molecular trafficking; this would reduce the capability of myonuclei to respond to anabolic stimuli thus contributing to muscle wasting.
Collapse
Affiliation(s)
- Manuela Malatesta
- Dipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e Motorie, Sezione di Anatomia e Istologia, Università di Verona, Verona, Italy
| | | | | | | | | |
Collapse
|
19
|
Guarneri F, Guarneri B, Borgia F, Guarneri C. Potential role of molecular mimicry between human U1-70 kDa and fungal proteins in the development of T-cell mediated anti-U1-70 kDa autoimmunity. Immunopharmacol Immunotoxicol 2011; 33:620-5. [PMID: 21348812 DOI: 10.3109/08923973.2011.553722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Molecular mimicry between human and microbial antigens is a possible trigger of autoimmunity. The possible role of this mechanism in the onset of autoimmunity against the human autoantigen U1-70 kDa, typical of mixed connective tissue disease, is not fully elucidated. OBJECTIVE We aimed to identify microbial proteins highly similar to U1-70 kDa and potentially triggering anti-U1-70 kDa autoimmunity. MATERIALS AND METHODS We compared in silico the amino acid sequence of human U1-70 kDa and those of all the sequenced fungal, viral and bacterial proteins. RESULTS Human U1-70 kDa shares highly significant (E<10(-20)) amino acid sequence homology, spanning a segment containing T-cell epitopes, with 13 fungal (but no viral or bacterial) proteins, belonging to human pathogens. Nine of these proteins include the amino acid sequence VLVDVERGRTV, identical to the most frequent U1-70 kDa T-cell epitope in anti-U1-70 kDa positive patients, and sequences highly similar to the epitope DAFKTLFVARVN (identical residues or conservative residue substitutions in positions crucial for epitope binding). DISCUSSION AND CONCLUSION Cross-reactivity between human U1-70 kDa and microbial proteins was demonstrated for B-cell epitopes, but never investigated before for T-cell epitopes. Our data identify some fungal proteins as possible triggers of anti-U1-70 kDa autoimmunity via molecular mimicry. Research in this field could improve the understanding of the mechanisms leading to anti-U1-70 kDa autoimmunity, with potential consequences on prevention.
Collapse
Affiliation(s)
- F Guarneri
- Department of Territorial Social Medicine, Section of Dermatology, University of Messina, Messina, Italy.
| | | | | | | |
Collapse
|
20
|
SVM based prediction of RNA-binding proteins using binding residues and evolutionary information. J Mol Recognit 2011; 24:303-13. [DOI: 10.1002/jmr.1061] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Bronzoni RVM, Madrid MCFS, Duarte DVB, Pellegrini VOA, Pacca CC, Carmo ACV, Zanelli CF, Valentini SR, Santacruz-Pérez C, Barbosa JARG, Lutz CS, Rahal P, Nogueira ML. The small nuclear ribonucleoprotein U1A interacts with NS5 from yellow fever virus. Arch Virol 2011; 156:931-8. [PMID: 21298455 DOI: 10.1007/s00705-011-0927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
The flavivirus NS5 protein is one of the most important proteins of the replication complex, and cellular proteins can interact with it. This study shows for the first time that the yellow fever virus (YFV) NS5 protein is able to interact with U1A, a protein involved in splicing and polyadenylation. We confirmed this interaction by GST-pulldown assay and by co-immunoprecipitation in YFV-infected cells. A region between amino acids 368 and 448 was identified as the site of interaction of the NS5 protein with U1A. This region was conserved among some flaviviruses of medical importance. The implications of this interaction for flavivirus replication are discussed.
Collapse
Affiliation(s)
- Roberta V M Bronzoni
- Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de Rio Preto, São José do Rio Preto 15090-000, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Khanna A, Stamm S. Regulation of alternative splicing by short non-coding nuclear RNAs. RNA Biol 2010; 7:480-5. [PMID: 20657181 DOI: 10.4161/rna.7.4.12746] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent results from deep-sequencing and tiling array studies indicated the existence of a large number of short, metabolically stable, non-coding RNAs. Some of these short RNAs derive from known RNA classes like snoRNA or tRNAs. There are intriguing similarities between short non-coding nuclear RNAs and oligonucleotides used to change alternative splicing events, which usually target a disease-relevant RNA. We review the current knowledge of this emerging class of RNAs and discuss evidence that some of these short RNAs could function in alternative splice site selection.
Collapse
Affiliation(s)
- Amit Khanna
- University of Kentucky, Molecular and Cellular Biochemistry, South Limestone, Lexington, KY, USA
| | | |
Collapse
|
23
|
Pre-mRNA processing is partially impaired in satellite cell nuclei from aged muscles. J Biomed Biotechnol 2010; 2010:410405. [PMID: 20490357 PMCID: PMC2872765 DOI: 10.1155/2010/410405] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/03/2010] [Indexed: 01/25/2023] Open
Abstract
Satellite cells are responsible for the capacity of mature mammalian skeletal muscles to repair and maintain mass. During aging, skeletal muscle mass as well as the muscle strength and endurance progressively decrease, leading to a condition termed sarcopenia. The causes of sarcopenia are manifold and remain to be completely elucidated. One of them could be the remarkable decline in the efficiency of muscle regeneration; this has been associated with decreasing amounts of satellite cells, but also to alterations in their activation, proliferation, and/or differentiation. In this study, we investigated the satellite cell nuclei of biceps and quadriceps muscles from adult and old rats; morphometry and immunocytochemistry at light and electron microscopy have been combined to assess the organization of the nuclear RNP structural constituents involved in different steps of mRNA formation. We demonstrated that in satellite cells the RNA pathways undergo alterations during aging, possibly hampering their responsiveness to muscle damage.
Collapse
|
24
|
Qin F, Chen Y, Wu M, Li Y, Zhang J, Chen HF. Induced fit or conformational selection for RNA/U1A folding. RNA (NEW YORK, N.Y.) 2010; 16:1053-1061. [PMID: 20354153 PMCID: PMC2856877 DOI: 10.1261/rna.2008110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 02/07/2010] [Indexed: 05/29/2023]
Abstract
The hairpin II of U1 snRNA can bind U1A protein with high affinity and specificity. NMR spectra suggest that the loop region of apo-RNA is largely unstructured and undergoes a transition from unstructured to well-folded upon U1Abinding. However, the mechanism that RNA folding coupled protein binding is poorly understood. To get an insight into the mechanism, we have performed explicit-solvent molecular dynamics (MD) to study the folding kinetics of bound RNA and apo-RNA. Room-temperature MD simulations suggest that the conformation of bound RNA has significant adjustment and becomes more stable upon U1A binding. Kinetic analysis of high-temperature MD simulations shows that bound RNA and apo-RNA unfold via a two-state process, respectively. Both kinetics and free energy landscape analyses indicate that bound RNA folds in the order of RNA contracting, U1A binding, and tertiary folding. The predicted Phi-values suggest that A8, C10, A11, and G16 are key bases for bound RNA folding. Mutant Arg52Gln analysis shows that electrostatic interaction and hydrogen bonds between RNA and U1A (Arg52Gln) decrease. These results are in qualitative agreement with experiments. Furthermore, this method could be used in other studies about biomolecule folding upon receptor binding.
Collapse
Affiliation(s)
- Fang Qin
- College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | | | | | | | | | | |
Collapse
|
25
|
Fernandéz-Taboada E, Moritz S, Zeuschner D, Stehling M, Schöler HR, Saló E, Gentile L. Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation. Development 2010; 137:1055-65. [PMID: 20215344 DOI: 10.1242/dev.042564] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Planarians are an ideal model system to study in vivo the dynamics of adult pluripotent stem cells. However, our knowledge of the factors necessary for regulating the 'stemness' of the neoblasts, the adult stem cells of planarians, is sparse. Here, we report on the characterization of the first planarian member of the LSm protein superfamily, Smed-SmB, which is expressed in stem cells and neurons in Schmidtea mediterranea. LSm proteins are highly conserved key players of the splicing machinery. Our study shows that Smed-SmB protein, which is localized in the nucleus and the chromatoid body of stem cells, is required to safeguard the proliferative ability of the neoblasts. The chromatoid body, a cytoplasmatic ribonucleoprotein complex, is an essential regulator of the RNA metabolism required for the maintenance of metazoan germ cells. However, planarian neoblasts and neurons also rely on its functions. Remarkably, Smed-SmB dsRNA-mediated knockdown results in a rapid loss of organization of the chromatoid body, an impairment of the ability to post-transcriptionally process the transcripts of Smed-CycB, and a severe proliferative failure of the neoblasts. This chain of events leads to a quick depletion of the neoblast pool, resulting in a lethal phenotype for both regenerating and intact animals. In summary, our results suggest that Smed-SmB is an essential component of the chromatoid body, crucial to ensure a proper RNA metabolism and essential for stem cell proliferation.
Collapse
|
26
|
|
27
|
Malatesta M, Biggiogera M, Cisterna B, Balietti M, Bertoni-Freddari C, Fattoretti P. Perichromatin fibrils accumulation in hepatocyte nuclei reveals alterations of pre-mRNA processing during aging. DNA Cell Biol 2010; 29:49-57. [PMID: 20025533 DOI: 10.1089/dna.2009.0880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously described an unusual accumulation of perichromatin fibrils (PF)-the in situ form of pre-mRNA transcription and early splicing-in hepatocyte nuclei of old rats. Here we have investigated, by immunoelectron microscopy, the nature of such PF, analyzing the presence of transcription, splicing and cleavage factors, polyadenylated RNA, and the incorporation of bromouridine in adult and old rats. Our observations revealed alterations in amount and/or distribution of pre-mRNA transcription, splicing and cleavage factors, as well as of polyadenylated RNA, together with lower bromouridine incorporation in newly transcribed RNA in the hepatocyte nucleoplasm of old rats. Therefore, our data indicate both a decrease in pre-mRNA transcription and a slow down of PF processing and transport during aging.
Collapse
Affiliation(s)
- Manuela Malatesta
- 1 Department of Morphological and Biomedical Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Kolb SJ, Sutton S, Schoenberg DR. RNA processing defects associated with diseases of the motor neuron. Muscle Nerve 2010; 41:5-17. [PMID: 19697368 DOI: 10.1002/mus.21428] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid progress in the discovery of motor neuron disease genes in amyotrophic lateral sclerosis, the spinal muscular atrophies, hereditary motor neuropathies, and lethal congenital contracture syndromes is providing new perspectives and insights into the molecular pathogenesis of the motor neuron. Motor neuron disease genes are often expressed throughout the body with essential functions in all cells. A survey of these functions indicates that motor neurons are uniquely sensitive to perturbations in RNA processing pathways dependent on the interaction of specific RNAs with specific RNA-binding proteins, which presumably result in aberrant formation and function of ribonucleoprotein complexes. This review provides a summary of currently recognized RNA processing defects linked to human motor neuron diseases.
Collapse
Affiliation(s)
- Stephen J Kolb
- Department of Neurology, Ohio State University Medical Center, Hamilton Hall, Room 337B, 1645 Neil Avenue, Columbus, Ohio 43210-1228, USA
| | | | | |
Collapse
|
29
|
Dias SM, Cerione RA, Wilson KF. Unloading RNAs in the cytoplasm: an "importin" task. Nucleus 2009; 1:139-43. [PMID: 21326945 DOI: 10.4161/nucl.1.2.10919] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022] Open
Abstract
The nuclear cap-binding complex (CBC), a heterodimer comprised of a 20 kDa subunit (CBP20) and an 80 kDa regulatory subunit (CBP80), binds to nascent RNA polymerase II transcripts and is important throughout different aspects of RNA metabolism. In a recent publication, using a combination of X-ray crystallographic information, mutagenesis studies, small-angle scattering experiments, analytical ultracentrifugation and in vivo assays, we presented evidence that importin-α and importin-β, two nucleocytoplasmic transport proteins, play key roles in regulating the binding of capped RNA by the CBC in cells. A model for how complexes between CBC and the importins cycle in and out of the nucleus and direct the proper positional binding and release of capped RNA is presented here and is discussed in light of recent publications.
Collapse
Affiliation(s)
- Sandra Mg Dias
- Department of Molecular Medicine, College of Veterinary Medicine, Ithaca, NY, USA
| | | | | |
Collapse
|
30
|
Godfrey AC, White AE, Tatomer DC, Marzluff WF, Duronio RJ. The Drosophila U7 snRNP proteins Lsm10 and Lsm11 are required for histone pre-mRNA processing and play an essential role in development. RNA (NEW YORK, N.Y.) 2009; 15:1661-72. [PMID: 19620235 PMCID: PMC2743060 DOI: 10.1261/rna.1518009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 05/21/2009] [Indexed: 05/23/2023]
Abstract
Metazoan replication-dependent histone mRNAs are not polyadenylated, and instead terminate in a conserved stem-loop structure generated by an endonucleolytic cleavage of the pre-mRNA involving U7 snRNP. U7 snRNP contains two like-Sm proteins, Lsm10 and Lsm11, which replace SmD1 and SmD2 in the canonical heptameric Sm protein ring that binds spliceosomal snRNAs. Here we show that mutations in either the Drosophila Lsm10 or the Lsm11 gene disrupt normal histone pre-mRNA processing, resulting in production of poly(A)+ histone mRNA as a result of transcriptional read-through to cryptic polyadenylation sites present downstream from each histone gene. This molecular phenotype is indistinguishable from that which we previously described for mutations in U7 snRNA. Lsm10 protein fails to accumulate in Lsm11 mutants, suggesting that a pool of Lsm10-Lsm11 dimers provides precursors for U7 snRNP assembly. Unexpectedly, U7 snRNA was detected in Lsm11 and Lsm1 mutants and could be precipitated with anti-trimethylguanosine antibodies, suggesting that it assembles into a snRNP particle in the absence of Lsm10 and Lsm11. However, this U7 snRNA could not be detected at the histone locus body, suggesting that Lsm10 and Lsm11 are necessary for U7 snRNP localization. In contrast to U7 snRNA null mutants, which are viable, Lsm10 and Lsm11 mutants do not survive to adulthood. Because we cannot detect differences in the histone mRNA phenotype between Lsm10 or Lsm11 and U7 mutants, we propose that the different terminal developmental phenotypes result from the participation of Lsm10 and Lsm11 in an essential function that is distinct from histone pre-mRNA processing and that is independent of U7 snRNA.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/physiology
- Female
- Fertility/genetics
- Genes, Developmental/physiology
- Genes, Lethal/genetics
- Histones/genetics
- Histones/metabolism
- Male
- Mutation/physiology
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA Processing, Post-Transcriptional/physiology
- RNA, Messenger/metabolism
- Ribonucleoprotein, U7 Small Nuclear/genetics
- Ribonucleoprotein, U7 Small Nuclear/physiology
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/physiology
Collapse
Affiliation(s)
- Ashley C Godfrey
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
31
|
Guédard-Méreuze SL, Vaché C, Molinari N, Vaudaine J, Claustres M, Roux AF, Tuffery-Giraud S. Sequence contexts that determine the pathogenicity of base substitutions at position +3 of donor splice-sites. Hum Mutat 2009; 30:1329-39. [DOI: 10.1002/humu.21070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
The molecular basis for the regulation of the cap-binding complex by the importins. Nat Struct Mol Biol 2009; 16:930-7. [PMID: 19668212 PMCID: PMC2782468 DOI: 10.1038/nsmb.1649] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/02/2009] [Indexed: 11/23/2022]
Abstract
The binding of capped RNAs to the cap-binding complex (CBC) in the nucleus, and their dissociation from the CBC in the cytosol, represent essential steps in RNA-processing. Here we show how the nucleocytoplasmic transport proteins, importin-α and importin-β, play key roles in regulating these events. As a first step toward understanding the molecular basis for this regulation, we determined a 2.2 Å resolution x-ray structure for a CBC-importin-α complex that provides a detailed picture for how importin-α binds to the CBP80 subunit of the CBC. Through a combination of biochemical studies, x-ray crystallographic information, and small-angle scattering experiments, we then determined how importin-β binds to the CBC through its CBP20 subunit. Together, these studies enable us to propose a model describing how importin-β stimulates the dissociation of capped RNA from the CBC in the cytosol following its nuclear export.
Collapse
|
33
|
Malatesta M, Perdoni F, Muller S, Zancanaro C, Pellicciari C. Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing. Eur J Histochem 2009; 53:e12. [PMID: 19683983 PMCID: PMC3167280 DOI: 10.4081/ejh.2009.e12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2009] [Indexed: 12/25/2022] Open
Abstract
Advancing adult age is associated with a progressive decrease in skeletal muscle mass, strength and quality known as sarcopenia. The mechanisms underlying age-related skeletal muscle wasting and weakness are manifold and still remain to be fully elucidated. Despite the increasing evidence that the progress of muscle diseases leading to muscle atrophy/dystrophy may be related to defective RNA processing, no data on the morpho-functional features of skeletal muscle nuclei in sarcopenia are available at present. In this view, we have investigated, by combining morphometry and immunocytochemistry at light and electron microscopy, the fine structure of myonuclei as well as the distribution and amount of RNA processing factors in skeletal myofibres of biceps brachii and quadriceps femoris from adult and old rats. Results demonstrate that the myonuclei of aged type II fibres show an increased amount of condensed chromatin and lower amounts of phosphorylated polymerase II and DNA/RNA hybrid molecules, clearly indicating a decrease in pre-mRNA transcription rate compared to adult animals. In addition, myonuclei of aged fibres show decreased amounts of nucleoplasmic splicing factors and an accumulation of cleavage factors, polyadenilated RNA and perichromatin granules, suggesting a reduction in the processing and transport rate of premRNA. During ageing, it seems therefore that in rat myonuclei the entire production chain of mRNA, from synthesis to cytoplasmic export, is less efficient. This failure likely contributes to the reduced responsiveness of muscle cells to anabolic stimuli in the elderly.
Collapse
Affiliation(s)
- M Malatesta
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Anatomia e Istologia, University of Verona, Italy.
| | | | | | | | | |
Collapse
|
34
|
Joining the dots: Production, processing and targeting of U snRNP to nuclear bodies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2137-44. [DOI: 10.1016/j.bbamcr.2008.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 11/20/2022]
|
35
|
Tharun S. Roles of eukaryotic Lsm proteins in the regulation of mRNA function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:149-89. [PMID: 19121818 DOI: 10.1016/s1937-6448(08)01604-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The eukaryotic Lsm proteins belong to the large family of Sm-like proteins, which includes members from all organisms ranging from archaebacteria to humans. The Sm and Lsm proteins typically exist as hexameric or heptameric complexes in vivo and carry out RNA-related functions. Multiple complexes made up of different combinations of Sm and Lsm proteins are known in eukaryotes and these complexes are involved in a variety of functions such as mRNA decay in the cytoplasm, mRNA and pre-mRNA decay in the nucleus, pre-mRNA splicing, replication dependent histone mRNA 3'-end processing, etc. While most Lsm proteins function in the form of heteromeric complexes that include other Lsm proteins, some Lsm proteins are also known that do not behave in that manner. Abnormal expression of some Lsm proteins has also been implicated in human diseases. The various roles of eukaryotic Lsm complexes impacting mRNA function are discussed in this review.
Collapse
Affiliation(s)
- Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
36
|
McGrail JC, O'Keefe RT. The U1, U2 and U5 snRNAs crosslink to the 5' exon during yeast pre-mRNA splicing. Nucleic Acids Res 2007; 36:814-25. [PMID: 18084028 PMCID: PMC2241886 DOI: 10.1093/nar/gkm1098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of pre-messenger RNA (pre-mRNA) splicing requires 5′ splice site recognition by U1 small nuclear RNA (snRNA), which is replaced by U5 and U6 snRNA. Here we use crosslinking to investigate snRNA interactions with the 5′ exon adjacent to the 5′ splice site, prior to the first step of splicing. U1 snRNA was found to interact with four different 5′ exon positions using one specific sequence adjacent to U1 snRNA helix 1. This novel interaction of U1 we propose occurs before U1-5′ splice site base pairing. In contrast, U5 snRNA interactions with the 5′ exon of the pre-mRNA progressively shift towards the 5′ end of U5 loop 1 as the crosslinking group is placed further from the 5′ splice site, with only interactions closest to the 5′ splice site persisting to the 5′ exon intermediate and the second step of splicing. A novel yeast U2 snRNA interaction with the 5′ exon was also identified, which is ATP dependent and requires U2-branchpoint interaction. This study provides insight into the nature and timing of snRNA interactions required for 5′ splice site recognition prior to the first step of pre-mRNA splicing.
Collapse
Affiliation(s)
- Joanne C McGrail
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | | |
Collapse
|
37
|
A compartmentalized phosphorylation/dephosphorylation system that regulates U snRNA export from the nucleus. Mol Cell Biol 2007; 28:487-97. [PMID: 17967890 DOI: 10.1128/mcb.01189-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PHAX (phosphorylated adaptor for RNA export) is the key regulator of U snRNA nuclear export in metazoa. Our previous work revealed that PHAX is phosphorylated in the nucleus and is exported as a component of the U snRNA export complex to the cytoplasm, where it is dephosphorylated (M. Ohno, A. Segref, A. Bachi, M. Wilm, and I. W. Mattaj, Cell 101:187-198, 2000). PHAX phosphorylation is essential for export complex assembly, whereas its dephosphorylation causes export complex disassembly. Thus, PHAX is subject to a compartmentalized phosphorylation/dephosphorylation cycle that contributes to transport directionality. However, neither essential PHAX phosphorylation sites nor the modifying enzymes that contribute to the compartmentalized system have been identified. Here, we identify PHAX phosphorylation sites that are necessary and sufficient for U snRNA export. Mutation of the phosphorylation sites inhibited U snRNA export in a dominant-negative way. We also show, by both biochemical and RNA interference knockdown experiments, that the nuclear kinase and the cytoplasmic phosphatase for PHAX are CK2 kinase and protein phosphatase 2A, respectively. Our results reveal the composition of the compartmentalized phosphorylation/dephosphorylation system that regulates U snRNA export. This finding was surprising in that such a specific system for U snRNA export regulation is composed of two such universal regulators, suggesting that this compartmentalized system is used more broadly for gene expression regulation.
Collapse
|
38
|
Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins. Virology 2007; 371:394-404. [PMID: 17963812 DOI: 10.1016/j.virol.2007.09.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/15/2007] [Accepted: 09/28/2007] [Indexed: 01/12/2023]
Abstract
Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP+OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication.
Collapse
|
39
|
Puig O, Bragado-Nilsson E, Koski T, Séraphin B. The U1 snRNP-associated factor Luc7p affects 5' splice site selection in yeast and human. Nucleic Acids Res 2007; 35:5874-85. [PMID: 17726058 PMCID: PMC2034479 DOI: 10.1093/nar/gkm505] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
yLuc7p is an essential subunit of the yeast U1 snRNP and contains two putative zinc fingers. Using RNA-protein cross-linking and directed site-specific proteolysis (DSSP), we have established that the N-terminal zinc finger of yLuc7p contacts the pre-mRNA in the 5' exon in a region close to the cap. Modifying the pre-mRNA sequence in the region contacted by yLuc7p affects splicing in a yLuc7p-dependent manner indicating that yLuc7p stabilizes U1 snRNP-pre-mRNA interaction, thus reminding of the mode of action of another U1 snRNP component, Nam8p. Database searches identified three putative human yLuc7p homologs (hLuc7A, hLuc7B1 and hLuc7B2). These proteins have an extended C-terminal tail rich in RS and RE residues, a feature characteristic of splicing factors. Consistent with a role in pre-mRNA splicing, hLuc7A localizes in the nucleus and antibodies raised against hLuc7A specifically co-precipitate U1 snRNA from human cell extracts. Interestingly, hLuc7A overexpression affects splicing of a reporter in vivo. Taken together, our data suggest that the formation of a wide network of protein-RNA interactions around the 5' splice site by U1 snRNP-associated factors contributes to alternative splicing regulation.
Collapse
Affiliation(s)
- Oscar Puig
- European Molecular Biology Laboratory, Meyerhofstrasse, 1, 69117 Heidelberg, Germany, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland and CGM, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
- *To whom correspondence should be addressed. +358 9191 59423+358 9191 59366 Correspondence may also be addressed to Bertrand Séraphin. +33 1 69 82 38 84+33 1 69 82 38 77
| | - Elisabeth Bragado-Nilsson
- European Molecular Biology Laboratory, Meyerhofstrasse, 1, 69117 Heidelberg, Germany, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland and CGM, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Terhi Koski
- European Molecular Biology Laboratory, Meyerhofstrasse, 1, 69117 Heidelberg, Germany, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland and CGM, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Bertrand Séraphin
- European Molecular Biology Laboratory, Meyerhofstrasse, 1, 69117 Heidelberg, Germany, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland and CGM, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
40
|
Abstract
The SMN complex is essential for the biogenesis of spliceosomal small nuclear ribonucleoproteins and likely functions in the assembly, metabolism, and transport of a diverse number of other ribonucleoproteins. Specifically, the SMN complex assembles 7 Sm proteins into a core structure around a highly conserved sequence of ribonucleic acid (RNA) found in small nuclear RNAs. The complex recognizes specific sequences and structural features of small nuclear RNAs and Sm proteins and assembles small nuclear ribonucleoproteins in a stepwise fashion. In addition to the SMN protein, the SMN complex contains 7 additional proteins known as Gemin2-8, each likely to play a role in ribonucleoprotein biogenesis. This review focuses on the current understanding of the mechanism of the role of the SMN complex in small nuclear ribonucleoprotein assembly and considers the relationship of this function to spinal muscular atrophy.
Collapse
Affiliation(s)
- Stephen J Kolb
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
41
|
Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M, Ishihama Y, Iwata M, Mizui Y. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 2007; 3:570-5. [PMID: 17643112 DOI: 10.1038/nchembio.2007.16] [Citation(s) in RCA: 481] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 06/25/2007] [Indexed: 11/08/2022]
Abstract
Pladienolide is a naturally occurring antitumor macrolide that was discovered by using a cell-based reporter gene expression assay controlled by the human vascular endothelial growth factor promoter. Despite the unique mechanisms of action and prominent antitumor activities of pladienolides B and D in diverse in vitro and in vivo systems, their target protein has remained unclear. We used 3H-labeled, fluorescence-tagged and photoaffinity/biotin (PB)-tagged 'chemical probes' to identify a 140-kDa protein in splicing factor SF3b as the binding target of pladienolide. Immunoblotting of an enhanced green fluorescent protein fusion protein of SF3b subunit 3 (SAP130) revealed direct interaction between the PB probe and SAP130. The binding affinities of pladienolide derivatives to the SF3b complex were highly correlated with their inhibitory activities against reporter gene expression and cell proliferation. Furthermore, pladienolide B impaired in vivo splicing in a dose-dependent manner. Our results demonstrate that the SF3b complex is a pharmacologically relevant protein target of pladienolide and suggest that this splicing factor is a potential antitumor drug target.
Collapse
Affiliation(s)
- Yoshihiko Kotake
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tapia-Vieyra JV, Ostrosky-Wegman P, Mas-Oliva J. Proapoptotic role of novel gene-expression factors. Clin Transl Oncol 2007; 9:355-63. [PMID: 17594949 DOI: 10.1007/s12094-007-0067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The mechanisms that control cellular proliferation, as well as those related with programmed cell death or apoptosis, require precise regulation systems to prevent diseases such as cancer. Events related to cellular proliferation as well as those associated with apoptosis involve the regulation of gene expression carried out by three basic genetic expression regulation mechanisms: transcription, splicing of the primary transcript for mature mRNA formation, and RNA translation, a ribosomal machinery-dependent process for protein synthesis. While development of each one of these processes requires energy for recognition and assembly of a number of molecular complexes, it has been reported that an increased expression of several members of these protein complexes promotes apoptosis in distinct cell types. The question of how these factors interact with other proteins in order to incorporate themselves into the different transduction cascades and stimulate the development of programmed cell death, although nowadays actively studied, is still waiting for a clear-cut answer. This review focuses on the interactions established between different families of transcription, elongation, translation and splicing factors associated to the progression of apoptosis.
Collapse
Affiliation(s)
- J V Tapia-Vieyra
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México
| | | | | |
Collapse
|
43
|
Sleeman J. A regulatory role for CRM1 in the multi-directional trafficking of splicing snRNPs in the mammalian nucleus. J Cell Sci 2007; 120:1540-50. [PMID: 17405816 DOI: 10.1242/jcs.001529] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Distinct pathways of ribonucleoprotein transport exist within the nucleus, connected to their biogenesis and maturation. These occur despite evidence that the major mechanism for their movement within the nucleus is passive diffusion. Using fusions of Sm proteins to YFP, CFP and photoactivatable GFP, I have demonstrated that pathways with uni-directional bulk flow of complexes can be maintained within the nucleus despite multi-directional exchange of individual complexes. Newly imported splicing small nuclear ribonucleoproteins (snRNPs) exchange between Cajal bodies (CBs) within a nucleus and access the cytoplasm, but are unable to accumulate in speckles. By contrast, snRNPs at steady-state exchange freely in any direction between CBs and speckles, but cannot leave the nucleus. In addition to these surprising qualitative observations in the behaviour of nuclear complexes, sensitive live-cell microscopy techniques can detect subtle quantitative disturbances in nuclear dynamics before they have had an effect on overall nuclear organization. Inhibition of the nuclear export factor, CRM1, using leptomycin B results in a change in the dynamics of interaction of newly imported snRNPs with CBs. Together with the detection of interactions of CRM1 with Sm proteins and the survival of motor neurons (SMN) protein, these studies suggest that the export receptor CRM1 is a key player in the molecular mechanism for maintaining these pathways. Its role in snRNP trafficking, however, appears to be distinct from its previously identified role in small nucleolar RNP (snoRNP) maturation.
Collapse
Affiliation(s)
- Judith Sleeman
- Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
44
|
Kuwasako K, He F, Inoue M, Tanaka A, Sugano S, Güntert P, Muto Y, Yokoyama S. Solution structures of the SURP domains and the subunit-assembly mechanism within the splicing factor SF3a complex in 17S U2 snRNP. Structure 2007; 14:1677-89. [PMID: 17098193 DOI: 10.1016/j.str.2006.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 09/04/2006] [Accepted: 09/09/2006] [Indexed: 11/24/2022]
Abstract
The SF3a complex, consisting of SF3a60, SF3a66, and SF3a120, in 17S U2 snRNP is crucial to spliceosomal assembly. SF3a120 contains two tandem SURP domains (SURP1 and SURP2), and SURP2 is responsible for binding to SF3a60. We found that the SURP2 fragment forms a stable complex with an SF3a60 fragment (residues 71-107) and solved its structure by NMR spectroscopy. SURP2 exhibits a fold of the alpha1-alpha2-3(10)-alpha3 topology, and the SF3a60 fragment forms an amphipathic alpha helix intimately contacting alpha1 of SURP2. We also solved the SURP1 structure, which has the same fold as SURP2. The protein-binding interface of SURP2 is quite similar to the corresponding surface of SURP1, except for two amino acid residues. One of them, Leu169, is characteristic of SF3a120 SURP2 among SURP domains. Mutagenesis showed that this single Leu residue is the critical determinant for complex formation, which reveals the protein recognition mechanism in the subunit assembly.
Collapse
|
45
|
Bahia D, Aviñó A, Darzynkiewicz E, Eritja R, Bach-Elias M. Trimethylguanosine nucleoside inhibits cross-linking between Snurportin 1 and m3G-CAPPED U1 snRNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:909-23. [PMID: 16901822 DOI: 10.1080/15257770600793901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Macromolecular nuclear import is an energy-and signal-dependent process. The best characterized type of nuclear import consists of proteins carrying the classical NLS that is mediated by the heterodimeric receptor importin alpha/beta. Spliceosomal snRNPs U1, U2, U4, and U5 nuclear import depend both on the 5' terminal m3G (trimethylguanosine) cap structure of the U snRNA and the Sm core domain. Snurportin 1 recognizes the m3G-cap structure of m3G-capped U snRNPs. In this report, we show how a synthesized trimethylguanosine nucleoside affects the binding of Snurportin 1 to m3G-capped U1 snRNA in a UV-cross-linking assay. The data indicated that TMG nucleoside is an essential component required in the recognition by Snurportin 1, thus suggesting that interaction of Snurportin 1 with U1 snRNA is not strictly dependent on the presence of the whole cap structure, but rather on the presence of the TMG nucleoside structure. These results indicate that the free nucleoside TMG could be a candidate to be an inhibitor of the interaction between Snurportin 1 and U snRNAs. We also show the behavior of free TMG nucleoside in in vitro U snRNPs nuclear import.
Collapse
Affiliation(s)
- Diana Bahia
- Institut de Biología Molecular de Barcelona, CSIC (IBMB-CSIC), Barcelona.
| | | | | | | | | |
Collapse
|
46
|
Wang P, Palfi Z, Preusser C, Lücke S, Lane WS, Kambach C, Bindereif A. Sm core variation in spliceosomal small nuclear ribonucleoproteins from Trypanosoma brucei. EMBO J 2006; 25:4513-23. [PMID: 16977313 PMCID: PMC1589986 DOI: 10.1038/sj.emboj.7601328] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 08/16/2006] [Indexed: 11/08/2022] Open
Abstract
Messenger RNA processing in trypanosomes by cis and trans splicing requires spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6, and U5, as well as the spliced leader (SL) RNP. As in other eukaryotes, these RNPs share a core structure of seven Sm polypeptides. Here, we report that the identity of the Sm protein constituents varies between spliceosomal snRNPs: specifically, two of the canonical Sm proteins, SmB and SmD3, are replaced in the U2 snRNP by two novel, U2 snRNP-specific Sm proteins, Sm15K and Sm16.5K. We present a model for the variant Sm core in the U2 snRNP, based on tandem affinity purification-tagging and in vitro protein-protein interaction assays. Using in vitro reconstitutions with canonical and U2-specific Sm cores, we show that the exchange of two Sm subunits determines discrimination between individual Sm sites. In sum, we have demonstrated that the heteroheptameric Sm core structure varies between spliceosomal snRNPs, and that modulation of the Sm core composition mediates the recognition of small nuclear RNA-specific Sm sites.
Collapse
Affiliation(s)
- Pingping Wang
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Zsofia Palfi
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Christian Preusser
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Stephan Lücke
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - William S Lane
- Harvard Microchemistry and Proteomics Analysis Facility, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | | | - Albrecht Bindereif
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Giessen, Germany
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany. Tel.: +49 641 99 35 420; Fax: +49 641 99 35 419; E-mail:
| |
Collapse
|
47
|
Nováková Z, Man P, Novák P, Hozák P, Hodný Z. Separation of nuclear protein complexes by blue native polyacrylamide gel electrophoresis. Electrophoresis 2006; 27:1277-87. [PMID: 16502463 DOI: 10.1002/elps.200500504] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nucleus is a highly structured organelle with distinct compartmentalization of specific functions. To understand the functions of these nuclear compartments, detailed description of protein complexes which form these structures is of crucial importance. We explored therefore the potential of blue native PAGE (BN-PAGE) method for the separation of nuclear protein complexes. We focused on (i) solubility and stability of nuclear complexes under conditions prerequisite for the separation by BN-PAGE, (ii) improved separation of native nuclear protein complexes using 2-D colorless native/blue native PAGE (CN-/BN-PAGE), and (iii) mass spectrometric analysis of protein complexes which were isolated directly from native 1-D or from 2-D CN/BN-PAGE gels. The suitability of BN-PAGE for nuclear proteomic research is demonstrated by the successful separation of polymerase I and polymerase II complexes, and by mass spectrometric determination of U1 small nuclear ribonucleoprotein particle composition. Moreover, practical advice for sample preparation is provided.
Collapse
Affiliation(s)
- Zora Nováková
- Department of Cell Ultrastructure and Molecular Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Praque, Czech Republic
| | | | | | | | | |
Collapse
|
48
|
Jacob J, Sebastian KS, Devassy S, Priyadarsini L, Farook MF, Shameem A, Mathew D, Sreeja S, Thampan RV. Membrane estrogen receptors: genomic actions and post transcriptional regulation. Mol Cell Endocrinol 2006; 246:34-41. [PMID: 16423448 DOI: 10.1016/j.mce.2005.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The primary cellular location of the nuclear estrogen receptor II (nER II) is the plasma membrane. A number of reports that have appeared in the recent past indicate that plasma membrane localized estrogen receptor alpha (ERalpha) also exists. Whether the membrane localized ERalpha represents the receptor that binds to the estrogen responsive element (ERE) remains to be known. The mechanisms that underlie the internalization of nER II (non-activated estrogen receptor, deglycosylated) have been identified to a certain extent. The question remains: is the primary location of the ERalpha also the plasma membrane? If that is the case, it will be a challenging task to identify the molecular events that underlie the plasma membrane-to-nucleus movement of ERalpha. The internalization mechanisms for the two 66kDa plasma membrane ERs, following hormone binding, appear to be distinct and without any overlaps. Interestingly, while the major gene regulatory role for ERalpha appears to be at the level of transcription, the nER II has its major functional role in post transcriptional mechanisms. The endoplasmic reticulum associated anchor protein-55 (ap55) that was recently reported from the author's laboratory needs a closer look. It is a high affinity estrogen binding protein that anchors the estrogen receptor activation factor (E-RAF) in an estrogen-mediated event. It will be interesting to examine whether ap55 bears any structural similarity with either ERalpha or ERbeta.
Collapse
Affiliation(s)
- Julie Jacob
- Division of Molecular Endocrinology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Golembe TJ, Yong J, Dreyfuss G. Specific sequence features, recognized by the SMN complex, identify snRNAs and determine their fate as snRNPs. Mol Cell Biol 2006; 25:10989-1004. [PMID: 16314521 PMCID: PMC1316962 DOI: 10.1128/mcb.25.24.10989-11004.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The survival of motor neurons (SMN) complex is essential for the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) as it binds to and delivers Sm proteins for assembly of Sm cores on the abundant small nuclear RNAs (snRNAs). Using the conserved snRNAs encoded by the lymphotropic Herpesvirus saimiri (HVS), we determined the specific sequence and structural features of RNAs for binding to the SMN complex and for Sm core assembly. We show that the minimal SMN complex-binding domain in snRNAs, except U1, is comprised of an Sm site (AUUUUUG) and an adjacent 3' stem-loop. The adenosine and the first and third uridines of the Sm site are particularly critical for binding of the SMN complex, which directly contacts the backbone phosphates of these uridines. The specific sequence of the adjacent stem (7 to 12 base pairs)-loop (4 to 17 nucleotides) is not important for SMN complex binding, but it must be located within a short distance of the 3' end of the RNA for an Sm core to assemble. Importantly, these defining characteristics are discerned by the SMN complex and not by the Sm proteins, which can bind to and assemble on an Sm site sequence alone. These findings demonstrate that the SMN complex is the identifier, as well as assembler, of the abundant class of snRNAs in cells because it is able to recognize an snRNP code that they contain.
Collapse
Affiliation(s)
- Tracey J Golembe
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | |
Collapse
|
50
|
Liang S, Lutz CS. p54nrb is a component of the snRNP-free U1A (SF-A) complex that promotes pre-mRNA cleavage during polyadenylation. RNA (NEW YORK, N.Y.) 2006; 12:111-21. [PMID: 16373496 PMCID: PMC1370891 DOI: 10.1261/rna.2213506] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/12/2005] [Indexed: 05/05/2023]
Abstract
The U1 snRNP-A (U1A) protein has been known for many years as a component of the U1 snRNP. We have previously described a form of U1A present in human cells in significant amounts that is not associated with the U1 snRNP or U1 RNA but instead is part of a novel complex of non-snRNP proteins that we have termed snRNP-free U1A, or SF-A. Antibodies that specifically recognize this complex inhibit in vitro splicing and polyadenylation of pre-mRNA, suggesting that this complex may play an important functional role in these mRNA-processing activities. This finding was underscored by the determination that one of the components of this complex is the polypyrimidine-tract-binding protein-associated splicing factor, PSF. In order to further our studies on this complex and to determine the rest of the components of the SF-A complex, we prepared several stable HeLa cell lines that overexpress a tandem-affinity-purification-tagged version of U1A (TAP-tagged U1A). Nuclear extract was prepared from one of these cell lines, line 107, and affinity purification was performed along with RNase treatment. We have used mass spectrometry analysis to identify the candidate factors that associate with U1A. We have now identified and characterized PSF, p54(nrb), and p68 as novel components of the SF-A complex. We have explored the function of this complex in RNA processing, specifically cleavage and polyadenylation, by performing immunodepletions followed by reconstitution experiments, and have found that p54(nrb) is critical.
Collapse
Affiliation(s)
- Songchun Liang
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School MSB E671, 185 S. Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|