Mozhayeva GN, Naumov AP, Kuryshev YuA. Variety of Ca(2+)-permeable channels in human carcinoma A431 cells.
J Membr Biol 1991;
124:113-26. [PMID:
1662282 DOI:
10.1007/bf01870456]
[Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Patch-clamp methods were used to search for and characterize channels that mediate calcium influx through the plasma membrane of human carcinoma A431 cells. Here we present four Ca(2+)-permeable channel types referred to as SG, G, 1 and BI. With 105 mM Ca2+ as the charge carrier, at 30-33 degrees C their mean unitary conductances (in pS) are: 1.3 (SG), 2.4 (G), 3.7 (I) and 12.8 (BI). SG and G channels are activated by nonhydrolyzable analogues of guanosine 5-triphosphate (GTP) applied to the inside of the membrane, suggesting an involvement of G-proteins in the control of their activity. I and BI channels are activated by inositol 1,4,5-trisphosphate (InsP3). G, I, BI and possibly SG channels are activated from the extracellular side of the membrane by epidermal growth factor (EGF) and histamine. It is assumed that all identified Ca2+ channels take part in the generation of the agonist-induced intracellular Ca2+ signal. The variety of Ca-channel types seems to be necessary to tune cell responses according to the respective type and level of an external signal, on the one hand, and to the functional state of the cell, on the other.
Collapse