1
|
Kampjut D, Sazanov LA. Structure and mechanism of mitochondrial proton-translocating transhydrogenase. Nature 2019; 573:291-295. [PMID: 31462775 DOI: 10.1038/s41586-019-1519-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/31/2019] [Indexed: 11/09/2022]
Abstract
Proton-translocating transhydrogenase (also known as nicotinamide nucleotide transhydrogenase (NNT)) is found in the plasma membranes of bacteria and the inner mitochondrial membranes of eukaryotes. NNT catalyses the transfer of a hydride between NADH and NADP+, coupled to the translocation of one proton across the membrane. Its main physiological function is the generation of NADPH, which is a substrate in anabolic reactions and a regulator of oxidative status; however, NNT may also fine-tune the Krebs cycle1,2. NNT deficiency causes familial glucocorticoid deficiency in humans and metabolic abnormalities in mice, similar to those observed in type II diabetes3,4. The catalytic mechanism of NNT has been proposed to involve a rotation of around 180° of the entire NADP(H)-binding domain that alternately participates in hydride transfer and proton-channel gating. However, owing to the lack of high-resolution structures of intact NNT, the details of this process remain unclear5,6. Here we present the cryo-electron microscopy structure of intact mammalian NNT in different conformational states. We show how the NADP(H)-binding domain opens the proton channel to the opposite sides of the membrane, and we provide structures of these two states. We also describe the catalytically important interfaces and linkers between the membrane and the soluble domains and their roles in nucleotide exchange. These structures enable us to propose a revised mechanism for a coupling process in NNT that is consistent with a large body of previous biochemical work. Our results are relevant to the development of currently unavailable NNT inhibitors, which may have therapeutic potential in ischaemia reperfusion injury, metabolic syndrome and some cancers7-9.
Collapse
Affiliation(s)
- Domen Kampjut
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
2
|
Granéli A. Incorporation of a transmembrane protein into a supported 3D-matrix of liposomes for SPR studies. Methods Mol Biol 2010; 627:237-248. [PMID: 20217626 DOI: 10.1007/978-1-60761-670-2_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Surface analytical tools as surface plasmon resonance (SPR) have become increasingly important in biomedical research since they offer high detection sensitivity compared to traditional biomedical methods. For the use of SPR as a biomedical research tool there is a need to immobilize the reactants to a solid sensor surface. It is nowadays fairly straightforward to immobilize various reactants and hydrophilic proteins to a solid sensor surface and SPR has successfully been used in several applications using such proteins when studying various protein interactions. When using SPR for the analysis of transmembrane proteins the immobilization onto the solid surface becomes more difficult. Transmembrane proteins are more sensitive to the surroundings and need to be incorporated into a structure where it can reside in a natural environment. Supported liposomes offer such environment. In this chapter a new method is presented where multilayers of such supported liposomes are used to immobilize transmembrane proteins onto a solid sensor surface which is suitable for use in SPR detection.
Collapse
Affiliation(s)
- Annette Granéli
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Proton-translocating transhydrogenase: an update of unsolved and controversial issues. J Bioenerg Biomembr 2008; 40:463-73. [PMID: 18972197 DOI: 10.1007/s10863-008-9170-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Proton-translocating transhydrogenases, reducing NADP(+) by NADH through hydride transfer, are membrane proteins utilizing the electrochemical proton gradient for NADPH generation. The enzymes have important physiological roles in the maintenance of e.g. reduced glutathione, relevant for essentially all cell types. Following X-ray crystallography and structural resolution of the soluble substrate-binding domains, mechanistic aspects of the hydride transfer are beginning to be resolved. However, the structure of the intact enzyme is unknown. Key questions regarding the coupling mechanism, i.e., the mechanism of proton translocation, are addressed using the separately expressed substrate-binding domains. Important aspects are therefore which functions and properties of mainly the soluble NADP(H)-binding domain, but also the NAD(H)-binding domain, are relevant for proton translocation, how the soluble domains communicate with the membrane domain, and the mechanism of proton translocation through the membrane domain.
Collapse
|
4
|
Granéli A, Benkoski JJ, Höök F. Characterization of a proton pumping transmembrane protein incorporated into a supported three-dimensional matrix of proteoliposomes. Anal Biochem 2007; 367:87-94. [PMID: 17524345 DOI: 10.1016/j.ab.2007.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/26/2007] [Accepted: 03/28/2007] [Indexed: 11/19/2022]
Abstract
Surface analytical tools have gained interest in the bioanalytical field during recent years because they offer the possibility of more detailed investigations of biomolecular interactions. To be able to use such tools, the biomolecules of interest must be immobilized to a surface in a functioning way. For small water-soluble biomolecules, the surface immobilization is quite straightforward, but it has been shown to be difficult for large transmembrane proteins. In those cases, the solid surface often has a negative influence on the function of the transmembrane proteins. In this article, we present a new approach for surface immobilization of transmembrane proteins where the proteins were immobilized on a surface in a proteoliposome multilayer structure. The surface-binding events and the structure of the surface-immobilized proteoliposomes were monitored using both the quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) techniques. With this multilayer proteoliposome structure, it was possible to detect trypsin digestion of the transmembrane protein proton translocating nicotinamide nucleotide transhydrogenase in real time using SPR. The results from the combined SPR and QCM-D analysis were confirmed by fluorescence microscopy imaging of the multilayer structure and activity measurements of transhydrogenase. These results showed that the activity of transhydrogenase was significantly decreased in the bottom layer, but in the subsequent proteoliposome layers 90% of the activity was retained compared with bulk measurements. These results emphasize the importance of an immobilization strategy where the transmembrane proteins are lifted off the solid surface at the same time as the amount of protein is increased. We consider this new method for surface immobilization of transmembrane proteins to meet these demands and that the method will improve the possibility to use a variety of surface analytical tools for the analysis of interactions involving transmembrane proteins in the future.
Collapse
Affiliation(s)
- Annette Granéli
- Department of Physics, Göteborg University, SE-412 96 Göteborg, Sweden.
| | | | | |
Collapse
|
5
|
Granéli A, Rydström J, Kasemo B, Höök F. Utilizing adsorbed proteoliposomes trapped in a non-ruptured state on SiO2 for amplified detection of membrane proteins. Biosens Bioelectron 2004; 20:498-504. [PMID: 15494231 DOI: 10.1016/j.bios.2004.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 02/19/2004] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
The quartz crystal microbalance with dissipation (QCM-D) technique was used to monitor the formation of supported phospholipid bilayers (SPBs) on SiO2 using proteoliposomes with reconstituted proton translocating nicotinamide nucleotide transhydrogenase (TH). Exposure of the surface to such proteoliposomes creates a lipid film composed of a mixture of proteolipid bilayers and adsorbed non-ruptured proteoliposomes, where the fraction of the latter is reduced if the TH-liposomes are pretreated with trypsin to remove the water soluble domains of TH [Langmuir 19 (2003) 842]. In the present work, the latter study is complemented by investigating the influence of trypsin treatment of the mixed adlayer (proteolipid bilayer + non-ruptured proteoliposomes) after adsorption on the surface. This demonstrates how trypsin-cleavage induced rupture of adsorbed TH-liposomes can be utilized to detect the presence of less than 0.04 pmol/cm2 of immobilized TH.
Collapse
Affiliation(s)
- Annette Granéli
- Department of Chemical Physics, Applied Physics, Chalmers, Fysikgränd 3, S-41296 Gothenburg, Sweden.
| | | | | | | |
Collapse
|
6
|
Yamaguchi M, Stout CD. Essential glycine in the proton channel of Escherichia coli transhydrogenase. J Biol Chem 2003; 278:45333-9. [PMID: 12952962 DOI: 10.1074/jbc.m308236200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nicotinamide nucleotide transhydrogenases of mitochondria and bacteria are proton pumps that couple hydride ion transfer between NAD(H) and NADP(H) bound, respectively, to extramembranous domains I and III, to proton translocation by the membrane-intercalated domain II. Previous experiments have established the involvement of three conserved domain II residues in the proton pumping function of the enzyme: His91, Ser139, and Asn222, located on helices 9, 10, and 13, respectively. Eight highly conserved domain II glycines in helices 9, 10, 13, and 14 were mutated to alanine, and the mutant enzymes were assayed for hydride transfer between domains I and III and for proton translocation by domain II. One of the glycines on helix 14, Gly252, was further mutated to Cys, Ser, Thr, and Val, expression levels of the mutant enzymes were evaluated, and each was purified and assayed. The results show that Gly252 is essential for function and support a model for the proton channel composed of helices 9, 10, 13, and 14. Gly252 would allow spatial proximity of His91, Ser139, and Asn222 for proton conductance within the channel. Gly252 mutants are distinguished by high levels of cyclic transhydrogenation activity in the absence of added NADP(H) and by complete loss of proton pumping activity. The purified G252A mutant has <1% proton translocation and reverse transhydrogenation activity, retains 0.9 mol of NADP(H) per domain III, and has 96% intrinsic cyclic transhydrogenation activity, which does not exceed 100% upon the addition of NADP(H). These properties imply that Gly252 mutants exhibit a native-like domain II conformation while blocking proton translocation and coupled exchange of NADP(H) in domain III.
Collapse
Affiliation(s)
- Mutsuo Yamaguchi
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
7
|
Yamaguchi M, Stout CD, Hatefi Y. The proton channel of the energy-transducing nicotinamide nucleotide transhydrogenase of Escherichia coli. J Biol Chem 2002; 277:33670-5. [PMID: 12087099 DOI: 10.1074/jbc.m204170200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nicotinamide nucleotide transhydrogenases of mitochondria and bacteria are proton pumps that couple direct hydride ion transfer between NAD(H) and NADP(H) bound, respectively, to extramembranous domains I and III to proton translocation by the membrane-intercalated domain II. To delineate the proton channel of the enzyme, 25 conserved and semiconserved prototropic amino acid residues of domain II of the Escherichia coli transhydrogenase were mutated, and the mutant enzymes were assayed for transhydrogenation from NADPH to an NAD analogue and for the coupled outward proton translocation. The results confirmed the previous findings of others and ourselves on the essential roles of three amino acid residues and identified another essential residue. Three of these amino acids, His-91, Ser-139, and Asn-222, occur in three separate membrane-spanning alpha helices of domain II of the beta subunit of the enzyme. Another residue, Asp-213, is probably located in a cytosolic-side loop that connects to the alpha helix bearing Asn-222. It is proposed that the three helices bearing His-91, Ser-139, and Asn-222 come together, possibly with another highly conserved alpha helix to form a four-helix bundle proton channel and that Asp-213 serves to conduct protons between the channel and domain III where NADPH binding energy is used via protein conformation change to initiate outward proton translocation.
Collapse
Affiliation(s)
- Mutsuo Yamaguchi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
8
|
Meuller J, Mjörn K, Karlsson J, Tigerström A, Rydström J, Hou C, Bragg PD. Properties of a proton-translocating nicotinamide nucleotide transhydrogenase from Escherichia coli with alpha and beta subunits linked through fused transmembrane helices. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:163-71. [PMID: 11779549 DOI: 10.1016/s0005-2728(01)00191-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proton-translocating nicotinamide nucleotide transhydrogenase from Escherichia coli is composed of an alpha and a beta subunit, whereas the homologues mitochondrial enzyme contains a single polypeptide. As compared to the latter transhydrogenase, using a 14-helix model for its membrane topology, the point of fusion is between the transmembrane helices 4 and 6 where the fusion linker provides the extra transmembrane helix 5. In order to clarify the potential role of this extra helix/linker, the alpha and the beta subunits were fused using three connecting peptides of different lengths, one (pAX9) involving essentially a direct coupling, a second (pKM) with a linking peptide of 18 residues, and a third (pKMII) with a linking peptide of 32 residues, as compared to the mitochondrial extra peptide of 27 residues. The results demonstrate that the plasma membrane-bound and purified pAX9 enzyme with the short linker was partly misfolded and strongly inhibited with regard to both catalytic activities and proton translocation, whereas the properties of pKM and pKMII with longer linkers were similar to those of wild-type E. coli transhydrogenase but partly different from those of the mitochondrial enzyme although pKMII generally gave higher activities. It is concluded that a mitochondrial-like linking peptide is required for proper folding and activity of the E. coli fused transhydrogenase, and that differences between the catalytic properties of the E. coli and the mitochondrial enzymes are unrelated to the linking peptide. This is the first time that larger subunits of a membrane protein with multiple transmembrane helices have been fused with retained activity.
Collapse
Affiliation(s)
- J Meuller
- Depatment of Biochemistry and Biophysics, Göteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
9
|
Bragg PD, Hou C. Characterization of mutants of beta histidine91, beta aspartate213, and beta asparagine222, possible components of the energy transduction pathway of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli. Arch Biochem Biophys 2001; 388:299-307. [PMID: 11368169 DOI: 10.1006/abbi.2001.2298] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The roles of three residues (betaHis91, betaAsp213, and betaAsn222) implicated in energy transduction in the membrane-spanning domain II of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli have been examined using site-directed mutagenesis. All mutations affected transhydrogenation and proton pumping activities, although to various extents. Replacing betaHis91 or betaAsn222 of domain II by the basic residues lysine or arginine resulted in occlusion of NADP(H) at the NADP(H)-binding site of domain III. This was not seen with betaD213K or betaD213R mutants. It is suggested that betaHis91 and betaAsn222 interact with betaAsp392, a residue probably involved in initiating conformational changes at the NADP(H)-binding site in the normal catalytic cycle of the enzyme (M. Jeeves et al. (2000) Biochim. Biophys. Acta 1459, 248-257). The introduced positive charges in the betaHis91 and betaAsn222 mutants might stabilize the carboxyl group of betaAsp392 in its anionic form, thus locking the NADP(H)-binding site in the occluded conformation. In comparison with the nonmutant enzyme, and those of mutants of betaAsp213, most mutant enzymes at betaHis91 and betaAsn222 bound NADP(H) more slowly at the NADP(H)-binding site. This is consistent with the effect of these two residues on the binding site. We could not demonstrate by mutation or crosslinking or through the formation of eximers with pyrene maleimide that betaHis91 and betaAsn222 were in proximity in domain II.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
10
|
Cotton NP, White SA, Peake SJ, McSweeney S, Jackson JB. The crystal structure of an asymmetric complex of the two nucleotide binding components of proton-translocating transhydrogenase. Structure 2001; 9:165-76. [PMID: 11250201 DOI: 10.1016/s0969-2126(01)00571-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Membrane-bound ion translocators have important functions in biology, but their mechanisms of action are often poorly understood. Transhydrogenase, found in animal mitochondria and bacteria, links the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. Linkage is achieved through changes in protein conformation at the nucleotide binding sites. The redox reaction takes place between two protein components located on the membrane surface: dI, which binds NAD(H), and dIII, which binds NADP(H). A third component, dII, provides a proton channel through the membrane. Intact membrane-located transhydrogenase is probably a dimer (two copies each of dI, dII, and dIII). RESULTS We have solved the high-resolution crystal structure of a dI:dIII complex of transhydrogenase from Rhodospirillum rubrum-the first from a transhydrogenase of any species. It is a heterotrimer, having two polypeptides of dI and one of dIII. The dI polypeptides fold into a dimer. The loop on dIII, which binds the nicotinamide ring of NADP(H), is inserted into the NAD(H) binding cleft of one of the dI polypeptides. The cleft of the other dI is not occupied by a corresponding dIII component. CONCLUSIONS The redox step in the transhydrogenase reaction is readily visualized; the NC4 atoms of the nicotinamide rings of the bound nucleotides are brought together to facilitate direct hydride transfer with A-B stereochemistry. The asymmetry of the dI:dIII complex suggests that in the intact enzyme there is an alternation of conformation at the catalytic sites associated with changes in nucleotide binding during proton translocation.
Collapse
Affiliation(s)
- N P Cotton
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Hou C, Bragg PD. Intersubunit crosslinking of the heterotetrameric proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli defines intersubunit contacts between transmembrane helices of the beta subunits. Biochem Biophys Res Commun 2001; 280:466-70. [PMID: 11162540 DOI: 10.1006/bbrc.2000.4142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli is composed of two types of subunits, alpha and beta, organized as an alpha(2)beta(2) tetramer. The protein contains three recognizable domains, of which domain II is the transmembrane region of the molecule containing the pathway for proton translocation. Domain II is composed of four transmembrane helices at the carboxyl-terminus of the alpha subunit and nine transmembrane helices at the amino-terminal region of the beta subunit. We have introduced pairs of cysteine residues into all of the loops connecting the transmembrane helices of domain II of the beta subunit. Crosslinking between the two beta subunits of the tetramer was induced spontaneously, or by treatment with cupric 1,10-phenanthrolinate or o-phenylenedimaleimide. Crosslinks between pairs of betaA114C, betaS183C, and betaA262C residues were observed, suggesting that pairs of domain II transmembrane helices 11, 12, and 14 were in proximity. These results, together with previous data (Bragg and Hou (2000) Biochem. Biophys. Res. Commun. 273, 955-959) suggest that the transhydrogenase tetramer is formed by apposition of alpha(2) and beta(2) dimers. Crosslinking between pairs of cysteine residues in the same beta subunit was not observed, possibly because the interhelical loops of the domain II region of the beta subunit were too short to allow correct orientation of the sulfhydryl groups for crosslinking.
Collapse
Affiliation(s)
- C Hou
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3
| | | |
Collapse
|
12
|
Bizouarn T, Meuller J, Axelsson M, Rydström J. The transmembrane domain and the proton channel in proton-pumping transhydrogenases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:284-90. [PMID: 11004441 DOI: 10.1016/s0005-2728(00)00163-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Proton-pumping nicotinamide nucleotide transhydrogenases are composed of three main domains, the NAD(H)-binding and NADP(H)-binding hydrophilic domains I (dI) and III (dIII), respectively, and the hydrophobic domain II (dII) containing the assumed proton channel. dII in the Escherichia coli enzyme has recently been characterised with regard to topology and a packing model of the helix bundle in dII is proposed. Extensive mutagenesis of conserved charged residues of this domain showed that important residues are betaHis91 and betaAsn222. The pH dependence of betaH91D, as well as betaH91C (unpublished), when compared to that of wild type shows that reduction of 3-acetylpyridine-NAD(+) by NADPH, i.e., the reverse reaction, is optimal at a pH essentially coinciding with the pK(a) of the residue in the beta91 position. It is therefore concluded that the wild-type transhydrogenase is regulated by the degree of protonation of betaHis91. The mechanisms of the interactions between dI+dIII and dII are suggested to involve pronounced conformational changes in a 'hinge' region around betaR265.
Collapse
Affiliation(s)
- T Bizouarn
- Department of Biochemistry and Biophysics, Göteborg University, Sweden
| | | | | | | |
Collapse
|
13
|
Bragg PD, Hou C. The presence of an aqueous cavity in the proton-pumping pathway of the pyridine nucleotide transhydrogenase of Escherichia coli is suggested by the reaction of the enzyme with sulfhydryl inhibitors. Arch Biochem Biophys 2000; 380:141-50. [PMID: 10900143 DOI: 10.1006/abbi.2000.1923] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli carries out transmembrane proton translocation coupled to transfer of a hydride ion equivalent between NAD(+) and NADP(+). The membrane domain (domain II) of the enzyme is composed of 13 transmembrane helices. Previous studies (N. A. Glavas et al., Biochemistry 34, 7694-7702, 1995) have suggested that betaHis91 in transmembrane helix 9 is involved in the translocation pathway of protons across the membrane. In this study we have replaced amino acid residues on the same face of helix 9 as betaHis91 by single cysteine residues. We then examined the effect of the sulfhydryl inhibitors N-ethylmaleimide (NEM) and p-chloromercuriphenylsulfonate (pCMPS) on enzyme activity and, in the case of [(14)C]NEM, as an enzyme label. The pattern of enzyme inhibition and labelling is consistent with the presence of an aqueous cavity through domain II from the cytosolic surface to the region of betaHis91. Residue betaAsn222 in helix 13, which appears also to be involved in the proton pathway across domain II, may interface with this aqueous cavity. A further series of mutants of betaGlu124 on helix 10 confirms the proposal (P. D. Bragg and C. Hou, Arch. Biochem. Biophys. 363, 182-190, 1999) that this residue is involved in passive permeation of protons across domain II.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | | |
Collapse
|
14
|
Bragg PD, Hou C. Crosslinking between alpha and beta subunits defines the orientation and spatial relationship of some of the transmembrane helices of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli. Biochem Biophys Res Commun 2000; 273:955-9. [PMID: 10891354 DOI: 10.1006/bbrc.2000.3037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli is composed of two types of subunits, alpha and beta, organized as an alpha(2)beta(2) tetramer. The protein contains three recognizable domains, of which domain II is the transmembrane region of the molecule containing the pathway for proton translocation. Domain II is composed of four transmembrane helices at the carboxyl-terminus of the alpha subunit and either eight or nine transmembrane helices at the amino-terminal region of the beta subunit. We have introduced pairs of cysteine residues into a cysteine-free transhydrogenase by site-directed mutagenesis. Disulfide bond formation between some of these cysteine residues occurred spontaneously or on treatment with cupric 1, 10-phenanthrolinate. Analysis of crosslinked products confirmed that there are nine transmembrane helices in the domain II region of the beta subunit. The proximity to one another of several of the transmembrane helices was determined. Thus, helices 2 and 4 are close to helix 6 (nomenclature of Meuller and Rydström, J. Biol. Chem. 274, 19072-19080, 1999), and helix 3 and the carboxyl-terminal eight residues of the alpha subunit are close to helix 7. In the alpha(2)beta(2) tetramer, helices 2 and 4 of one alpha subunit are close to the same pair of transmembrane helices of the other alpha subunit, and helix 6 of one beta subunit is close to helix 6 of the other beta subunit.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | | |
Collapse
|
15
|
Bizouarn T, Fjellström O, Axelsson M, Korneenko TV, Pestov NB, Ivanova MV, Egorov MV, Shakhparonov M, Rydström J. Interactions between the soluble domain I of nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum and transhydrogenase from Escherichia coli. Effects on catalytic and H+-pumping activities. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3281-8. [PMID: 10824114 DOI: 10.1046/j.1432-1327.2000.01358.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nicotinamide nucleotide transhydrogenase from Escherichia coli is composed of two subunits, the alpha and the beta subunits, each of which contains a hydrophilic domain, domain I and III, respectively, as well as several transmembrane helices, collectively denoted domain II. The interactions between domain I from Rhodospirillum rubrum (rrI) and the intact or the protease-treated enzyme from E. coli was investigated using the separately expressed and purified domain I from R. rubrum, and His-tagged intact and trypsin-treated E. coli transhydrogenase. Despite harsh treatments with, e.g. detergents and denaturing agents, the alpha and beta subunits remained tightly associated. A monoclonal antibody directed towards the alpha subunit was strongly inhibitory, an effect that was relieved by added rrI. In addition, rrI also reactivated the trypsin-digested E. coli enzyme in which domain I had been partly removed. This suggests that the hydrophilic domains I and III are not in permanent contact but are mobile during catalysis while being anchored to domain II. Replacement of domain I of intact, as well as trypsin-digested, E. coli transhydrogenase with rrI resulted in a markedly different pH dependence of the cyclic reduction of 3-acetyl-pyridine-NAD+ by NADH in the presence of NADP(H), suggesting that the protonation of one or more protonable groups in domain I is controlling this reaction. The reverse reaction and proton pumping showed a less pronounced change in pH dependence, demonstrating the regulatory role of domain II in these reactions.
Collapse
Affiliation(s)
- T Bizouarn
- Department of Biochemistry and Biophysics, Göteborg University, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bizouarn T, Fjellström O, Meuller J, Axelsson M, Bergkvist A, Johansson C, Göran Karlsson B, Rydström J. Proton translocating nicotinamide nucleotide transhydrogenase from E. coli. Mechanism of action deduced from its structural and catalytic properties. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1457:211-28. [PMID: 10773166 DOI: 10.1016/s0005-2728(00)00103-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transhydrogenase couples the stereospecific and reversible transfer of hydride equivalents from NADH to NADP(+) to the translocation of proton across the inner membrane in mitochondria and the cytoplasmic membrane in bacteria. Like all transhydrogenases, the Escherichia coli enzyme is composed of three domains. Domains I and III protrude from the membrane and contain the binding site for NAD(H) and NADP(H), respectively. Domain II spans the membrane and constitutes at least partly the proton translocating pathway. Three-dimensional models of the hydrophilic domains I and III deduced from crystallographic and NMR data and a new topology of domain II are presented. The new information obtained from the structures and the numerous mutation studies strengthen the proposition of a binding change mechanism, as a way to couple the reduction of NADP(+) by NADH to proton translocation and occurring mainly at the level of the NADP(H) binding site.
Collapse
Affiliation(s)
- T Bizouarn
- Department of Biochemistry and Biophysics, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
White SA, Peake SJ, McSweeney S, Leonard G, Cotton NP, Jackson JB. The high-resolution structure of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase from human heart mitochondria. Structure 2000; 8:1-12. [PMID: 10673423 DOI: 10.1016/s0969-2126(00)00075-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transhydrogenase, located in the inner membranes of animal mitochondria and the cytoplasmic membranes of bacteria, couples the transfer of reducing equivalents between NAD(H) and NADP(H) to proton pumping. The protein comprises three subunits termed dI, dII and dIII. The dII component spans the membrane. The dI component, which contains the binding site for NAD(+)/NADH, and the dIII component, which has the binding site for NADP(+)/NADPH, protrude from the membrane. Proton pumping is probably coupled to changes in the binding affinities of dIII for NADP(+) and NADPH. RESULTS The first X-ray structure of the NADP(H)-binding component, dIII, of human heart transhydrogenase is described here at 2.0 A resolution. It comprises a single domain resembling the classical Rossmann fold, but NADP(+) binds to dIII with a reversed orientation. The first betaalphabetaalphabeta motif of dIII contains a Gly-X-Gly-X-X-Ala/Val 'fingerprint', but it has a different function to that in the classical Rossmann structure. The nicotinamide ring of NADP(+) is located on a ridge where it is exposed to interaction with NADH on the dI subunit. Two distinctive features of the dIII structure are helix D/loop D, which projects from the beta sheet, and loop E, which forms a 'lid' over the bound NADP(+). CONCLUSIONS Helix D/loop D interacts with the bound nucleotide and loop E, and probably interacts with the membrane-spanning dII. Changes in ionisation and conformation in helix D/loop D, resulting from proton translocation through dII, are thought to be responsible for the changes in affinity of dIII for NADP(+) and NADPH that drive the reaction.
Collapse
Affiliation(s)
- S A White
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Recent developments have led to advances in our understanding of the structure and mechanism of action of proton-translocating (or AB) transhydrogenase. There is (a) a high-resolution crystal structure, and an NMR structure, of the NADP(H)-binding component (dIII), (b) a homology-based model of the NAD(H)-binding component (dI) and (c) an emerging consensus on the position of the transmembrane helices (in dII). The crystal structure of dIII, in particular, provides new insights into the mechanism by which the energy released in proton translocation across the membrane is coupled to changes in the binding affinities of NADP(+) and NADPH that drive the chemical reaction.
Collapse
Affiliation(s)
- J B Jackson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | |
Collapse
|
19
|
Bragg PD, Hou C. Effect of NBD chloride (4-chloro-7-nitrobenzo-2-oxa-1,3-diazole) on the pyridine nucleotide transhydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1413:159-71. [PMID: 10556628 DOI: 10.1016/s0005-2728(99)00090-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pyridine nucleotide transhydrogenases of bacterial cytosolic membranes and mitochondrial inner membranes are proton pumps in which hydride transfer between NADP(+) and NAD(+) is coupled to proton translocation across cytosolic or mitochondrial membranes. The pyridine nucleotide transhydrogenase of Escherichia coli is composed of two subunits (alpha and beta). Three domains are recognized. The extrinsic cytosolic domain 1 of the amino-terminal region of the alpha subunit bears the NAD(H)-binding site. The NADP(H)-binding site is present in domain 3, the extrinsic cytosolic carboxyl-terminal region of the beta subunit. Domain 2 is composed of the membrane-intrinsic carboxyl-terminal region of the alpha subunit and the membrane-intrinsic amino-terminal region of the beta subunit. Treatment of the transhydrogenase of E. coli with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD chloride) inhibited enzyme activity. Analysis of inhibition revealed that several sites on the enzyme were involved. NBD chloride modified two (betaCys-147 and betaCys-260) of the seven cysteine residues present in the transhydrogenase. Modification of betaCys-260 in domain 2 resulted in inhibition of enzyme activity. Modification of residues other than cysteine residues also resulted in inhibition of transhydrogenation as shown by use of a cysteine-free mutant enzyme. The beta subunit was modified by NBD chloride to a greater extent than the alpha subunit. Reaction of domain 2 and domain 3 was prevented by NADPH. Modification of domain 3 is probably not associated with inhibition of enzyme activity. Modification of domain 2 of the beta subunit resulted in a decreased binding affinity for NADPH at its binding site in domain 3. The product resulting from the reaction of NBD chloride with NADPH was a very effective inhibitor of transhydrogenation. In experiments with NBD chloride in the presence of NADPH it is likely that all of the sites of reaction described above will contribute to the inhibition observed. The NBD-NADPH adduct will likely be more useful than NBD chloride in investigations of the pyridine nucleotide transhydrogenase.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, B.C., Canada.
| | | |
Collapse
|
20
|
Meuller J, Rydström J. The membrane topology of proton-pumping Escherichia coli transhydrogenase determined by cysteine labeling. J Biol Chem 1999; 274:19072-80. [PMID: 10383409 DOI: 10.1074/jbc.274.27.19072] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane topology of proton-pumping nicotinamide-nucleotide transhydrogenase from Escherichia coli was determined by site-specific chemical labeling. A His-tagged cysteine-free transhydrogenase was used to introduce unique cysteines in positions corresponding to potential membrane loops. The cysteines were reacted with fluorescent reagents, fluorescein 5-maleimide or 2-[(4'-maleimidyl)anilino]naphthalene-6-sulfonic acid, in both intact cells and inside-out vesicles. Labeled transhydrogenase was purified with a small-scale procedure using a metal affinity resin, and the amount of labeling was measured as fluorescence on UV-illuminated acrylamide gels. The difference in labeling between intact cells and inside-out vesicles was used to discriminate between a periplasmic and a cytosolic location of the residues. The membrane region was found to be composed of 13 helices (four in the alpha-subunit and nine in the beta-subunit), with the C terminus of the alpha-subunit and the N terminus of the beta-subunit facing the cytosolic and periplasmic sides, respectively. These results differ from previous models with regard to both number of helices and the relative location and orientation of certain helices. This study constitutes the first in which all transmembrane segments of transhydrogenase have been experimentally determined and provides an explanation for the different topologies of the mitochondrial and E. coli transhydrogenases.
Collapse
Affiliation(s)
- J Meuller
- Department of Chemistry, Division of Biochemistry and Biophysics, Göteborg University and Chalmers University of Technology, Medicinaregatan 9C, P. O. Box 462, 40530 Göteborg, Sweden
| | | |
Collapse
|
21
|
Quirk PG, Jeeves M, Cotton NP, Smith JK, Jackson BJ. Structural changes in the recombinant, NADP(H)-binding component of proton translocating transhydrogenase revealed by NMR spectroscopy. FEBS Lett 1999; 446:127-32. [PMID: 10100628 DOI: 10.1016/s0014-5793(99)00198-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have analysed 1H, 15N-HSQC spectra of the recombinant, NADP(H)-binding component of transhydrogenase in the context of the emerging three dimensional structure of the protein. Chemical shift perturbations of amino acid residues following replacement of NADP+ with NADPH were observed in both the adenosine and nicotinamide parts of the dinucleotide binding site and in a region which straddles the protein. These observations reflect the structural changes resulting from hydride transfer. The interactions between the recombinant, NADP(H)-binding component and its partner, NAD(H)-binding protein, are complicated. Helix B of the recombinant, NADP(H)-binding component may play an important role in the binding process.
Collapse
Affiliation(s)
- P G Quirk
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | | | | | |
Collapse
|
22
|
Fjellström O, Axelsson M, Bizouarn T, Hu X, Johansson C, Meuller J, Rydström J. Mapping of residues in the NADP(H)-binding site of proton-translocating nicotinamide nucleotide transhydrogenase from Escherichia coli. A study of structure and function. J Biol Chem 1999; 274:6350-9. [PMID: 10037725 DOI: 10.1074/jbc.274.10.6350] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conformational changes in proton pumping transhydrogenases have been suggested to be dependent on binding of NADP(H) and the redox state of this substrate. Based on a detailed amino acid sequence analysis, it is argued that a classical betaalphabetaalphabeta dinucleotide binding fold is responsible for binding NADP(H). A model defining betaA, alphaB, betaB, betaD, and betaE of this domain is presented. To test this model, four single cysteine mutants (cfbetaA348C, cfbetaA390C, cfbetaK424C, and cfbetaR425C) were introduced into a functional cysteine-free transhydrogenase. Also, five cysteine mutants were constructed in the isolated domain III of Escherichia coli transhydrogenase (ecIIIH345C, ecIIIA348C, ecIIIR350C, ecIIID392C, and ecIIIK424C). In addition to kinetic characterizations, effects of sulfhydryl-specific labeling with N-ethylmaleimide, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid, and diazotized 3-aminopyridine adenine dinucleotide (phosphate) were examined. The results are consistent with the view that, in agreement with the model, beta-Ala348, beta-Arg350, beta-Ala390, beta-Asp392, and beta-Lys424 are located in or close to the NADP(H) site. More specifically, beta-Ala348 succeeds betaB. The remarkable reactivity of betaR350C toward NNADP suggests that this residue is close to the nicotinamide moiety of NADP(H). beta-Ala390 and beta-Asp392 terminate or succeed betaD, and are thus, together with the region following betaA, creating the switch point crevice where NADP(H) binds. beta-Asp392 is particularly important for the substrate affinity, but it could also have a more complex role in the coupling mechanism for transhydrogenase.
Collapse
Affiliation(s)
- O Fjellström
- Department of Biochemistry and Biophysics, Göteborg University and Chalmers University of Technology, S-405 30, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Bragg PD, Hou C. Mutation of conserved polar residues in the transmembrane domain of the proton-pumping pyridine nucleotide transhydrogenase of Escherichia coli. Arch Biochem Biophys 1999; 363:182-90. [PMID: 10049513 DOI: 10.1006/abbi.1998.1062] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pyridine nucleotide transhydrogenase carries out transmembrane proton translocation coupled to transfer of a hydride ion equivalent between NAD+ and NADP+. Previous workers (E. Holmberg et al. Biochemistry 33, 7691-7700, 1994; N. A. Glavas et al. Biochemistry 34, 7694-7702, 1995) had examined the role in proton translocation of conserved charged residues in the transmembrane domain. This study was extended to examine the role of conserved polar residues of the transmembrane domain. Site-directed mutagenesis of these residues did not produce major effects on hydride transfer or proton translocation activities except in the case of betaAsn222. Most mutants of this residue were drastically impaired in these activities. Three phenotypes were recognized. In betaN222C both activities were impaired maximally by 70%. The retention of proton translocation indicated that betaAsn222 was not directly involved in proton translocation. In betaN222H both activities were drastically reduced. Binding of NADP+ but not of NADPH was impaired. In betaN222R, by contrast, NADP+ remained tightly bound to the mutant transhydrogenase. It is concluded that betaAsn222, located in a transmembrane alpha-helix, is part of the conformational pathway by which NADP(H) binding, which occurs outside of the transmembrane domain, is coupled to proton translocation. Some nonconserved or semiconserved polar residues of the transmembrane domain were also examined by site-directed mutagenesis. Interaction of betaGlu124 with the proton translocation pathway is proposed.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | | |
Collapse
|
24
|
Bragg PD, Hou C. Effect of truncation and mutation of the carboxyl-terminal region of the beta subunit on membrane assembly and activity of the pyridine nucleotide transhydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:464-72. [PMID: 9711299 DOI: 10.1016/s0005-2728(98)00100-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli is a proton pump composed of two different subunits (alpha and beta) assembled as a tetramer (alpha 2 beta 2) in the cytoplasmic membrane. A series of mutants was generated in which the carboxyl-terminal region of the beta subunit was progressively truncated. Removal of the two carboxyl-terminal amino acid residues prevented incorporation of the enzyme into the cytoplasmic membrane. Deletion of the carboxyl-terminal amino acid allowed incorporation of the alpha subunit to near normal levels, but the amount of the beta subunit was much decreased. It is concluded that, although the alpha subunit can be incorporated into the cytoplasmic membrane without the beta subunit, the carboxyl-terminal region of the beta subunit is involved in determining the correct conformation of the alpha subunit for assembly. The carboxyl-terminal amino acid of the beta subunit, beta Leu462, and the penultimate residue, beta Ala461, were individually mutated and the effect on two transhydrogenase activities determined. The reduction of 3-acetylpyridine adenine dinucleotide (AcPyAD+) by NADPH, and by NADH in the presence of NADP+, was decreased maximally by about 60%. The reduction of AcPyAD+ by NADH in the absence of NADP+ was decreased to a greater extent. Most mutants of beta Leu462 showed at least an 80% reduction in activity as well as abnormal kinetics. The abnormal kinetics were explored in the beta A461P mutant and were attributed to tighter binding of the product AcPyADH. This compound competed with NADP+ at the NADP(H)-binding site. It is concluded that the carboxyl-terminal region of the beta subunit contributes to the NADP(H)-binding site on this subunit.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
25
|
Bragg PD. Site-directed mutagenesis of the proton-pumping pyridine nucleotide transhydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:98-104. [PMID: 9693728 DOI: 10.1016/s0005-2728(98)00049-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli catalyzes the reversible transfer of hydride ion equivalents between NAD+ and NADP+ coupled to the translocation of protons across the cytoplasmic membrane. It is composed of two subunits (alpha, beta) organized as an alpha 2 beta 2 tetramer. This brief review describes the use of site-directed mutagenesis to investigate the structure, mechanism and assembly of the transhydrogenase. This technique has located the binding sites for NAD(H) and NADP(H) in the alpha and beta subunits, respectively. Mutagenesis has shown that the cysteine residues of the enzyme are not essential for its function, and that inhibition of the enzyme by sulfhydryl-specific reagents must be due to perturbation of the three-dimensional structure. The sites of reaction of the inhibitors N,N'-dicyclohexylcarbodiimide and N-(1-pyrene)maleimide have been located. Selective mutation and insertion of cysteine residues followed by cupric o-phenanthrolinate-induced disulfide crosslinking has defined a region of interaction between the alpha subunits in the holoenzyme. Determination of the accessibility of selectively inserted cysteine residues has been used to determine the folding pattern of the transmembrane helices of the beta subunit. Site-directed mutagenesis of the transmembrane domain of the beta subunit has permitted the identification of histidine, aspartic acid and asparagine residues which are part of the proton-pumping pathway of the transhydrogenase. Site-directed mutagenesis and amino acid deletions have shown that the six carboxy terminal residues of the alpha subunit and the two carboxy terminal residues of the beta subunit are necessary for correct assembly of the transhydrogenase in the cytoplasmic membrane.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
26
|
Rydström J, Hu X, Fjellström O, Meuller J, Zhang J, Johansson C, Bizouarn T. Domains, specific residues and conformational states involved in hydride ion transfer and proton pumping by nicotinamide nucleotide transhydrogenase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:10-6. [PMID: 9693716 DOI: 10.1016/s0005-2728(98)00038-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nicotinamide nucleotide transhydrogenase constitutes a proton pump which links the NAD(H) and NADP(H) pools in the cell by catalyzing a reversible reduction of NADP+ by NADH. The recent cloning and characterization of several proton-pumping transhydrogenases show that they share a number of features. They are composed of three domains, i.e., the hydrophilic domains I and III containing the NAD(H)- and NADP(H)-binding sites, respectively, and domain II containing the transmembrane and proton-conducting region. When expressed separately, the two hydrophilic domains interact directly and catalyze hydride transfer reactions similar to those catalyzed by the wild-type enzyme. An extensive mutagenesis program has established several amino acid residues as important for both catalysis and proton pumping. Conformational changes mediating the redox-driven proton pumping by the enzyme are being characterized. With the cloned, well-characterized and easily accessible transhydrogenases from E. coli and Rhodospirillum rubrum at hand, the overall aim of the transhydrogenase research, the understanding of the conformationally driven proton pumping mechanism, is within reach.
Collapse
Affiliation(s)
- J Rydström
- Department of Chemistry, Göteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Bizouarn T, Stilwell S, Venning J, Cotton NP, Jackson JB. The pH dependences of reactions catalyzed by the complete proton-translocating transhydrogenase from Rhodospirillum rubrum, and by the complex formed from its recombinant nucleotide-binding domains. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1322:19-32. [PMID: 9398076 DOI: 10.1016/s0005-2728(97)00065-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transhydrogenase couples the translocation of protons across a membrane to the transfer of reducing equivalents between NAD(H) and NADP(H). Using transhydrogenase from Rhodospirillum rubrum we have examined the pH dependences of the 'forward' and 'reverse' reactions, and of the 'cyclic' reaction (NADP(H)-dependent reduction of the analogue, acetyl pyridine adenine dinucleotide, by NADH). In the case of the membrane-bound protein in chromatophores, the imposition of a protonmotive force through the action of the light-driven electron-transport system, stimulated forward transhydrogenation, inhibited reverse transhydrogenation, but had no effect on the cyclic reaction. The differential response at a range of pH values provides evidence that hydride transfer per se is not coupled to proton translocation and supports the view that energy transduction occurs at the level of NADP(H) binding. Chromatophore transhydrogenase and the detergent-dispersed enzyme both have bell-shaped pH dependences for forward and reverse transhydrogenation. The cyclic reaction, however, is rapid at low and neutral pH, and is attenuated only at high pH. A mixture of recombinant purified NAD(H)-binding domain I, and NADP(H)-binding domain III, of R. rubrum transhydrogenase carry out the cyclic reaction with a similar pH profile to that of the complete enzyme, but the forward and reverse reactions were much less pH dependent. The rates of release of NADP+ and of NADPH from isolated domain III were pH independent. The results are consistent with a model for transhydrogenation, in which proton binding from one side of the membrane is consequent upon the binding of NADP+ to the enzyme, and then proton release on the other side of the membrane precedes NADPH release.
Collapse
Affiliation(s)
- T Bizouarn
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | | | | | |
Collapse
|
28
|
Meuller J, Zhang J, Hou C, Bragg PD, Rydström J. Properties of a cysteine-free proton-pumping nicotinamide nucleotide transhydrogenase. Biochem J 1997; 324 ( Pt 2):681-7. [PMID: 9182734 PMCID: PMC1218482 DOI: 10.1042/bj3240681] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nicotinamide nucleotide transhydrogenase from Escherichia coli was investigated with respect to the roles of its cysteine residues. This enzyme contains seven cysteines, of which five are located in the alpha subunit and two are in the beta subunit. All cysteines were replaced by site-directed mutagenesis. The final construct (alphaC292T, alphaC339T, alphaC395S, alphaC397T, alphaC435S, betaC147S, betaC260S) was inserted normally in the membrane and underwent the normal NADPH-dependent conformational change of the beta subunit to a trypsin-sensitive state. Reduction of NADP+ by NADH driven by ATP hydrolysis or respiration was between 32% and 65% of the corresponding wild-type activities. Likewise, the catalytic and proton pumping activities of the purified cysteine-free enzyme were at least 30% of the purified wild-type enzyme activities. The H+/H- ratio for both enzymes was 0.5, although the cysteine-free enzyme appeared to be more stable than the wild-type enzyme in proteoliposomes. No bound NADP(H) was detected in the enzymes. Modification of transhydrogenase by diethyl pyrocarbonate and the subsequent inhibition of the enzyme were unaffected by removal of the cysteines, indicating a lack of involvement of cysteines in this process. Replacement of cysteine residues in the alpha subunit resulted in no or little change in activity, suggesting that the basis for the decreased activity was probably the modification of the conserved beta-subunit residue Cys-260 or (less likely) the non-conserved beta-subunit residue Cys-147. It is concluded that the cysteine-free transhydrogenase is structurally and mechanistically very similar to the wild-type enzyme, with minor modifications of the properties of the NADP(H) site, possibly mediated by the betaC260S mutation. The cysteine-free construct will be a valuable tool for studying structure-function relationships of transhydrogenases.
Collapse
Affiliation(s)
- J Meuller
- Department of Biochemistry and Biophysics, Göteborg University, S-413 90 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
29
|
Stilwell SN, Bizouarn T, Jackson JB. The reduction of acetylpyridine adenine dinucleotide by NADH: is it a significant reaction of proton-translocating transhydrogenase, or an artefact? BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:83-94. [PMID: 9186780 DOI: 10.1016/s0005-2728(97)00016-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transhydrogenase is a proton pump. It has separate binding sites for NAD+/NADH (on domain I of the protein) and for NADP+/NADPH (on domain III). Purified, detergent-dispersed transhydrogenase from Escherichia coli catalyses the reduction of the NAD+ analogue, acetylpyridine adenine dinucleotide (AcPdAD+), by NADH at a slow rate in the absence of added NADP+ or NADPH. Although it is slow, this reaction is surprising, since transhydrogenase is generally thought to catalyse hydride transfer between NAD(H)--or its analogues and NADP(H)--or its analogues, by a ternary complex mechanism. It is shown that hydride transfer occurs between the 4A position on the nicotinamide ring of NADH and the 4A position of AcPdAD+. On the basis of the known stereospecificity of the enzyme, this eliminates the possibilities of transhydrogenation(a) from NADH in domain I to AcPdAD+ wrongly located in domain III; and (b) from NADH wrongly located in domain III to AcPdAD+ in domain I. In the presence of low concentrations of added NADP+ or NADPH, detergent-dispersed E. coli transhydrogenase catalyses the very rapid reduction of AcPdAD+ by NADH. This reaction is cyclic; it takes place via the alternate oxidation of NADPH by AcPdAD+ and the reduction of NADP+ by NADH, while the NADPH and NADP+ remain tightly bound to the enzyme. In the present work, it is shown that the rate of the cyclic reaction and the rate of reduction of AcPdAD+ by NADH in the absence of added NADP+/NADPH, have similar dependences on pH and on MgSO4 concentration and that they have a similar kinetic character. It is therefore suggested that the reduction of AcPdAD+ by NADH is actually a cyclic reaction operating, either with tightly bound NADP+/NADPH on a small fraction (< 5%) of the enzyme, or with NAD+/NADH (or AcPdAD+/AcPdADH) unnaturally occluded within the domain III site. Transhydrogenase associated with membrane vesicles (chromatophores) of Rhodospirillum rubrum also catalyses the reduction of AcPdAD+ by NADH in the absence of added NADP+/NADPH. When the chromatophores were stripped of transhydrogenase domain I, that reaction was lost in parallel with 'normal reverse' transhydrogenation (e.g., the reduction of AcPdAD+ by NADPH). The two reactions were fully recovered upon reconstitution with recombinant domain I protein. However, after repeated washing of the domain I-depleted chromatophores, reverse transhydrogenation activity (when assayed in the presence of domain I) was retained, whereas the reduction of AcPdAD+ by NADH declined in activity. Addition of low concentrations of NADP+ or NADPH always supported the same high rate of the NADH-->AcPdAD+ reaction independently of how often the membranes were washed. It is concluded that, as with the purified E. coli enzyme, the reduction of AcPdAD+ by NADH in chromatophores is a cyclic reaction involving nucleotides that are tightly bound in the domain III site of transhydrogenase. However, in the case of R. rubrum membranes it can be shown with some certainty that the bound nucleotides are NADP+ or NADPH. The data are thus adequately explained without recourse to suggestions of multiple nucleotide-binding sites on transhydrogenase.
Collapse
Affiliation(s)
- S N Stilwell
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | |
Collapse
|
30
|
Bragg PD, Hou C. The role of conserved histidine residues in the pyridine nucleotide transhydrogenase of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:611-8. [PMID: 8917463 DOI: 10.1111/j.1432-1033.1996.00611.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli catalyzes the reversible transfer of hydride ion equivalents between NAD+ and NADP+, coupled to translocation of protons across the cytoplasmic membrane. The role of histidine residues in catalysis was investigated by chemical modification with diethylpyrocarbonate and by site-directed mutagenesis. Diethylpyrocarbonate inhibited both hydride ion transfer and coupled proton translocation. Histidine residues were modified as shown spectroscopically and by the ability of hydroxylamine to cause reversal of inhibition. Complete inhibition of hydride ion transfer occurred following modification of 10 residues/enzyme molecule. Site-directed mutagenesis of single conserved histidine residues or the presence of substrates did not provide resistance to inhibition by diethylpyrocarbonate. It is concluded that diethylpyrocarbonate inhibition was a consequence of the structural changes brought about by modification of many histidine residues. With the exception of beta-subunit residue His91 (beta His91), in which mutation can result in specific loss of proton translocation activity [Glavas, N. A., Hou, C. & Bragg, P. D. (1995) Biochemistry 34, 7694-7702], site-directed mutation of the remaining conserved residues alpha His450, beta His161, beta His345 and beta His354 did not demonstrate a direct role for these residues in catalysis. Mutation of beta His161 had relatively little effect on the properties of the enzyme. By contrast, mutation of alpha His450, beta His345 and beta His354 caused major loss of enzyme activities which was probably due to alterations in the structure of the enzyme. These alterations were reflected in changes in the K(m) values for transhydrogenation.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
31
|
Sazanov LA, Jackson JB. Cyclic reactions catalysed by detergent-dispersed and reconstituted transhydrogenase from beef-heart mitochondria; implications for the mechanism of proton translocation. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:304-12. [PMID: 7578218 DOI: 10.1016/0005-2728(95)00096-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transhydrogenase from beef-heart mitochondria was solubilised with Triton X-100 and purified by column chromatography. The detergent-dispersed enzyme catalysed the reduction of acetylpyridine adenine dinucleotide (AcPdAD+) by NADH, but only in the presence of NADP+. Experiments showed that this reaction was cyclic; NADP(H), whilst remaining bound to the enzyme, was alternately reduced by NADH and oxidised by AcPdAD+. A period of incubation of the enzyme with NADPH at pH 6.0 led to inhibition of the simple transhydrogenation reaction between AcPdAD+ and NADPH. However, after such treatment, transhydrogenase acquired the ability to catalyse the (NADPH-dependent) reduction of AcPdAD+ by NADH. It is suggested that this is a similar cycle to the one described above. Evidently, the binding affinity for NADP+ increases as a consequence of the inhibition process resulting from prolonged incubation with NADPH. The pH dependences of simple and cyclic transhydrogenation reactions are described. Though more complex than those in Escherichia coli transhydrogenase, they are consistent with the view [Hutton, M., Day, J.M., Bizouarn, T. and Jackson, J.B. (1994) Eur. J. Biochem. 219, 1041-1051] that, also in the mitochondrial enzyme, binding and release of NADP+ and NADPH are accompanied by binding and release of a proton. The enzyme was successfully reconstituted into liposomes by a cholate dilution procedure. The proteoliposomes catalysed cyclic NADPH-dependent reduction of AcPdAD+ by NADH only when they were tightly coupled. However, they catalysed cyclic NADP(+)-dependent reduction of AcPdAD+ by NADH only when they were uncoupled eg. by addition of carbonylcyanide-p-trifluoromethoxyphenyl hydrazone.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L A Sazanov
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | |
Collapse
|
32
|
Glavas NA, Bragg PD. The mechanism of hydride transfer between NADH and 3-acetylpyridine adenine dinucleotide by the pyridine nucleotide transhydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:297-303. [PMID: 7578217 DOI: 10.1016/0005-2728(95)00089-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli catalyzes the reversible transfer of hydride ion equivalents between NAD+ and NADP+ coupled to translocation of protons across the cytoplasmic membrane. Recently, transhydrogenation of 3-acetylpyridine adenine dinucleotide (AcPyAD+), an analog of NAD+, by NADH has been described using a solubilized preparation of E. coli transhydrogenase [Hutton, M., Day, J.M., Bizouarn, T., and Jackson, J.B. (1994) Eur. J. Biochem. 219, 1041-1051]. This reaction depended on the presence of NADP(H). We show that (a) this reaction did not require NADP(H) at pH 6 in contrast to pH 8; (b) the reaction occurred at pH 8 in the absence of NADP(H) in the mutant beta H91K and in a mutant in which six amino acids of the carboxy-terminus of the alpha subunit had been deleted; (c) the mutant transhydrogenases contained bound NADP+ and were in a conformation in which the beta subunit was digestible by trypsin; (d) the conformation of the beta subunit of the wild-type enzyme was made susceptible to trypsin digestion by NADP(H) or by placing the enzyme at pH 6 in the absence of NADP(H). It is concluded that reduction of AcPyAD+ by NADH does not involve NADPH as an intermediate and that the role of NADP(H) in this reaction at pH 8 is to cause the transhydrogenase to adopt a conformation favouring transhydrogenation between NADH and AcPyAD+.
Collapse
Affiliation(s)
- N A Glavas
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
33
|
Diggle C, Cotton NP, Grimley RL, Quirk PG, Thomas CM, Jackson JB. Conformational dynamics of a mobile loop in the NAD(H)-binding subunit of proton-translocating transhydrogenases from Rhodospirillum rubrum and Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:315-26. [PMID: 7556167 DOI: 10.1111/j.1432-1033.1995.tb20814.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transhydrogenase catalyses the reversible transfer of reducing equivalents between NAD(H) and NADP(H) to the translocation of protons across a membrane. Uniquely in Rhodospirillum rubrum, the NAD(H)-binding subunit (called Ths) exists as a separate subunit which can be reversibly dissociated from the membrane-located subunits. We have expressed the gene for R. rubrum Ths in Escherichia coli to yield large quantities of protein. Low concentrations of either trypsin or endoproteinase Lys-C lead to cleavage of purified Ths specifically at Lys227-Thr228 and Lys237-Glu238. Observations on the one-dimensional 1H-NMR spectra of Ths before and after proteolysis indicate that the segment which straddles the cleavage sites forms a mobile loop protruding from the surface of the protein. Alanine dehydrogenase, which is very similar in sequence to the NAD(H)-binding subunit of transhydrogenase, lacks this segment. Limited proteolytic cleavage has little effect on some of the structural characteristics of Ths (its dimeric nature, its ability to bind to the membrane-located subunits of transhydrogenase, and the short-wavelength fluorescence emission of a unique Trp residue) but does decrease the NADH-binding affinity, and does lower the catalytic activity of the reconstituted complex. The presence of NADH protects against trypsin or Lys-C cleavage, and leads to broadening, and in some cases, shifting, of NMR spectral signals associated with amino acid residues in the surface loop. This indicates that the loop becomes less mobile after nucleotide binding. Observation by NMR during a titration of Ths with NAD+ provides evidence of a two-step nucleotide binding reaction. By introducing an appropriate stop codon into the gene coding for the polypeptide of E. coli transhydrogenase cloned into an expression vector, we have prepared the NAD(H)-binding domain equivalent to Ths. The E. coli protein is sensitive to proteolysis by either trypsin or Lys-C in the mobile loop. Judging by the effect of NADH on its NMR spectrum and on the fluorescence of its Trp residues, the protein is capable of binding the nucleotide though it is unable to dock with the membrane-located subunits of transhydrogenase from R. rubrum.
Collapse
Affiliation(s)
- C Diggle
- School of Biochemistry, University of Birmingham, UK
| | | | | | | | | | | |
Collapse
|
34
|
Olausson T, Fjellström O, Meuller J, Rydström J. Molecular biology of nicotinamide nucleotide transhydrogenase--a unique proton pump. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:1-19. [PMID: 7640288 DOI: 10.1016/0005-2728(95)00058-q] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T Olausson
- Department of Biochemistry and Biophysics, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | |
Collapse
|
35
|
Bizouarn T, Grimley RL, Cotton NP, Stilwell SN, Hutton M, Jackson JB. The involvement of NADP(H) binding and release in energy transduction by proton-translocating nicotinamide nucleotide transhydrogenase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1229:49-58. [PMID: 7703263 DOI: 10.1016/0005-2728(94)00186-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proton-translocating transhydrogenase was solubilised and purified from membranes of Escherichia coli. Consistent with recent evidence [Hutton, M., Day, J., Bizouarn, T. and Jackson, J.B. (1994) Eur. J. Biochem. 219, 1041-1051], at low pH and salt concentration, the enzyme catalysed rapid reduction of the NAD+ analogue AcPdAD+ by a combination of NADH and NADPH. At saturating concentrations of NADPH, the dependence of the steady-state rate on the concentrations of NADH and AcPdAD+ indicated that, with respect to these two nucleotides, the reaction proceeds by a ping-pong mechanism. High concentrations of either NADH or AcPdAD+ led to substrate inhibition. These observations support the view that, in this reaction, NADP(H) remains bound to the enzyme: AcPdAD+ is reduced by enzyme-bound NADPH, and NADH is oxidised by enzyme-bound NADP+, in a cyclic process. When this reaction was carried out with [4A-2H]NADH replacing [4A-1H]NADH, the rate was decreased by 46%, suggesting that the H- transfer steps are rate-limiting. In simple 'reverse' transhydrogenation, the reduction of AcPdAD+ was slower with [4B-2H]NADPH than with [4B-1H]NADPH when the reaction was performed at pH 8.0, but there was no deuterium isotope effect at pH 6.0. This indicates that H- transfer is rate-limiting at pH 8.0 and supports our earlier suggestion that NADP+ release from the enzyme is rate-limiting at low pH. The lack of a deuterium isotope effect in the reduction of thio-NADP+ by NADH at low pH is also consistent with the view that NADPH release from the enzyme is slow under these conditions. A steady-state rate equation is derived for the reduction of AcPdAD+ by NADPH plus NADH, assuming operation of the cyclic pathway. It adequately accounts for the pH dependence of the enzyme, for the features described above and for kinetic characteristics of E. coli transhydrogenase described in the literature.
Collapse
Affiliation(s)
- T Bizouarn
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | | | | | | | |
Collapse
|
36
|
Hu X, Zhang JW, Persson A, Rydström J. Characterization of the interaction of NADH with proton pumping E. coli transhydrogenase reconstituted in the absence and in the presence of bacteriorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1229:64-72. [PMID: 7703264 DOI: 10.1016/0005-2728(94)00187-a] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
(1) Proton-pumping nicotinamide nucleotide transhydrogenase from Escherichia coli was purified in a reconstitutively active form employing affinity chromatography on immobilized palmitoyl-Coenzyme A. Reconstituted transhydrogenase showed an active proton pumping and a stimulation of the rate of reduction of 3-acetylpyridine-NAD+ by NADPH by uncouplers. Reconstitution in the absence of a thiol-reducing agent, e.g. dithiothreitol, abolished proton pumping without affecting catalytic activity, giving a decoupled transhydrogenase. (2) Co-reconstitution of transhydrogenase with bacteriorhodopsin gave vesicles which catalyzed a 5-10-fold increased rate of reduction of thio-NADP+ by NADH in the light. The Km for NADH, but not that for thio-NADP+, decreased markedly in the light, indicating an effect of the electrochemical proton potential on the affinity of the enzyme for NADH. Inhibition by substrate derivatives in the absence or presence of light supported this conclusion. Replacement of NADH with 2'-deoxy-NADH gave a strongly sigmoidal concentration dependence, indicating an allosteric change induced by binding to the NAD(H)-site. (3) Reduction of 3-acetylpyridine-NAD+ by NADH in the presence of NADPH, previously demonstrated to be catalyzed by both reconstituted bovine transhydrogenase and detergent-dispersed E. coli transhydrogenase, occurred at a pH below 6.5. This reaction did not pump protons. Proton pumping by 3-acetylpyridine-NAD+ plus NADPH occurred at a pH above 5.5. The two reactions were thus close to mutually exclusive, with a cross point at pH 5.8. Assuming a helix bundle structure of the membrane domain of transhydrogenase, a model is proposed involving histidine 91 of the beta subunit which previously was shown to be essential by site-directed mutagenesis. According to the model the extent of protonation of this histidine determines whether proton pumping or the NADH-3-acetylpyridine-NAD+ reaction takes place.
Collapse
Affiliation(s)
- X Hu
- Department of Biochemistry and Biophysics, Lundberg Laboratory, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | |
Collapse
|
37
|
Diggle C, Hutton M, Jones GR, Thomas CM, Jackson JB. Properties of the soluble polypeptide of the proton-translocating transhydrogenase from Rhodospirillum rubrum obtained by expression in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:719-26. [PMID: 7737169 DOI: 10.1111/j.1432-1033.1995.tb20315.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transhydrogenase, which catalyses the reduction of NADP+ by NADH coupled to proton translocation across a membrane, may be unique in the photosynthetic bacterium Rhodospirillum rubrum. Unlike the homologous enzyme from animal mitochondria and other bacterial sources, it has a water-soluble polypeptide, which exists as a dimer (Ths), that can be reversibly dissociated from the membrane component [Williams, R., Cotton, N. P. J., Thomas, C. M. & Jackson, J. B. (1994) Microbiology, 140, 1595-1604]. We have expressed the gene for Ths in cells of Escherichia coli under control of the tac promoter and a strong ribosome binding site. The protein, purified by column chromatography, fully reconstituted transhydrogenation activity to everted membrane vesicles of Rhs. rubrum that had been washed to remove Ths. The purified expressed protein was prepared in quantities over 100-fold greater than were obtained from wild-type Rhs. rubrum. The fluorescence spectrum of purified expressed Ths had an intense and unusually short wavelength emission maximum at 310 nm with shoulders at 298 and 322 nm. Time-resolved measurements indicated that the fluorescence decay was almost monoexponential with a lifetime of 5.2 ns. On denaturation with 4 M guanidine hydrochloride, the emission band shifted to 352 nm and decreased in intensity. In the native protein, the fluorophore was relatively inaccessible to quenching solutes, such as iodide ions and acrylamide. It is concluded that the fluorescence emission arises mainly from the single tryptophan residue of Ths (Trp72), which is locked into a rigid conformation and is located in highly non-polar environment. The 310-nm fluorescence of Ths was quenched by NADH, maximally to 46%. The apparent binding constant was 18 microM. The fluorescence of Ths-bound NADH was enhanced relative to the nucleotide in free solution and its emission maximum was shifted to a shorter wavelength (440 nm). These data support previous indications that the NADH binding site is located in domain I of proton-translocating transhydrogenase. Excitation of Ths at 280 nm did not lead to sensitized emission at 440 nm from bound NADH. This indicates that the quenching of fluorescence of Ths by NADH does not result from resonance energy transfer from Trp72 to the bound nucleotide. NAD+, NADP+ and NADPH had little effect on the protein fluorescence. The kinetics of quenching of Ths fluorescence by NADH were examined after mixing in a stopped-flow device. The 'on' rate constant for nucleotide binding was approximately 8 x 10(6) M-1 s-1 and the 'off' constant approximately 150 s-1.
Collapse
Affiliation(s)
- C Diggle
- School of Biochemistry, University of Birmingham, England
| | | | | | | | | |
Collapse
|
38
|
Fjellström O, Olausson T, Hu X, Källebring B, Ahmad S, Bragg PD, Rydström J. Three-dimensional structure prediction of the NAD binding site of proton-pumping transhydrogenase from Escherichia coli. Proteins 1995; 21:91-104. [PMID: 7777492 DOI: 10.1002/prot.340210203] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A three-dimensional structure of the NAD site of Escherichia coli transhydrogenase has been predicted. The model is based on analysis of conserved residues among the transhydrogenases from five different sources, homologies with enzymes using NAD as cofactors or substrates, hydrophilicity profiles, and secondary structure predictions. The present model supports the hypothesis that there is one binding site, located relatively close to the N-terminus of the alpha-subunit. The proposed structure spans residues alpha 145 to alpha 287, and it includes five beta-strands and five alpha-helices oriented in a typical open twisted alpha/beta conformation. The amino acid sequence following the GXGXXG dinucleotide binding consensus sequence (residues alpha 172 to alpha 177) correlates exactly to a typical fingerprint region for ADP binding beta alpha beta folds in dinucleotide binding enzymes. In the model, aspartic acid alpha 195 forms hydrogen bonds to one or both hydroxyl groups on the adenosine ribose sugar moiety. Threonine alpha 196 and alanine alpha 256, located at the end of beta B and beta D, respectively, create a hydrophobic sandwich with the adenine part of NAD buried inside. The nicotinamide part is located in a hydrophobic cleft between alpha A and beta E. Mutagenesis work has been carried out in order to test the predicted model and to determine whether residues within this domain are important for proton pumping directly. All data support the predicted structure, and no residue crucial for proton pumping was detected. Since no three-dimensional structure of transhydrogenase has been solved, a well based tertiary structure prediction is of great value for further experimental design in trying to elucidate the mechanism of the energy-linked proton pump.
Collapse
Affiliation(s)
- O Fjellström
- Department of Biochemistry and Biophysics, Göteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Holmberg E, Olausson T, Hultman T, Rydström J, Ahmad S, Glavas NA, Bragg PD. Prediction and site-specific mutagenesis of residues in transmembrane alpha-helices of proton-pumping nicotinamide nucleotide transhydrogenases from Escherichia coli and bovine heart mitochondria. Biochemistry 1994; 33:7691-700. [PMID: 8011636 DOI: 10.1021/bi00190a024] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nicotinamide nucleotide transhydrogenase from bovine heart consists of a single polypeptide of 109 kD. The complete gene for this transhydrogenase was constructed, and the protein primary structure was determined from the cDNA. As compared to the previously published sequences of partially overlapping clones, three residues differed: Ala591 (previously Phe), Val777 (previously Glu), and Ala782 (previously Arg). The Escherichia coli transhydrogenase consists of an alpha subunit of 52 kD and a beta subunit of 48 kD. Alignment of the protein primary structure of the bovine trashydrogenase with that of the transhydrogenase from E. coli showed an identity of 52%, indicating similarly folded structures. Prediction of transmembrane-spanning alpha-helices, obtained by applying several prediction algorithms to the primary structures of the revised bovine heart and E. coli transhydrogenases, yielded a model containing 10 transmembrane alpha-helices in both transhydrogenases. In E. coli transhydrogenase, four predicted alpha-helices were located in the alpha subunit and six alpha-helices were located in the beta subunit. Various conserved amino acid residues of the E. coli transhydrogenase located in or close to predicted transmembrane alpha-helixes were replaced by site-specific mutagenesis. Conserved negatively charged residues in predicted transmembrane alpha-helices possibly participating in proton translocation were identified as beta Glu82 (Asp655 in the bovine enzyme) and beta Asp213 (asp787 in the bovine enzyme) located close to the predicted alpha-helices 7 and 9 of the beta subunit. beta Glu82 was replaced by Lys or Gln and beta Asp213 by Asn or His. However, the catalytic as well as the proton pumping activity was retained. In contrast, mutagenesis of the conserved beta His91 residue (His664 in the bovine enzyme) to Ser, Thr, and Cys gave an essentially inactive enzyme. Mutation of alpha His450 (corresponding to His481 in the bovine enzyme) to Thr greatly lowered catalytic activity without abolishing proton pumping. Since no other conserved acidic or basic residues were predicted in transmembrane alpha-helices regardless of the prediction algorithm used, proton translocation by transhydrogenase was concluded to involve a basic rather than an acidic residue. The only conserved cysteine residue, beta Cys260 (Cys834 in the bovine enzyme), located in the predicted alpha-helix 10 of the E. coli transhydrogenase, previously suggested to function as a redox-active dithiol, proved not to be essential, suggesting that redox-active dithiols do not play a role in the mechanism of transhydrogenase.
Collapse
Affiliation(s)
- E Holmberg
- Biochemistry Department, Kabi Pharmacia, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
Hutton M, Day JM, Bizouarn T, Jackson JB. Kinetic resolution of the reaction catalysed by proton-translocating transhydrogenase from Escherichia coli as revealed by experiments with analogues of the nucleotide substrates. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:1041-51. [PMID: 8112317 DOI: 10.1111/j.1432-1033.1994.tb18587.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanism, by which transhydrogenase couples transfer of H- equivalents between NAD(H) and NADP(H) to the translocation of protons across a membrane, has been investigated in the solubilised, purified enzyme from Escherichia coli using analogues of the nucleotide substrates. The key observation was that, at low pH and ionic strength, solubilised transhydrogenase catalysed the very rapid reduction of acetylpyridine adenine dinucleotide (an analogue of NAD+) by NADH, but only in the presence of either NADP+ or NADPH. This indicates that the rates of release of NADP+ and NADPH from their binary complexes with the enzyme are slow. The dependences on pH and salt concentration suggest that (a) release of both NADP+ and NADPH are accompanied by the release of H+ from the enzyme and (b) increased ionic strength decreases the value of the pKa of the group responsible for H+ release. Modification of the enzyme with N,N1-dicyclohexylcarbodiimide led to inhibition of the rate of release of NADP+ and NADPH from the enzyme, but had a much smaller effect on the binding and release of NAD+, NADH and their analogues and on the interconversion of the ternary complexes of the enzyme with its substrates. It is considered that the binding and release of H+, which accompany the binding and release of NADP+/NADPH, might be central to the mechanism of proton translocation by the enzyme in its membrane-bound state.
Collapse
Affiliation(s)
- M Hutton
- School of Biochemistry, University of Birmingham, England
| | | | | | | |
Collapse
|
41
|
Vermeulen AN, Kok JJ, van den Boogaart P, Dijkema R, Claessens JA. Eimeria refractile body proteins contain two potentially functional characteristics: transhydrogenase and carbohydrate transport. FEMS Microbiol Lett 1993; 110:223-9. [PMID: 8349094 DOI: 10.1111/j.1574-6968.1993.tb06324.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
cDNA encoding an immunogenic protein from partially sporulated oocysts of Eimeria acervulina was cloned and used to search for the homologous counterpart in Eimeria tenella. Monospecific antibodies were raised against the recombinant expression product. Using these antibodies, the parasite proteins were found to be localised in the refractile bodies. The derived amino-acid sequences were compared by computer using the SWISSPROT protein database. In addition to high homology between the Eimeria species, extensive similarity was found with pyridine nucleotide transhydrogenase from Escherichia coli. Comparison with the sugar signature database also resulted in a possible sugar binding domain present only in the Eimeria proteins. It is possible that the corresponding parasite proteins play a role in the recently discovered mannitol cycle of Eimeria.
Collapse
Affiliation(s)
- A N Vermeulen
- Department of Parasitology, Intervet International B.V., Boxmeer, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Palmer T, Williams R, Cotton NP, Thomas CM, Jackson JB. Inhibition of proton-translocating transhydrogenase from photosynthetic bacteria by N,N'-dicyclohexylcarbodiimide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:663-9. [PMID: 8436126 DOI: 10.1111/j.1432-1033.1993.tb17594.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of N,N'-dicyclohexylcarbodiimide [(cHxN)2C] on the proton-translocating enzyme, NAD(P) H(+)-transhydrogenase (H(+)-Thase), from two species of phototrophic bacteria have been investigated. The polypeptides of H(+)-Thase from Rhodobacter capsulatus are membrane-associated, requiring detergent to maintain solubility. The enzyme from Rhodospirillum rubrum, however, has a water soluble polypeptide (Ths) and a membrane-associated component (Thm) which, separately, have no activity but which can be fully reconstituted to give a functional complex. Two observations suggest that (cHxN)2C inhibited H(+)-Thase from both species by modification either close to or at the NADP(H)-binding site on the enzyme: (a) the presence of NADP+ or NADPH caused increased inhibition by (cHxN)2C and (b) after treatment of the purified enzyme from Rb. capsulatus with (cHxN)2C, the release of NADP+ became rate-limiting, as evidenced by a stimulated rate of NADPH-dependent reduction of acetylpyridine adenine dinucleotide by NADH. Experiments in which Ths and Thm from R. rubrum were separately treated with (cHxN)2C then reconstituted with the complementary, untreated component revealed that the NADP(H)-enhanced modification by (cHxN)2C was confined to Thm. In contrast to some experiments with mitochondrial H(+)-Thase [Wakabayashi, S. & Hatefi, Y. (1987) Biochem. Int. 15, 667-675], there was no protective effect of either NAD+ or NADH on the inhibition by (cHxN)2C of enzyme from photosynthetic bacteria. However, amino acid sequence analysis of proteolytic fragments of Ths revealed that the NAD(H)-protectable, (cHxN)2C-reactive glutamate residue in mitochondrial H(+)-Thase might be replaced by glutamine in R. rubrum.
Collapse
Affiliation(s)
- T Palmer
- School of Biochemistry, University of Birmingham, England
| | | | | | | | | |
Collapse
|
43
|
Hu PS, Persson B, Höög JO, Jörnvall H, Hartog AF, Berden JA, Holmberg E, Rydström J. Energy-linked transhydrogenase. Characterization of a nucleotide-binding sequence in nicotinamide nucleotide transhydrogenase from beef heart. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1102:19-29. [PMID: 1324729 DOI: 10.1016/0005-2728(92)90060-f] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purified nicotinamide nucleotide transhydrogenase from beef heart was investigated with respect to labeling and subsequent sequence analysis of a nicotinamide nucleotide-binding site. A photo-activated azide derivative, 8-azidoadenosine 5'-monophosphate, was used as an active-site-directed photoaffinity label, which was shown to be specific for the NAD(H)-binding site in the dark. Light-activated incorporation of the label in transhydrogenase was accompanied by an inactivation, which approached 100% at the incorporation of about 1 mol label/mol transhydrogenase monomer. As expected from the assumed site-specificity of the label. NADH prevented both labeling and inactivation to some extent. However, NADPH also prevented labeling and inactivation marginally. The oxidized substrates NAD+ and NADP+ were inhibitory by themselves under these conditions, and the substrate analogs 5'-AMP and 2'-AMP were also poor protectors. The NAD(H)-site specificity of the azido compound was thus largely lost upon illumination and covalent modification. Radioactive labeling of transhydrogenase with 8-azido-[2-3H]-adenosine 5'-monophosphate followed by protease digestion, isolation of labeled peptides and amino-acid sequence analysis showed that Tyr 1006 in the sequence 1001-1027 close to the C-terminus was labeled. This sequence shows homologies with nucleotide-binding sequences in, e.g., F1-ATPase. On the basis of sequence homologies with other NAD(P)-dependent enzymes it is proposed that transhydrogenase contains 4 nucleotide-binding sites, of which 2 constitute the adenine nucleotide-binding domains of the catalytic sites for NAD(H) and NADP(H) close to the N- and C-terminals, respectively. Each of these domains has an additional vicinal nucleotide-binding sequence which may constitute a non-catalytic nucleotide-binding site or the nicotinamide nucleotide-binding domain of the catalytic site. The present results indicate that 8-azidoadenosine 5'-monophosphate is kinetically specific for the catalytic NAD(H)-binding site, but reacts covalently with Tyr 1006 of the putative non-catalytic site or nicotinamide nucleotide-binding domain formed by the 1001-1027 amino acid sequence of the catalytic NADP(H)-binding site. Interactions between the catalytic NAD(H) and NADP(H) binding sites, and the assumed non-catalytic sites, may be facilitated by a ligand-triggered formation of a narrow pocket, which normally allows an efficient hydride ion transfer between the natural substrates.
Collapse
Affiliation(s)
- P S Hu
- Department of Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ahmad S, Glavas NA, Bragg PD. A mutation at Gly314 of the beta subunit of the Escherichia coli pyridine nucleotide transhydrogenase abolishes activity and affects the NADP(H)-induced conformational change. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:733-9. [PMID: 1633824 DOI: 10.1111/j.1432-1033.1992.tb17103.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Escherichia coli RH1 contains a mutation causing complete loss of pyridine nucleotide transhydrogenase activity. A single base change in the chromosomal DNA resulted in the replacement of Gly314 of the beta subunit by a Glu residue. The mutant enzyme was partially purified and its trypsin cleavage products examined. The distinct pattern of polypeptides given by proteolysis of the normal transhydrogenase in the presence of NADP(H) was absent when the mutant enzyme was treated with trypsin. However, the beta subunit of the mutant enzyme retained its ability to bind to NAD-agarose. Further substitutions were made at Gly314 converting it to Ala, Val or Cys by the use of site-directed mutagenesis. All substitutions for Gly314 abolished the activity completely. The enzyme containing the Gly314----Ala mutation was studied in detail and behaved exactly as the enzyme containing the Gly314----Glu mutation. It is concluded that the mutation in the beta subunit abolished the NADP(H)-induced conformational change in the mutant enzyme. This conformational change, caused by NADP(H) binding, is required to cleave the normal beta subunit at Arg265 by trypsin. The genes encoding the pyridine nucleotide transhydrogenase were completely resequenced and several corrections have been made to the previously published sequence [Clarke et al. (1986) Eur. J. Biochem. 158, 647-653].
Collapse
Affiliation(s)
- S Ahmad
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
45
|
Ahmad S, Glavas N, Bragg P. Subunit interactions involved in the assembly of pyridine nucleotide transhydrogenase in the membranes of Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50528-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|