Abstract
In conclusion, charged membrane together with their adjacent electrolyte solution form a thermodynamic and physico-chemical entity. Their surfaces represent an exceptionally complicated interfacial system owing to intrinsic membrane complexity, as well as to the polarity and often large thickness of the interfacial region. Despite this, charged membranes can be described reasonably accurately within the framework of available theoretical models, provided that the latter are chosen on the basis of suitable criteria, which are briefly discussed in Section A. Interion correlations are likely to be important for the regular and/or rigid, thin membrane-solution interfaces. Lateral distribution of the structural membrane charge is seldom and charge distribution perpendicular to the membranes is nearly always electrostatically important. So is the interfacial hydration, which to a large extent determines the properties of the innermost part of the interfacial region, with a thickness of 2-3 nm. Fine structure of the ion double-layer and the interfacial smearing of the structural membrane charge decrease whilst the surface hydration increases the calculated value of the electrostatic membrane potential relative to the result of common Gouy-Chapman approximation. In some cases these effects partly cancel-out; simple electrostatic models are then fairly accurate. Notwithstanding this, it is at present difficult to draw detailed molecular conclusions from a large part of the published data, mainly owing to the lack of really stringent controls or calibrations. Ion binding to the membrane surface is a complicated process which involves charge-charge as well as charge-solvent interactions. Its efficiency normally increases with the ion valency and with the membrane charge density, but it is also strongly dependent on the physico-chemical and thermodynamic state of the membrane. Except in the case of the stereospecific ion binding to a membrane, the relatively easily accessible phosphate and carboxylic groups on lipids and integral membrane proteins are the main cation binding sites. Anions bind preferentially to the amine groups, even on zwitterionic molecules. Membrane structure is apt to change upon ion binding but not always in the same direction: membranes with bound ions can either expand or become more condensed, depending on the final hydrophilicity (polarity) of the membrane surface. The more polar membranes, as a rule, are less tightly packed and more fluid. Diffusive ion flow across a membrane depends on the transmembrane potential and concentration gradients, but also on the coulombic and hydration potentials at the membrane surface.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse