1
|
Pasquaré SJ, Chamorro-Aguirre E, Gaveglio VL. The endocannabinoid system in the visual process. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
2
|
Sander CL, Luu J, Kim K, Furkert D, Jang K, Reichenwallner J, Kang M, Lee HJ, Eger BT, Choe HW, Fiedler D, Ernst OP, Kim YJ, Palczewski K, Kiser PD. Structural evidence for visual arrestin priming via complexation of phosphoinositols. Structure 2022; 30:263-277.e5. [PMID: 34678158 PMCID: PMC8818024 DOI: 10.1016/j.str.2021.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
Visual arrestin (Arr1) terminates rhodopsin signaling by blocking its interaction with transducin. To do this, Arr1 translocates from the inner to the outer segment of photoreceptors upon light stimulation. Mounting evidence indicates that inositol phosphates (InsPs) affect Arr1 activity, but the Arr1-InsP molecular interaction remains poorly defined. We report the structure of bovine Arr1 in a ligand-free state featuring a near-complete model of the previously unresolved C-tail, which plays a crucial role in regulating Arr1 activity. InsPs bind to the N-domain basic patch thus displacing the C-tail, suggesting that they prime Arr1 for interaction with rhodopsin and help direct Arr1 translocation. These structures exhibit intact polar cores, suggesting that C-tail removal by InsP binding is insufficient to activate Arr1. These results show how Arr1 activity can be controlled by endogenous InsPs in molecular detail.
Collapse
Affiliation(s)
- Christopher L Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Jennings Luu
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kiyoung Jang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - MinSoung Kang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Daejeon 34114, Republic of Korea
| | - Ho-Jun Lee
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hui-Woog Choe
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yong Ju Kim
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Department of Oriental Medicine Resources, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Krzysztof Palczewski
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Chemistry and Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA
| | - Philip D Kiser
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA.
| |
Collapse
|
3
|
Abstract
The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (also known as phosphatidylinositol phosphates or PIPs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of phosphoinositide kinases and phosphoinositide phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule, phosphatidylinositol. PIP signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane budding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIPs in general, in this review, we discuss recent studies and advances in PIP lipid signaling in the retina. We specifically focus on PIP lipids from vertebrate (e.g., bovine, rat, mouse, toad, and zebrafish) and invertebrate (e.g., Drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIPs revealed from animal models and human diseases, and methods to study PIP levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PIP-modifying enzymes/phosphatases and further unravel PIP regulation and function in the different cell types of the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, Physiology, and Cell Biology, and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
4
|
Phosphoinositides in Retinal Function and Disease. Cells 2020; 9:cells9040866. [PMID: 32252387 PMCID: PMC7226789 DOI: 10.3390/cells9040866] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play many important roles in all eukaryotic cells. These include modulation of physical properties of membranes, activation or inhibition of membrane-associated proteins, recruitment of peripheral membrane proteins that act as effectors, and control of membrane trafficking. They also serve as precursors for important second messengers, inositol (1,4,5) trisphosphate and diacylglycerol. Animal models and human diseases involving defects in phosphoinositide regulatory pathways have revealed their importance for function in the mammalian retina and retinal pigmented epithelium. New technologies for localizing, measuring and genetically manipulating them are revealing new information about their importance for the function and health of the vertebrate retina.
Collapse
|
5
|
Rajala RVS, Rajala A, Morris AJ, Anderson RE. Phosphoinositides: minor lipids make a major impact on photoreceptor cell functions. Sci Rep 2014; 4:5463. [PMID: 24964953 PMCID: PMC4071336 DOI: 10.1038/srep05463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/11/2014] [Indexed: 11/09/2022] Open
Abstract
Activation of the phosphoinositide (PI) cycle generates the second messengers that control various aspects of cellular signaling. We have previously shown that two PI cycle enzymes, type II phosphatidylinositol 5-phosphate 4-kinase (PIPK IIα) and phosphoinositide 3-kinase (PI3K), are activated through light stimulation. In our earlier studies, we measured enzyme activities, instead of directly measuring the products, due to lack of sensitive analytical techniques. Cells have very low levels of PIs, compared to other lipids, so special techniques and sensitive analytical instruments are necessary for their identification and quantification. There are also other considerations, such as different responses in different cell types, which may complicate quantification of PIs. For example, although light activated PIPK IIα, there was no increase in PI-4,5-P2 measured by liquid chromatography–mass spectrometry (LC/MS) This discrepancy is due to the heterogeneous nature of the retina, which is composed of various cell types. In this study, we examined PI generation in situ using immunohistochemistry with specific PI antibodies. PIs were generated in specific retinal cell layers, suggesting that analyzing PIs from the total retina by LC/MS underscores the significance. This suggests that PI-specific antibodies are useful tools to study the cell-specific regulation of PIs in the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- 1] Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [2] Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [3] Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [4] Dean McGee Eye Institute, Oklahoma City, OK
| | - Ammaji Rajala
- 1] Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [2] Dean McGee Eye Institute, Oklahoma City, OK
| | - Andrew J Morris
- Division of Cardiovascular Medicine, University of Kentucky College of Medicine, Lexington, KY
| | - Robert E Anderson
- 1] Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [2] Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [3] Dean McGee Eye Institute, Oklahoma City, OK
| |
Collapse
|
6
|
Semple-Rowland S, Madorsky I, Bolch S, Berry J, Smith WC. Activation of phospholipase C mimics the phase shifting effects of light on melatonin rhythms in retinal photoreceptors. PLoS One 2013; 8:e83378. [PMID: 24386190 PMCID: PMC3873303 DOI: 10.1371/journal.pone.0083378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/02/2013] [Indexed: 12/04/2022] Open
Abstract
Many aspects of retinal photoreceptor function and physiology are regulated by the circadian clocks in these cells. It is well established that light is the primary stimulus that entrains these clocks; yet, the biochemical cascade(s) mediating light’s effects on these clocks remains unknown. This deficiency represents a significant gap in our fundamental understanding of photoreceptor signaling cascades and their functions. In this study, we utilized re-aggregated spheroid cultures prepared from embryonic chick retina to determine if activation of phospholipase C in photoreceptors in the absence of light can phase shift the melatonin secretion rhythms of these cells in a manner similar to that induced by light. We show that spheroid cultures rhythmically secrete melatonin and that these melatonin rhythms can be dynamically phase shifted by exposing the cultures to an appropriately timed light pulse. Importantly, we show that activation of phospholipase C using m-3M3FBS in the absence of light induces a phase delay in photoreceptor melatonin rhythms that mirrors that induced by light. The implication of this finding is that the light signaling cascade that entrains photoreceptor melatonin rhythms involves activation of phospholipase C.
Collapse
Affiliation(s)
- Susan Semple-Rowland
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Irina Madorsky
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
| | - Susan Bolch
- Department of Ophthalmology, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan Berry
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
| | - W. Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
7
|
Abstract
This review lays out the emerging evidence for the fundamental role of Ca(2+) stores and store-operated channels in the Ca(2+) homeostasis of rods and cones. Calcium-induced calcium release (CICR) is a major contributor to steady-state and light-evoked photoreceptor Ca(2+) homeostasis in the darkness whereas store-operated Ca(2+) channels play a more significant role under sustained illumination conditions. The homeostatic response includes dynamic interactions between the plasma membrane, endoplasmic reticulum (ER), mitochondria and/or outer segment disk organelles which dynamically sequester, accumulate and release Ca(2+). Coordinated activation of SERCA transporters, ryanodine receptors (RyR), inositol triphosphate receptors (IP3Rs) and TRPC channels amplifies cytosolic voltage-operated signals but also provides a memory trace of previous exposures to light. Store-operated channels, activated by the STIM1 sensor, prevent pathological decrease in [Ca(2+)]i mediated by excessive activation of PMCA transporters in saturating light. CICR and SOCE may also modulate the transmission of afferent and efferent signals in the outer retina. Thus, Ca(2+) stores provide additional complexity, adaptability, tuneability and speed to photoreceptor signaling.
Collapse
Affiliation(s)
- David Križaj
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
8
|
Pak WL, Leung HT. Genetic Approaches to Visual Transduction in Drosophila melanogaster. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Light-induced tyrosine phosphorylation of rod outer segment membrane proteins regulate the translocation, membrane binding and activation of type II α phosphatidylinositol-5-phosphate 4-kinase. Neurochem Res 2010; 36:627-35. [PMID: 20204506 DOI: 10.1007/s11064-010-0146-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
Type II phosphatidylinositol 5-phosphate 4-kinase (PIPKIIα) catalyzes the synthesis of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P(2)), an essential lipid second messenger that may be involved in the regulation of phototransduction, neuroprotection, and morphogenesis in the vertebrate retina. Here we report that in rodent and transgenic frogs, the light-mediated activity and membrane binding of PIPKIIα in rod outer segments (ROS) is dependent on tyrosine phosphorylation of ROS proteins. The greater type II α PIP kinase activity in the light-adapted ROS membrane results from light-driven translocation of PIPKIIα from the rod inner segment to ROS, and subsequent binding to the ROS membrane, thus improving access of the kinase to its lipid substrates. These results indicate a novel mechanism of light regulation of the PIPKIIα activity in photoreceptors, and suggest that the greater PIPKIIα activity in light-adapted animals and the resultant accumulation of PI-4,5-P(2) within the ROS membrane may be important for the function of photoreceptor cells.
Collapse
|
10
|
Abstract
The phosphoinositide (PI) cycle, discovered over 50 years ago by Mabel and Lowell Hokin, describes a series of biochemical reactions that occur on the inner leaflet of the plasma membrane of cells in response to receptor activation by extracellular stimuli. Studies from our laboratory have shown that the retina and rod outer segments (ROSs) have active PI metabolism. Biochemical studies revealed that the ROSs contain the enzymes necessary for phosphorylation of phosphoinositides. We showed that light stimulates various components of the PI cycle in the vertebrate ROS, including diacylglycerol kinase, PI synthetase, phosphatidylinositol phosphate kinase, phospholipase C, and phosphoinositide 3-kinase (PI3K). This article describes recent studies on the PI3K-generated PI lipid second messengers in the control and regulation of PI-binding proteins in the vertebrate retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology and Cell Biology, and Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. r
| |
Collapse
|
11
|
Cho KI, Yi H, Yeh A, Tserentsoodol N, Cuadrado L, Searle K, Hao Y, Ferreira PA. Haploinsufficiency of RanBP2 is neuroprotective against light-elicited and age-dependent degeneration of photoreceptor neurons. Cell Death Differ 2009; 16:287-97. [PMID: 18949001 PMCID: PMC2626153 DOI: 10.1038/cdd.2008.153] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Prolonged light exposure is a determinant factor in inducing neurodegeneration of photoreceptors by apoptosis. Yet, the molecular bases of the pathways and components triggering this cell death event are elusive. Here, we reveal a prominent age-dependent increase in the susceptibility of photoreceptor neurons to undergo apoptosis under light in a mouse model. This is accompanied by light-induced subcellular changes of photoreceptors, such as dilation of the disks at the tip of the outer segments, prominent vesiculation of nascent disks, and autophagy of mitochondria into large multilamellar bodies. Notably, haploinsufficiency of Ran-binding protein-2 (RanBP2) suppresses apoptosis and most facets of membrane dysgenesis observed with age upon light-elicited stress. RanBP2 haploinsufficiency promotes decreased levels of free fatty acids in the retina independent of light exposure and turns the mice refractory to weight gain on a high-fat diet, whereas light promotes an increase in hydrogen peroxide regardless of the genotype. These studies demonstrate the presence of age-dependent and RanBP2-mediated pathways modulating membrane biogenesis of the outer segments and light-elicited neurodegeneration of photoreceptors. Furthermore, the findings support a mechanism whereby the RanBP2-dependent production of free fatty acids, metabolites thereof or the modulation of a cofactor dependent on any of these, promote apoptosis of photoreceptors in concert with the light-stimulated production of reactive oxygen species.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Haiqing Yi
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Andrew Yeh
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | | | - Lori Cuadrado
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Kelly Searle
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
12
|
He F, Mao M, Wensel TG. Enhancement of phototransduction g protein-effector interactions by phosphoinositides. J Biol Chem 2003; 279:8986-90. [PMID: 14699118 DOI: 10.1074/jbc.m311488200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light responses in photoreceptor cells are mediated by the action of the G protein transducin (G(t)) on the effector enzyme cGMP phosphodiesterase (PDE6) at the surface of disk membranes. The enzymatic components needed for phosphoinositide-based signaling are known to be present in rod cells, but it has remained uncertain what role phosphoinositides play in vertebrate phototransduction. Reconstitution of PDE6 and activated G(alphat), on the surface of large unilamellar vesicles containing d-myo-phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), stimulated PDE activity nearly 4-fold above the level observed with membranes containing no phosphoinositides, whereas G protein-independent activation by trypsin was unaffected by the presence of phosphoinositides. PDE activity was similarly stimulated by d-myo-phosphatidylinositol-3,4-bisphosphate and d-myo-phosphatidylinositol-4-phosphate (PI(4)P), but much less by d-myo-phosphatidylinositol-5-phosphate (PI(5)P) or d-myo-phosphatidylinositol-3,5-bisphosphate. Incubation of rod outer segment membranes with phosphoinositide-specific phospholipase C decreased G protein-stimulated activation of endogenous PDE6, but not trypsin-stimulated PDE activity. Binding experiments using phosphoinositide-containing vesicles revealed patterns of PDE6 binding and PDE6-enhanced G(alphat)-GTPgammaS binding, consistent with the activation profile PI(4,5)P(2) > PI(4)P > PI(5)P approximately control vesicles. These results suggest that enhancement of effector-G protein interactions represents a possible mechanism for modulation of phototransduction gain by changes in phosphoinositide levels, perhaps occurring in response to longterm changes in illumination or other environmental cues.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
13
|
Zhang Y, Coleman JE, Fuchs GE, Semple-Rowland SL. Circadian oscillator function in embryonic retina and retinal explant cultures. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 114:9-19. [PMID: 12782388 DOI: 10.1016/s0169-328x(03)00122-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Retinal circadian oscillators regulate many aspects of retinal function. Investigations of these oscillators and the biochemical cascades that entrain them would be greatly facilitated if experimental paradigms could be identified that permit long-term monitoring of retinal circadian oscillator function in vitro. The purpose of this study was to determine if chicken retinas maintained in explant culture conditions could serve in this capacity. Retinal circadian oscillator function was studied by monitoring iodopsin transcription under cyclic light, constant dark, and following reversal of the light cycle. Rhythms observed in the explant cultures were compared to those observed in retinas of embryos (in ovo) and post-hatch chickens. Robust iodopsin transcript rhythms were observed for up to 9 days in explant cultures maintained under cyclic light. These rhythms persisted for 48 h in constant darkness and the time course for re-entrainment of the rhythm to a reversed light/dark cycle was similar to that observed in post-hatch chicken retinas. These results show that circadian oscillators located within the retina play a key role in the regulation of iodopsin transcription in retinal explant cultures and in retinas of post-hatch chickens. Interestingly, our data show that iodopsin transcription in retinas of intact embryos is primarily, if not entirely, driven by light. These results show that the circadian oscillators driving iodopsin transcription in embryonic retinal explant cultures exhibit functional characteristics similar to those found in post-hatch chicken retina, supporting use of this paradigm in further studies of entrainment of these oscillators in retina.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neuroscience, University of Florida McKnight Brain Institute, 100 Newell Drive, Bldg 59, Rm L1-100, Gainesville, FL 32610-0255, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Light is a major environmental signal for entrainment of the circadian clock, but little is known about the intracellular phototransduction pathway triggered by light activation of the photoreceptive molecule(s) responsible for the phase shift of the clock in vertebrates. The chicken pineal gland and retina contain the autonomous circadian oscillators together with the photic entrainment pathway, and hence they represent useful experimental models for the clock system. Here we show the expression of G11alpha, an alpha subunit of heterotrimeric G-protein, in both tissues by cDNA cloning, Northern blot, and Western blot analyses. G11alpha immunoreactivity was colocalized with pinopsin in the chicken pineal cells and also with rhodopsin in the outer segments of retinal photoreceptor cells, suggesting functional coupling of G11alpha with opsins in the clock-containing photosensitive tissues. The physical interaction was examined by coimmunoprecipitation experiments, the results of which provided evidence for light- and GTP-dependent coupling between rhodopsin and G11alpha. To examine whether activation of endogenous G11 leads to a phase shift of the oscillator, Gq/11-coupled m1-type muscarinic acetylcholine receptor (mAChR) was ectopically expressed in the cultured pineal cells. Subsequent treatment of the cells with carbamylcholine (CCh), an agonist of mAChR, induced phase-dependent phase shifts of the melatonin rhythm in a manner very similar to the effect of light. In contrast, CCh treatment induced no measurable effect on the rhythm of nontransfected (control) cells or cells expressing G(i/o)-coupled m2-type mAChR, indicating selectivity of the G-protein activation. Together, our results demonstrate the existence of a G11-mediated opsin-signaling pathway contributing to the photic entrainment of the circadian clock.
Collapse
|
15
|
Huang Z, Ghalayini A, Guo XX, Alvarez KM, Anderson RE. Light-mediated activation of diacylglycerol kinase in rat and bovine rod outer segments. J Neurochem 2000; 75:355-62. [PMID: 10854281 DOI: 10.1046/j.1471-4159.2000.0750355.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hydrolysis of phosphatidylinositol 4,5-bisphosphate is regulated by light in retinal rod outer segment (ROS) membranes. We recently reported that the activities of phosphatidylinositol synthetase and phosphatidylinositol 3-kinase are also higher in bleached (light-exposed) ROS (B-ROS). In this study, we investigated the effect of bleaching on diacylglycerol (DAG) kinase (DAG-kinase) activity in bovine and rat ROS membranes prepared from dark-adapted (D-ROS) or bleached (B-ROS) retinas. In bovine ROS, DAG-kinase activity toward endogenous DAG substrate was higher in B-ROS than in D-ROS. Quantification of DAG in both sets of membranes showed that the levels were the same, eliminating the possibility that the greater DAG-kinase activity was due to higher levels of endogenous substrate in B-ROS. DAG-kinase activity was also higher in B-ROS against an exogenous, water-soluable substrate (1, 2-didecanoyl-rac-glycerol), which competed with endogenous DAG substrate and saturated at approximately 2 mM. Immunoblot analysis with an anti-DAG-kinase gamma polyclonal antibody demonstrated that the gamma isoform was present in isolated bovine ROS. Immunocytochemistry of frozen bovine retinal sections confirmed the presence of DAG-kinase gamma immunoreactivity in ROS, as well as other retinal cells. Quantification of the immunoreactive products on western blots showed that more DAG-kinase gamma was present in B-ROS than in D-ROS. In an in vivo experiment, ROS prepared from rats exposed to 30 min of room light had greater DAG-kinase activity than ROS prepared from dark-adapted animals. Taken together, these data suggest that light exposure leads to the translocation of DAG-kinase from the cytosol to ROS membranes and that the greater DAG-kinase activity in B-ROS is due to the presence of more protein associated with ROS membranes.
Collapse
Affiliation(s)
- Z Huang
- Departments of Ophthalmology, Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | | | | | | | | |
Collapse
|
16
|
Giusto NM, Pasquaré SJ, Salvador GA, Castagnet PI, Roque ME, Ilincheta de Boschero MG. Lipid metabolism in vertebrate retinal rod outer segments. Prog Lipid Res 2000; 39:315-91. [PMID: 10856601 DOI: 10.1016/s0163-7827(00)00009-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N M Giusto
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 857, B 8000 FWB, Bahia Blanca, Argentina.
| | | | | | | | | | | |
Collapse
|
17
|
Tang W, Bardien S, Bhattacharya SS, Prescott SM. Characterization of the human diacylglycerol kinase epsilon gene and its assessment as a candidate for inherited retinitis pigmentosa. Gene 1999; 239:185-92. [PMID: 10571048 DOI: 10.1016/s0378-1119(99)00345-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human diacylglycerol kinase epsilon (hDGK epsilon) displays high selectivity for arachidonate-containing substrates and may be essential in the termination of signals transmitted through arachidonoyl-diacylglycerol and/or the synthesis of phospholipids with defined fatty acid composition. We herein report the genomic structure, chromosomal mapping, and mutation screening of hDGK epsilon gene. hDGK epsilon gene contains at least 12 exons spanning approximately 30 kb of genomic sequence and was mapped to chromosome 17q22 by fluorescence in situ hybridization. A search for disease gene linkage revealed that a locus for autosomal dominant retinitis pigmentosa (adRP) known as RP17 resided in that region, and Northern blot analysis showed that hDGK epsilon was expressed in human retina. The hDGK epsilon gene was then localized to one of the YAC clones containing a STS marker for the RP17 locus by YAC contig mapping. Direct sequencing following PCR amplification of two affected DNA samples from that type of adRP patients, however, did not reveal any mutation in hDGK epsilon exons.
Collapse
Affiliation(s)
- W Tang
- Huntsman Cancer Institute, Department of Biochemistry, University of Utah, Salt Lake City 84112, USA
| | | | | | | |
Collapse
|
18
|
Terakita A, Yamashita T, Tachibanaki S, Shichida Y. Selective activation of G-protein subtypes by vertebrate and invertebrate rhodopsins. FEBS Lett 1998; 439:110-4. [PMID: 9849889 DOI: 10.1016/s0014-5793(98)01340-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have quantitatively investigated specificities in activating G-protein subtype by bovine and squid rhodopsins to examine whether or not the phototransduction cascade in each of the photoreceptor cells is determined by the colocalization of a large amount of G-protein subtype (Gt or Gq). In contrast to the efficient activation of respective Gt and Gq, bovine and squid rhodopsins scarcely activated G-protein counterparts. Exchange of alpha- and betagamma-subunits of Gt and Gq indicated the critical role of the alpha-subunit in specific binding to respective rhodopsins. Thus the specific recognition of G-protein subtype by each rhodopsin is a major mechanism in determining the phototransduction cascade.
Collapse
Affiliation(s)
- A Terakita
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
19
|
Xiong W, Nakatani K, Ye B, Yau K. Protein kinase C activity and light sensitivity of single amphibian rods. J Gen Physiol 1997; 110:441-52. [PMID: 9379174 PMCID: PMC2229376 DOI: 10.1085/jgp.110.4.441] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/1997] [Accepted: 07/23/1997] [Indexed: 02/05/2023] Open
Abstract
Biochemical experiments by others have indicated that protein kinase C activity is present in the rod outer segment, with potential or demonstrated targets including rhodopsin, transducin, cGMP-phosphodiesterase (PDE), guanylate cyclase, and arrestin, all of which are components of the phototransduction cascade. In particular, PKC phosphorylations of rhodopsin and the inhibitory subunit of PDE (PDE ) have been studied in some detail, and suggested to have roles in downregulating the sensitivity of rod photoreceptors to light during illumination. We have examined this question under physiological conditions by recording from a single, dissociated salamander rod with a suction pipette while exposing its outer segment to the PKC activators phorbol-12-myristate,13-acetate (PMA) or phorbol-12,13-dibutyrate (PDBu), or to the PKC-inhibitor GF109203X. No significant effect of any of these agents on rod sensitivity was detected, whether in the absence or presence of a background light, or after a low bleach. These results suggest that PKC probably does not produce any acute downregulation of rod sensitivity as a mechanism of light adaptation, at least for isolated amphibian rods.
Collapse
Affiliation(s)
- W Xiong
- Howard Hughes Medical Institute, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
20
|
Saito S, Goto K, Tonosaki A, Kondo H. Gene cloning and characterization of CDP-diacylglycerol synthase from rat brain. J Biol Chem 1997; 272:9503-9. [PMID: 9083091 DOI: 10.1074/jbc.272.14.9503] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A cDNA encoded a 462-amino acid protein, which showed CDP-diacylglycerol synthase (CDS) activity was cloned for the first time as the vertebrate enzyme molecule from rat brain cDNA library. The deduced molecular mass of this rat CDS was 53 kDa, and putative primary structure included several possible membrane- spanning regions. At the amino acid sequence level, rat CDS shared 55.5%, 31. 7%, and 20.9% identity with already known Drosophila, Saccharomyces cerevisiae, and Escherichia coli CDS, respectively. This rat CDS preferred 1-stearoyl-2-arachidonoyl phosphatidic acid as a substrate, and its activity was strongly inhibited by phosphatidylglycerol 4, 5-bisphosphate. By immunoblotting analysis of COS cells overexpressed with the epitope-tagged for rat CDS, a 60-kDa band was detected. By epitope-tag immunocytochemistry, the CDS protein was mainly localized in close association with the membrane of the endoplasmic reticulum of the transfected cells. The intense mRNA expression of CDS was localized in the cerebellar Purkinje cells, the pineal body, and the inner segment of photoreceptor cells. Additionally, very intense expression was detected in postmitotic spermatocytes and spermatids.
Collapse
Affiliation(s)
- S Saito
- Department of Anatomy, Tohoku University School of Medicine, Sendai 980-77, Japan
| | | | | | | |
Collapse
|
21
|
Giusto NM, Castagnet PI, Ilincheta MG, Roque ME, Pasquaré SJ. Lipid metabolism in photoreceptor membranes: regulation and mechanisms. Neurochem Res 1997; 22:445-53. [PMID: 9130255 DOI: 10.1023/a:1027359727263] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipid metabolism in photoreceptor rod outer segments has attracted considerable attention because of its importance in providing the appropriate environment for supporting an efficient phototransduction mechanism. Recent studies suggest that lipid metabolism in these membranes is involved in the generation of second messengers and in signal transduction mechanisms. Phospholipid turnover is tightly regulated by phosphorylation-dephosphorylation reactions and light, and provides, in turn, with molecules capable of activating protein kinases and cellular processes such as membrane fusion or light-adaptation. These findings suggest that photoreceptor membrane lipids are more than just important structural components of the visual cell rod outer segment.
Collapse
Affiliation(s)
- N M Giusto
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
22
|
Peng YW, Rhee SG, Yu WP, Ho YK, Schoen T, Chader GJ, Yau KW. Identification of components of a phosphoinositide signaling pathway in retinal rod outer segments. Proc Natl Acad Sci U S A 1997; 94:1995-2000. [PMID: 9050893 PMCID: PMC20031 DOI: 10.1073/pnas.94.5.1995] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1996] [Accepted: 12/10/1996] [Indexed: 02/03/2023] Open
Abstract
Phototransduction in retinal rods involves a G protein-coupled signaling cascade that leads to cGMP hydrolysis and the closure of cGMP-gated cation channels that are open in darkness, producing a membrane hyperpolarization as the light response. For many years there have also been reports of the presence of a phosphoinositide pathway in the rod outer segment, though its functions and the molecular identities of its components are still unclear. Using immunocytochemistry with antibodies against various phosphoinositide-specific phospholipase C (PLC) isozymes (beta1-4, gamma1-2, and delta1-2), we have found PLCbeta4-like immunoreactivity in rod outer segments. Similar experiments with antibodies against the alpha-subunits of the G(q) family of G proteins, which are known to activate PLCbeta4, have also demonstrated G(alpha11)-like immunoreactivity in this location. Immunoblots of total proteins from whole retina or partially purified rod outer segments with anti-PLCbeta4 and anti-G(alpha11) antibodies gave, respectively, a single protein band of the expected molecular mass, suggesting specific labelings. The retinal locations of the two proteins were also supported by in situ hybridization experiments on mouse retina with probes specific for the corresponding mouse genes. These two proteins, or immunologically identical isoforms, therefore likely mediate the phosphoinositide signaling pathway in the rod outer segment. At present, G(alpha11) or a G(alpha11)-like protein represents the only G protein besides transducin (which mediates phototransduction) identified so far in the rod outer segment. Although absent in the outer segment layer, other PLC isoforms as well as G(alpha q) (another G(q) family member), are present elsewhere in the retina.
Collapse
Affiliation(s)
- Y W Peng
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Grigorjev IV, Grits AI, Artamonov ID, Baranova LA, Volotovski ID. betagamma-Transducin stimulates hydrolysis and synthesis of phosphatidylinositol 4,5-bisphosphate in bovine rod outer segment membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1310:131-6. [PMID: 9244186 DOI: 10.1016/0167-4889(95)00137-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T betagamma was shown to stimulate the hydrolysis and synthesis of PtdInsP2 in dark-adapted bovine retinal rod outer segments. In contrast, T alphaGDP blocked the effect of betagamma-transducin. It was also demonstrated that T betagamma was a stimulator of 32P incorporation into PtdInsP2 in ROS. These findings explain the modulating actions of GTP and light on PtdInsP2 hydrolysis and synthesis in ROS. The possible existence of cross-talk between the cGMP and phosphoinositide cascades in retinal rods was discussed.
Collapse
Affiliation(s)
- I V Grigorjev
- Institute of Photobiology, Academy of Sciences of Belarus, Minsk
| | | | | | | | | |
Collapse
|
24
|
Ghalayini AJ, Anderson RE. Light adaptation of bovine retinas in situ stimulates phosphatidylinositol synthesis in rod outer segments in vitro. Curr Eye Res 1995; 14:1025-9. [PMID: 8585931 DOI: 10.3109/02713689508998525] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Light-stimulated phosphoinositide turnover has been reported in both vertebrate retina and isolated rod outer segments (ROS). In the current investigation, we examined the incorporation of [3H]-inositol in vitro in bovine ROS isolated from dark adapted (DROS) or bleached (BROS) retinas. Incorporation of [3H]-inositol into phosphoinositides in BROS was 3-5 fold higher than in DROS. The majority (approximately 90%) of [3H]-inositol was found in phosphatidylinositol (PI), whereas phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) accounted for 7-8% of the label. The enhanced labelling of PI was only observed when bovine retinas were light-adapted prior to ROS preparation, suggesting the requirement for an intact photoreceptor for the observed effect. Our data strongly suggest that bleaching of bovine retina in situ stimulates PI synthesis in isolated ROS in vitro.
Collapse
Affiliation(s)
- A J Ghalayini
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA
| | | |
Collapse
|
25
|
Fitzgibbon J, Wells D, Pilz A, Delhanty J, Kai M, Kanoh H, Hunt D. Localisation of the gene encoding diacylglycerol kinase 3 (DAGK3) to human chromosome 3q27-28 and mouse chromosome 16. Curr Eye Res 1995; 14:1041-3. [PMID: 8585934 DOI: 10.3109/02713689508998528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gene encoding a 90 kDa diacylglycerol kinase protein, DAGK3, that is predominately expressed in the retina, was localised by fluorescence in situ hybridisation to human chromosome 3q27-28. This was subsequently confirmed by mapping of its mouse homologue to chromosome 16, a region syntenic to this part of human chromosome 3. No retinopathies have so far been assigned to this region.
Collapse
Affiliation(s)
- J Fitzgibbon
- Department of Molecular Genetics, University of London, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Gordon SE, Downing-Park J, Tam B, Zimmerman AL. Diacylglycerol analogs inhibit the rod cGMP-gated channel by a phosphorylation-independent mechanism. Biophys J 1995; 69:409-17. [PMID: 8527654 PMCID: PMC1236265 DOI: 10.1016/s0006-3495(95)79913-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The electrical response to light in retinal rods is mediated by cyclic nucleotide-gated, nonselective cation channels in the outer segment plasma membrane. Although cGMP appears to be the primary light-regulated second messenger, cellular levels of other substances, including Ca2+ and phosphatidylinositol-4,5-bisphosphate, are also sensitive to the level of illumination. We now show that diacylglycerol (DAG) analogs reversibly suppress the cGMP-activated conductance in excised patches from frog rod outer segments. This suppression did not require nucleoside triphosphates, indicating that a phosphorylation reaction was not involved. DAG was more effective at low than at high [cGMP]: with 50 microM 8-Br-cGMP, the DAG analog 1,2-dioctanoyl-sn-glycerol (1,2-DiC8) reduced the current with an IC50 of approximately 22 microM (Hill coefficient, 0.8), whereas with 1.2 microM 8-Br-cGMP, only approximately 1 microM 1,2-DiC8 was required to halve the current. DAG reduced the apparent affinity of the channels for cGMP: 4 microM 1,2-DiC8 produced a threefold increase in the K1/2 for channel activation by 8-Br-cGMP, as well as a threefold reduction in the maximum current, without changing the apparent stoichiometry or cooperativity of cGMP binding. Inhibition by 1,2-DiC8 was not relieved by supersaturating concentrations of 8-Br-cGMP, suggesting that DAG did not act by competitive inhibition of cGMP binding. Furthermore, DAG did not seem to significantly reduce single-channel conductance. A DAG analog similar to 1,2-DiC8--1,3-dioctanoyl-sn-glycerol (1,3-DiC8)--suppressed the current with the same potency as 1,2-DiC8, whereas an ethylene glycol of identical chain length (DiC8-EG) was much less effective. Our results suggest that DAG allosterically interferes with channel opening, and raise the question of whether DAG is involved in visual transduction.
Collapse
Affiliation(s)
- S E Gordon
- Department of Physiology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
27
|
Greene NM, Williams DS, Newton AC. Kinetics and localization of the phosphorylation of rhodopsin by protein kinase C. J Biol Chem 1995; 270:6710-7. [PMID: 7896814 DOI: 10.1074/jbc.270.12.6710] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Protein kinase C isolated from retina catalyzes the stoichiometric phosphorylation of bovine rhodopsin. Enzymological studies using receptor in rod outer segment membranes stripped of peripheral proteins reveal that the phosphorylation is independent of receptor conformation or liganded state; the half-time for phosphorylation of unbleached (dark-adapted) rhodopsin, bleached (light-activated) rhodopsin, and opsin (chromophore removed) is the same. The phosphorylation by protein kinase C is Ca2+ and lipid regulated; the Km for Ca2+ decreases with increasing concentrations of membrane, consistent with known properties of Ca(2+)-regulated protein kinase Cs. The Km for ATP is 27 microM, with an optimal concentration for MgCl2 of approximately 1 mM. The phosphorylation of rhodopsin by protein kinase C is inhibited by the protein kinase C-selective inhibitor sangivamycin. Proteolysis by Asp-N reveals that all the protein kinase C phosphorylation sites are on the carboxyl terminus of the receptor. Cleavage with trypsin indicates that Ser338, the primary phosphorylation site of rhodopsin kinase, is not phosphorylated significantly; rather, the primary phosphorylation site of protein kinase C is on the membrane proximal half of the carboxyl terminus. The protein kinase C-catalyzed phosphorylation of rhodopsin is analogous to the ligand-independent phosphorylation of other G protein-coupled receptors that is catalyzed by second messenger-regulated kinases.
Collapse
Affiliation(s)
- N M Greene
- Department of Chemistry, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
28
|
Lee CW, Lee KH, Lee SB, Park D, Rhee SG. Regulation of phospholipase C-beta 4 by ribonucleotides and the alpha subunit of Gq. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47252-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
McKay RR, Miller K, Weckström M, Torkkeli P, Järvilehto M, Shortridge RD. The rpa (receptor potential absent) visual mutant of the blowfly (Calliphora erythrocephala) is deficient in phospholipase C in the eye. J Neurogenet 1994; 9:177-87. [PMID: 7965386 DOI: 10.3109/01677069409167278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The rpa (receptor potential absent) mutation of the blowfly, Calliphora erythrocephala, reduces the light-evoked responses of photoreceptor cells and renders the fly blind. This phenotype is similar to the phenotype caused by norpA mutations in Drosophila which have been shown to occur within a gene encoding phospholipase C. In Western blots, norpA antiserum stains a protein in homogenates of wild-type Calliphora eye and head that is similar in molecular weight to the norpA protein. Very little staining of this protein is observed in similar homogenates of rpa mutant. Moreover, norpA antiserum strongly stains retina in immunohistochemical assays of wild-type adult head, but not in rpa mutant. Furthermore, eyes of rpa mutant have a reduced amount of phospholipase C activity compared to eye of wild-type Calliphora. These data suggest that the rpa mutation occurs in a phospholipase C gene of the blowfly that is homologous to the norpA gene of Drosophila.
Collapse
Affiliation(s)
- R R McKay
- Department of Biological Sciences, State University of New York, Buffalo 14260
| | | | | | | | | | | |
Collapse
|
30
|
Bazan NG, Rodriguez de Turco EB. Review: pharmacological manipulation of docosahexaenoic-phospholipid biosynthesis in photoreceptor cells: implications in retinal degeneration. JOURNAL OF OCULAR PHARMACOLOGY 1994; 10:591-604. [PMID: 7836869 DOI: 10.1089/jop.1994.10.591] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Docosahexaenoic acid (22:6n-3, DHA) is derived in vertebrate animals from n-3 fatty acids present in the diet (i.e., alpha-linolenic acid, 18:3n-3 and/or other n-3-long chain polyunsaturated fatty acids) and is found in very high concentrations in phospholipids from membranes of the central nervous system. Disk membranes of photoreceptor outer segments and synaptic terminals display a preferential enrichment in DHA-phospholipids that appears to be necessary for normal excitable membrane functions. Because of the relevance of adequate DHA-phospholipid synthesis and sorting toward new assembled disk membranes and synaptic terminals, as well as the pathophysiological implications of abnormal DHA metabolism (including its synthesis, delivery to the retina, and incorporation into lipids by de novo and turnover pathways), we reviewed recent studies of: a) the preferential uptake and retention of DHA by photoreceptors and its metabolism as it is activated to DHA-CoA and incorporated preferentially into phospholipids; b) pharmacological manipulations using amphiphilic cationic drugs (i.e., propranolol) to show an active esterification of DHA into lipids via de novo synthesis; and c) perturbations in DHA metabolism in retinas from dogs with progressive rod-cone degeneration (prcd).
Collapse
Affiliation(s)
- N G Bazan
- Louisiana State University Neuroscience Center, Louisiana State University Medical Center, School of Medicine, New Orleans
| | | |
Collapse
|
31
|
Bazan HE, Hurst JS, Bazan NG. Differences in the acyl composition of the platelet-activating factor (PAF) precursor and other choline phosphoglycerides of the rabbit retinal rod outer segments and neural retina. Curr Eye Res 1994; 13:45-50. [PMID: 8156825 DOI: 10.3109/02713689409042397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Choline phosphoglycerides comprise almost half of vertebrate retinal phospholipids. This lipid pool contains the precursor of the potent lipid mediator, platelet-activating factor. The acyl composition and distribution of the different subclasses of the choline phosphoglycerides (alkylacyl-[or the precursor of platelet-activating factor], alkenylacyl-[or choline plasmalogen] and diacyl-glycero-3-phosphocholine) were studied in intact rabbit retina, neural retina and rod outer segments. Choline phosphoglycerides were isolated by high performance liquid chromatography and derivatized by acetylation after phospholipase C treatment. The derivatives were purified by high performance liquid chromatography and subjected to methanolysis. Fatty acids were analyzed by capillary gas liquid chromatography. In the intact retina and in the neural retina, the alkylacyl-glycero-3-phosphocholine and alkenylacyl-glycero-3-phosphocholine comprise 1.2% and 1.5%, respectively, of the total choline phosphoglycerides, whereas the rod outer segments contain twice the proportion of the precursor of platelet-activating factor and no detectable plasmalogens. On a mole percent basis, arachidonic acid was highest in the neural retinal alkenylacyl-glycero-3-phosphocholine (27%), 18% in the alkylacyl-glycero-3-phosphocholine and only 5% in the diacyl-glycero-3-phosphocholine. However, alkylacyl-glycero-3-phosphocholine from rod outer segments was enriched in docosapentaenoic acid (18%) while arachidonic acid was in the 3-4% range. Our results suggest that, in the neural retina, alkyl-arachidonoyl-glycero-3-phosphocholine is a source of both platelet-activating factor and of arachidonic acid which may be a substrate for both prostaglandins and lipoxygenase metabolites during an inflammatory episode and may contribute to the retinal pathology.
Collapse
Affiliation(s)
- H E Bazan
- Department of Ophthalmology, Louisiana State University Eye Center, New Orleans 70112
| | | | | |
Collapse
|
32
|
Organisciak DT, Winkler BS. Retinal light damage: Practical and theoretical considerations. Prog Retin Eye Res 1994. [DOI: 10.1016/1350-9462(94)90003-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Lee CW, Lee KH, Rhee SG. Characterization of phospholipase C isozymes in bovine retina: purification of phospholipase C-beta 4. Methods Enzymol 1994; 238:227-37. [PMID: 7799788 DOI: 10.1016/0076-6879(94)38020-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C W Lee
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
34
|
Rodriguez de Turco EB, Gordon WC, Bazan NG. Docosahexaenoic acid is taken up by the inner segment of frog photoreceptors leading to an active synthesis of docosahexaenoyl-inositol lipids: similarities in metabolism in vivo and in vitro. Curr Eye Res 1994; 13:21-8. [PMID: 8156822 DOI: 10.3109/02713689409042394] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Retinal uptake and metabolism of docosahexaenoic acid (DHA) was studied in vivo in frogs 1, 2, and 6 hours after dorsal lymph sac injections of [3H]-DHA (50 microCi/g). Light microscope autoradiography and biochemical techniques were used to compare the profiles of cellular uptake and lipid labeling with those obtained from 6 hour [3H]-DHA retinal incubations (final DHA concentration, 0.11 and 25 microM). Light microscope autoradiography demonstrated that rod photoreceptor ellipsoids and synaptic terminals preferentially labeled both in vivo and in vitro conditions. Also, the cytoplasm and oil droplets of retinal pigment epithelial cells became very heavily labeled after 6 hours of in vivo labeling. Phosphatidic acid showed the highest labeling in one hour, while other phospholipids accumulated label throughout the 6 hours. At that time point, most label was recovered in phosphatidyl-ethanolamine (37%), phosphatidylcholine (27%), and phosphatidylinositol (16%), the latter displaying 1.6-fold higher labeling than phosphatidylserine. The profile of labeled lipids was similar to that obtained in vitro when the concentration of DHA was in the nanomolar range. Our results suggest that de novo lipid synthesis is a major route for esterification of [3H]-DHA into retinal lipids, giving rise to an early and rapid labeling of DHA-phosphatidylinositol, both in vivo and in vitro, when DHA is present at low concentrations. Furthermore, the profile of labeled retinal cells under in vivo conditions closely resembles in vitro DHA labeling.
Collapse
|
35
|
Murakami A, Yajima T, Sakuma H, McLaren MJ, Inana G. X-arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Lett 1993; 334:203-9. [PMID: 8224247 DOI: 10.1016/0014-5793(93)81712-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have been using a differential cDNA cloning approach to isolate human retina-specific and retina-enriched genes [1]. A 1,314 bp cDNA was isolated by this approach, representing a highly retina-specific message encoding a 388 amino acid protein showing 58%, 50%, and 49% homology to bovine beta-arrestin, and bovine and human retinal arrestin (S-antigen), respectively. Chromosomal mapping localized this new arrestin gene to the proximal long arm of the X chromosome, hence it was named X-arrestin. In situ hybridization demonstrated its expression in the inner and outer segments and the inner plexiform regions of the retina.
Collapse
Affiliation(s)
- A Murakami
- Laboratory of Molecular Genetics, Bascom Palmer Eye Institute, University of Miami School of Medicine, FL 33136
| | | | | | | | | |
Collapse
|
36
|
Abstract
Evidence has shown an activation of phosphatidylinositol 4,5-bisphosphate (PIP2) specific phospholipase C (PtdIns-PLC) by light in the vertebrate retina and rod outer segments (ROS), suggesting important roles for its two metabolites, 1,2-diacylglycerol (DG) and inositol-1,4,5-trisphosphate [Ins(1,4,5)P3]. DG activates protein kinase C (PKC) and Ins(1,4,5)P3 releases bound intracellular calcium. Since Ca2+ plays an important role in light adaptation, the presence of Ins(1,4,5)P3 receptors in ROS may indicate a regulatory role of Ins(1,4,5)P3 to the free Ca2+ content. In the present study, we investigated the Ins(1,4,5)P3 receptors in whole retinal membranes and several subcellular fractions prepared from bovine retinas. Scatchard analyses of binding data for retinal membrane preparations showed a single, high-affinity binding site with equilibrium dissociation constant (Kd) of 24 +/- 2 nM and maximal binding capacity (Bmax) of 353 +/- 15 fmol/mg protein at pH 7.4. Specific binding was found in both small and large synaptosomal preparations representing inner and outer plexiform layers, respectively. A detectable, but low abundance of Ins(1,4,5)P3-specific binding in ROS was observed at both pH 7.4 and 8.3, but no specific binding of Ins(1,4,5)P3 was found in isolated outer segment discs. The binding of Ins(1,4,5)P3 in ROS was reduced by addition of ATP, suggesting a regulatory role for this nucleotide. Addition of calcium, sodium, and potassium ions also reduced specific binding of Ins(1,4,5)P3. Immunocytochemical studies indicate intense staining in the inner segment and extending to the ROS. Inner and outer plexiform layers were also stained. These findings show that the Ins(1,4,5)P3 receptor is present in photoreceptor cells and inner and outer plexiform layers in the vertebrate retina.
Collapse
Affiliation(s)
- N S Day
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| | | | | |
Collapse
|
37
|
Lee C, Park D, Lee K, Kim C, Rhee S. Purification, molecular cloning, and sequencing of phospholipase C-beta 4. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36926-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Jung HH, Remé CE, Pfeilschifter J. Light evoked inositol trisphosphate release in the rat retina in vitro. Curr Eye Res 1993; 12:727-32. [PMID: 8222733 DOI: 10.3109/02713689308995768] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Light exposure not only elicits a photic response but may also alter the metabolism and functional properties of the retina. This may be evoked by the stimulation of phospholipid derived second messenger systems. In this study, we investigated the light-evoked release of inositol 1,4,5-triphosphate in the isolated rat retina in vitro by means of high performance liquid chromatography (HPLC) detection. After prelabelling of isolated retinae with tritiated myo-inositol in darkness, they were exposed to no light or to white fluorescent light of 10,000 lux illuminance for 3,5 and 10 sec, respectively. We observed a 200% increase in the release of inositol 1,4,5-trisphosphate compared to basal values in darkness after 3 sec of light exposure with a decline after 5 sec and a return to basal values after 10 sec indicating a rapid breakdown of inositol 1,4,5-trisphosphate. Our data confirm previous studies in the amphibian retina and photoreceptors and demonstrate for the first time a light evoked inositol 1,4,5-trisphosphate release in the mammalian retina.
Collapse
Affiliation(s)
- H H Jung
- Department of Ophthalmology, University Hospital, Zürich, Switzerland
| | | | | |
Collapse
|
39
|
Rhodopsin is the major in situ substrate of protein kinase C in rod outer segments of photoreceptors. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46827-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Ferreira PA, Shortridge RD, Pak WL. Distinctive subtypes of bovine phospholipase C that have preferential expression in the retina and high homology to the norpA gene product of Drosophila. Proc Natl Acad Sci U S A 1993; 90:6042-6. [PMID: 8327481 PMCID: PMC46863 DOI: 10.1073/pnas.90.13.6042] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Drosophila norpA gene encodes a phospholipase C involved in phototransduction. However, phospholipase C apparently is not directly involved in phototransduction in vertebrate photoreceptors, although light-activated phospholipase C activity has been reported in vertebrate rod outer segments. Conserved regions of norpA cDNA were used to isolate bovine cDNAs that would encode four alternative forms of phospholipase C of the beta class that are highly homologous to the norpA protein and expressed preferentially in the retina. Two of the variants are highly unusual in that they lack much of the N-terminal region present in all other known phospholipases C. The sequence conservation between these proteins and the norpA protein is higher than that between any other known phospholipases C. GTPase sequence motifs found in proteins of the GTPase superfamily are found conserved in all four variants of the bovine retinal protein as well as the norpA protein but not in other phospholipases C. Results suggest that these proteins together with the norpA protein constitute a distinctive subfamily of phospholipases C that are closely related in structure, function, and tissue distribution. Mutations in the norpA gene, in addition to blocking phototransduction, cause light-dependent degeneration of photoreceptors. In view of the strong similarity in structure and tissue distribution, a defect in these proteins may have similar consequences in the mammalian retina.
Collapse
Affiliation(s)
- P A Ferreira
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
41
|
Tandon P, Pope C, Padilla S, Tilson HA, Harry GJ. Developmental changes in carbachol-stimulated inositolphosphate release in pigmented rat retina. Curr Eye Res 1993; 12:439-49. [PMID: 8344068 DOI: 10.3109/02713689309024626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Carbachol-stimulated release of inositolphosphates (IP) was studied in the whole retina from Long-Evans rats of different ages (day 5, 10, 15, 20, adult) following in vitro incorporation of [3H]myo-inositol. Unlike the albino rat retina, the pigmented retina was highly light-sensitive, making it necessary to dark adapt the animals and perform retinal dissections under low illumination to prevent light-induced IP release. Retinae from postnatal day 10 rats showed the highest amount of carbachol-stimulated IP released. This response to carbachol decreased with age until postnatal day 20 when it reached adult levels. The pigmented rat retina showed a sharp fall in the degree of carbachol (1 mM)-stimulated IP released at the time of eye-opening (450% above basal in retinae from 10 day old animals, as compared to 230% above basal in 15 day old retinae). Basal release of IP was not altered in the retina during development. Muscarinic cholinergic receptor density was, however, found to increase 5 fold with age, reaching adult levels by PND 20. Retinal weight and protein per retina also increased (four fold) from day 5 to adult; however, the in vitro incorporation of [3H]myo-inositol into phosphoinositides (calculated as per mg protein) did not change during development. Thus, in animals prior to eye opening, a much higher proportion of phosphoinositides appears to be hydrolyzed upon muscarinic receptor stimulation. During retinal development a change in sensitivity to the agonist-sensitive pool(s) of phosphoinositides may occur and/or there may be alterations in the efficacy of receptor coupling to the second messenger system resulting in the disassociation observed between the drastic increase in receptor number and the apparent decrease in receptor-stimulated release of IP.
Collapse
Affiliation(s)
- P Tandon
- Neurotoxicology Div. (MD-74B), US Environmental Protection Agency, Research Triangle Park, NC
| | | | | | | | | |
Collapse
|
42
|
Koch KW. Calcium as modulator of phototransduction in vertebrate photoreceptor cells. Rev Physiol Biochem Pharmacol 1993; 125:149-92. [PMID: 7984873 DOI: 10.1007/bfb0030910] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K W Koch
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Germany
| |
Collapse
|
43
|
Ghalayini A, Anderson R. Activation of bovine rod outer segment phospholipase C by arrestin. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37139-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Ilincheta de Boschero MG, Giusto NM. Phosphatidic acid and polyphosphoinositide metabolism in rod outer segments. Differential role of soluble and peripheral proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1127:105-15. [PMID: 1322705 DOI: 10.1016/0005-2760(92)90265-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phosphorylation of endogenous diacylglycerol (DAG) and phosphoinositides by [tau-32P]ATP was studied in bovine rod outer segments (ROS) selectively depleted of soluble or peripheral and soluble proteins by treatment with moderate (100 mM) or low (5 mM) ionic strength medium, respectively. DAG kinase activity was similar in bleached and non-bleached ROS extracted with 100 mM medium, and amounted to 70% of that observed in the corresponding non-extracted ROS. Phosphatidic acid (PtdH) labelling in ROS extracted in the dark with low ionic strength medium was markedly lower than in those extracted in light. Thus, even when a major proportion of DAG kinase was associated to the membrane, a soluble form also occurred. Most of the membrane-bound fraction behaved as a peripherally associated protein, its binding to the membrane being modified by light. Ir ROS extracted at moderate ionic strength the labelling of inositides was similar to that in non-extracted ROS. A marked enhancement in polyphosphoinositide labelling was observed in ROS extracted in the dark with low ionic strength. Alkaline treatment of ROS also produced inhibition of polyphosphoinositide phosphorylation. A peripheral form of a type C phospholipase, or a peripheral protein-mediated activation of a particulate form thereof, is suggested. Labelled polyphosphoinositides were more actively hydrolyzed in the light and in the dark plus GTP tau S than in the dark-incubated membranes. The results of phosphorylation experiments in membranes where differential extraction of the alpha subunit of transducin was carried out suggest that alpha and beta tau subunits may play opposite modulating roles in PtdH and polyphosphoinositide metabolism.
Collapse
Affiliation(s)
- M G Ilincheta de Boschero
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | |
Collapse
|
45
|
Ghalayini AJ, Tarver AP, Mackin WM, Koutz CA, Anderson RE. Identification and immunolocalization of phospholipase C in bovine rod outer segments. J Neurochem 1991; 57:1405-12. [PMID: 1895111 DOI: 10.1111/j.1471-4159.1991.tb08307.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bovine rod outer segments (ROS) contain a phospholipase C (PLC) that hydrolyzes phosphatidylinositol 4,5-bisphosphate. Approximately 60-70% of PLC activity is recovered in soluble extracts of ROS. Moreover, the specific activity of this soluble PLC is approximately 10-fold higher than that of resealed ROS enzyme activity. Peptide-specific antiserum (Ab 1109) directed against a highly conserved sequence of the Y-region found in several PLC isozymes was used to detect any PLC belonging to this family. This antibody specifically recognized a protein of apparent molecular mass of approximately 140 kDa present in immunoblots of soluble extracts of both ROS and whole retina. The elution profile of this 140-kDa antigen from a Sephadex G-150 column coincided with the peak of PLC activity, suggesting PLC activity is associated with the 140-kDa protein. Immunocytochemical studies of bovine retina using Ab 1109 showed pronounced immunoreactive labeling in the photoreceptor layer. In resealed ROS and washed ROS membranes, Ab 1109 recognized an additional protein of apparent molecular mass of 70 kDa not usually detectable in soluble extracts of ROS, suggesting the presence of at least two isozymes of PLC in ROS.
Collapse
Affiliation(s)
- A J Ghalayini
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | |
Collapse
|
46
|
Abstract
Previous studies have shown that vertebrate rod outer segments (ROS) have a light activated phospholipase C which hydrolyzes phosphatidylinositol-4,5-bisphosphonate (PIP2). Three different experimental approaches have been used to test the hypothesis that the phosphatidylinositol (PI) biosynthetic cycle is present in ROS and that PIP2 can be regenerated from DG independent of rod inner segments. In the first study, enzyme activities of the PI cycle were assayed simultaneously in the presence of CTP, myo-inositol and [gamma-32P]ATP using endogenous lipids as substrates. Under these conditions, broken (leaky) ROS prepared by continuous sucrose gradient centrifugation showed PI, PIP and DG kinase activities similar to those found in intact ROS and non-ROS membranes, whereas PI synthetase activity was much lower in the leaky ROS than in the other two fractions. The relative distribution of PI synthetase specific activity in the three membrane preparations was similar to that of the microsomal enzyme marker cytochrome c reductase. ROS prepared by discontinuous sucrose gradient centrifugation showed only 2-3% of whole homogenate PI synthetase or phosphatidyl: cytidyl transferase activities, and the distribution of activities was the same as for microsomal and mitochondrial marker enzymes. In the second study, whole retinas were incubated with myo-[2-3H]inositol or [2-3H]glycerol in vitro, and the time course of incorporation of radioactivity into PI and other phospholipids was determined for ROS and three other retinal fractions. Over a 10-hr period, the rate of incorporation of myo-[2-3H]inositol or [2-3H]glycerol into PI in ROS was lowest among the various retinal fractions. In the third study, chemical analysis of the molecular species composition of PI, DG and phosphatidic acid (PA) from ROS shows that PA is substantially different from PI and DG, the latter two being quite similar. These results are consistent with a precursor-product relationship between PI and DG, but not with the conversion of DG to PA or of PA to PI. Taken together, these three studies indicate that ROS do not have PI synthetase or phosphatidyl: cytidyl transferase activities, but do have DG, PI and PIP kinase activities. Thus, the PI in ROS lost through rapid turnover must be replaced with molecules derived from de novo synthesis in the inner segment of the photoreceptor cell.
Collapse
Affiliation(s)
- H G Choe
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | | | | |
Collapse
|
47
|
Choe HG, Anderson RE. Unique molecular species composition of glycerolipids of frog rod outer segments. Exp Eye Res 1990; 51:159-65. [PMID: 2387334 DOI: 10.1016/0014-4835(90)90068-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The composition and metabolism of molecular species of glycerolipids, including phosphatidic acid (PA), phosphatidylinositol (PI) and diacylglycerol (DG), were studied in four frog retinal fractions prepared by discontinuous sucrose gradient centrifugation. Six glycerolipid classes were isolated from the lipid extracts of each fraction and converted to their corresponding 1,2-diacylglycerol acetates by acetolysis for quantitation of their molecular species by HPLC. Rod outer segments (ROS) showed a distinctive molecular species composition in all glycerolipid classes except phosphatidylcholine (PC). The relative amounts of dipolyunsaturated species in ROS were higher in phosphatidylethanolamine (PE), phosphatidylserine (PS), and PA, compared to the other retinal fractions. PI and DG of ROS had a similar molecular species composition and contained only small amounts of dipolyunsaturated species. A unique feature of the molecular species of ROS PI and DG was that they had high amounts of species containing docosahexaenoic acid (22: 6 omega 3), while PI and DG from the other retinal membranes consisted mostly of species containing arachidonic acid (20: 4 omega 6). Following in vitro incubation of frog retinas with [2-3H] glycerol, the mass and radioactivity distributions among molecular species were determined following HPLC fractionation. The unique species composition of PS in ROS is determined mainly by selective translocation from the inner segments to ROS, since the dpm %, representative of newly synthesized species composition of the same glycerolipid classes in the other membrane fractions. This suggests that the distinctive species composition of PE and PA in ROS is determined not by selective translocation from the inner segments, but by remodeling processes taking place in the ROS.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H G Choe
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
48
|
Gehm BD, Mc Connell DG. Phosphatidylinositol-4,5-bisphosphate phospholipase C in bovine rod outer segments. Biochemistry 1990; 29:5447-52. [PMID: 2167127 DOI: 10.1021/bi00475a006] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Preparations of rod outer segments from cattle retinas contained soluble and particulate phospholipase C activities which hydrolyzed phosphatidylinositol 4,5-bisphosphate (PIP2) and the other phosphoinositides. Ca2+ was required for PIP2 hydrolysis, but high (greater than 300 microM) concentrations were inhibitory. Mg2+ and spermine at low concentrations stimulated the particulate activity but inhibited the soluble. Mn2+ inhibited both. High (greater than 100 microM) concentrations of the nonhydrolyzable GTP analogue guanylyl beta,gamma-methylenediphosphonate inhibited PIP2 hydrolysis by both the soluble and particulate activities, but guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), fluoride, and cholera and pertussis toxins were without effect. Overall phospholipase C activity in ROS was unaffected by light. Evidence was found for multiple forms of the enzyme, requiring isolation and separate characterization before ruling out regulation by light or G-protein.
Collapse
Affiliation(s)
- B D Gehm
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
49
|
Binder BM, Brewer E, Bownds MD. Stimulation of Protein Phosphorylations in frog Rod Outer Segments by Protein Kinase Activators. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81872-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Birkle DL, Bazan NG. Light exposure stimulates arachidonic acid metabolism in intact rat retina and isolated rod outer segments. Neurochem Res 1989; 14:185-90. [PMID: 2725818 DOI: 10.1007/bf00969637] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This paper presents evidence that short-term exposure to light increases synthesis of hydroxyeicosatetraenoic acid (HETE) and prostaglandin D2 (PGD2) and stimulates the uptake and metabolism of 20:4 in phospholipids and triacylglycerols in rat retina. There was a time-dependent increase in incorporation of 1-14C-20:4 into glycerolipids in both dark-adapted and light-exposed groups. Exposure to light for 15 or 30 min enhanced the acylation of 20:4 into phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine and triacylglycerols. In the light-exposed groups there was a large increase in the conversion of 20:4 to leukotriene B4, two diHETEs, 5-HETE, 15-HETE, and PGD2. The stimulation of HETE synthesis by light could be due to early stages of light-induced lipid peroxidation in visual cells. To examine this, we studied peroxidation of 20:4 in isolated rod outer segments (ROS). There was more oxidation of 20:4 in light-exposed ROS, as compared to ROS incubated in the dark. Vitamin E and nordihydroguaiaretic acid inhibited the light-induced formation of some of these products. The data indicate that photo-oxidation of 20:4 in ROS is accompanied by enzymatic oxygenation that is stimulated by light. Increased production of HETEs an PGD2 may be a consequence of the light-induced stimulation of the metabolism of 20:4 in membrane phospholipids in the retina.
Collapse
Affiliation(s)
- D L Birkle
- Louisiana State University Eye Center, New Orleans
| | | |
Collapse
|