1
|
Shanmugasundaram K, Nayak BK, Friedrichs WE, Kaushik D, Rodriguez R, Block K. NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance. Nat Commun 2017; 8:997. [PMID: 29051480 PMCID: PMC5648812 DOI: 10.1038/s41467-017-01106-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/16/2017] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms that couple glycolysis to cancer drug resistance remain unclear. Here we identify an ATP-binding motif within the NADPH oxidase isoform, NOX4, and show that ATP directly binds and negatively regulates NOX4 activity. We find that NOX4 localizes to the inner mitochondria membrane and that subcellular redistribution of ATP levels from the mitochondria act as an allosteric switch to activate NOX4. We provide evidence that NOX4-derived reactive oxygen species (ROS) inhibits P300/CBP-associated factor (PCAF)-dependent acetylation and lysosomal degradation of the pyruvate kinase-M2 isoform (PKM2). Finally, we show that NOX4 silencing, through PKM2, sensitizes cultured and ex vivo freshly isolated human-renal carcinoma cells to drug-induced cell death in xenograft models and ex vivo cultures. These findings highlight yet unidentified insights into the molecular events driving cancer evasive resistance and suggest modulation of ATP levels together with cytotoxic drugs could overcome drug-resistance in glycolytic cancers.
Collapse
Affiliation(s)
| | - Bijaya K Nayak
- Department of Medicine, UT Health, San Antonio, TX, 78229, USA
| | | | - Dharam Kaushik
- Department of Urology, UT Health, San Antonio, TX, 78229, USA
| | | | - Karen Block
- Department of Medicine, UT Health, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Characterization and protective property of Brucella abortus cydC and looP mutants. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1573-80. [PMID: 25253663 DOI: 10.1128/cvi.00164-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucella abortus readily multiplies in professional or nonprofessional phagocytes in vitro and is highly virulent in mice. Isogenic mutants of B. abortus biovar 1 strain IVKB9007 lacking the ATP/GDP-binding protein motif A (P-loop) (named looP; designated here the IVKB9007 looP::Tn5 mutant) and the ATP-binding/permease protein (cydC; designated here the IVKB9007 cydC::Tn5 mutant) were identified and characterized by transposon mutagenesis using the mini-Tn5Km2 transposon. Both mutants were found to be virtually incapable of intracellular replication in both murine macrophages (RAW264.7) and the HeLa cell line, and their virulence was significantly impaired in BALB/c mice. Respective complementation of the IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants restored their ability to survive in vitro and in vivo to a level comparable with that of the wild type. These findings indicate that the cydC and looP genes play important roles in the virulence of B. abortus. In addition, intraperitoneal immunization of mice with a dose of the live IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants provided a high degree of protection against challenge with pathogenic B. abortus strain 544. Both mutants should be evaluated further as a live attenuated vaccine against bovine brucellosis for their ability to stimulate a protective immune response.
Collapse
|
3
|
Sasikumar AN, Kinzy TG. Mutations in the chromodomain-like insertion of translation elongation factor 3 compromise protein synthesis through reduced ATPase activity. J Biol Chem 2013; 289:4853-60. [PMID: 24379402 DOI: 10.1074/jbc.m113.536201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation elongation is mediated by ribosomes and multiple soluble factors, many of which are conserved across bacteria and eukaryotes. During elongation, eukaryotic elongation factor 1A (eEF1A; EF-Tu in bacteria) delivers aminoacylated-tRNA to the A-site of the ribosome, whereas eEF2 (EF-G in bacteria) translocates the ribosome along the mRNA. Fungal translation elongation is striking in its absolute requirement for a third factor, the ATPase eEF3. eEF3 binds close to the E-site of the ribosome and has been proposed to facilitate the removal of deacylated tRNA from the E-site. eEF3 has two ATP binding cassette (ABC) domains, the second of which carries a unique chromodomain-like insertion hypothesized to play a significant role in its binding to the ribosome. This model was tested in the current study using a mutational analysis of the Sac7d region of the chromodomain-like insertion. Specific mutations in this domain result in reduced growth rate as well as slower translation elongation. In vitro analysis demonstrates that these mutations do not affect the ability of eEF3 to interact with the ribosome. Kinetic analysis revealed a larger turnover number for ribosomes in comparison to eEF3, indicating that the partial reactions involving the ribosome are significantly faster than that of eEF3. Mutations in the chromodomain-like insertion severely compromise the ribosome stimulated ATPase of eEF3, strongly suggesting that it exerts an allosteric effect on the hydrolytic activity of eEF3. The chromodomain-like insertion is, therefore, vital to eEF3 function and may be targeted for developing novel antifungal drugs.
Collapse
Affiliation(s)
- Arjun N Sasikumar
- From the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-5635
| | | |
Collapse
|
4
|
Paytubi S, Wang X, Lam YW, Izquierdo L, Hunter MJ, Jan E, Hundal HS, Proud CG. ABC50 promotes translation initiation in mammalian cells. J Biol Chem 2009; 284:24061-73. [PMID: 19570978 DOI: 10.1074/jbc.m109.031625] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABC50 is an ATP-binding cassette (ABC) protein, which, unlike most ABC proteins, does not possess membrane-spanning domains. ABC50 interacts with eukaryotic initiation factor 2 (eIF2), which plays a key role in translation initiation and its control. ABC50 binds to ribosomes, and this interaction requires both the N-terminal domain and at least one ABC domain. Knockdown of ABC50 by RNA interference impaired translation of both cap-dependent and -independent reporters, consistent with a positive role for ABC50 in the function of eIF2, which is required for both types of translation initiation. Mutation of the Walker box A or B motifs in both ABC regions of ABC50 yielded a mutant protein that exerted a dominant-interfering phenotype with respect to protein synthesis and translation initiation. Importantly, although dominant-interfering mutants of ABC50 impaired cap-dependent translation, translation driven by certain internal ribosome entry segments was not inhibited. ABC50 is located in the cytoplasm and nucleoplasm but not in the nucleolus. Thus, ABC50 is not likely to be directly involved in early ribosomal biogenesis, unlike some other ABC proteins. Taken together, the present data show that ABC50 plays a key role in translation initiation and has functions that are distinct from those of other non-membrane ABC proteins.
Collapse
Affiliation(s)
- Sonia Paytubi
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Anand M, Balar B, Ulloque R, Gross SR, Kinzy TG. Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A. J Biol Chem 2006; 281:32318-26. [PMID: 16954224 DOI: 10.1074/jbc.m601899200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation elongation factor 3 (eEF3) is a fungal-specific ATPase proposed to catalyze the release of deacylated-tRNA from the ribosomal E-site. In addition, it has been shown to interact with the aminoacyl-tRNA binding GTPase elongation factor 1A (eEF1A), perhaps linking the E and A sites. Domain mapping demonstrates that amino acids 775-980 contain the eEF1A binding sites. Domain III of eEF1A, which is also involved in actin-related functions, is the site of eEF3 binding. The binding of eEF3 to eEF1A is enhanced by ADP, indicating the interaction is favored post-ATP hydrolysis but is not dependent on the eEF1A-bound nucleotide. A temperature-sensitive P915L mutant in the eEF1A binding site of eEF3 has reduced ATPase activity and affinity for eEF1A. These results support the model that upon ATP hydrolysis, eEF3 interacts with eEF1A to help catalyze the delivery of aminoacyl-tRNA at the A-site of the ribosome. The dynamics of when eEF3 interacts with eEF1A may be part of the signal for transition of the post to pre-translocational ribosomal state in yeast.
Collapse
Affiliation(s)
- Monika Anand
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
6
|
Majka J, Chung BY, Burgers PMJ. Requirement for ATP by the DNA damage checkpoint clamp loader. J Biol Chem 2004; 279:20921-6. [PMID: 15014082 DOI: 10.1074/jbc.m400898200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage clamp loader replication factor C (RFC-Rad24) consists of the Rad24 protein and the four small Rfc2-5 subunits of RFC. This complex loads the heterotrimeric DNA damage clamp consisting of Rad17, Mec3, and Ddc1 (Rad17/3/1) onto partial duplex DNA in an ATP-dependent manner. Interactions between the clamp loader and the clamp have been proposed to mirror those of the replication clamp loader RFC and the sliding clamp proliferating cell nuclear antigen (PCNA). In that system, three ATP molecules bound to the Rfc2, Rfc3, and Rfc4 subunits are necessary and sufficient for efficient loading of PCNA, whereas ATP binding to Rfc1 is not required. In contrast, in this study, we show that mutant RFC-Rad24 with a rad24-K115E mutation in the ATP-binding domain of Rad24 shows defects in the ATPase of the complex and is defective for interaction with Rad17/3/1 and for loading of the checkpoint clamp. A similar defect was measured with a mutant RFC-Rad24 clamp loader carrying a rfc4K55R ATP-binding mutation, whereas the rfc4K55E clamp loader showed partial loading activity, in agreement with genetic studies of these mutants. These studies show that ATP utilization by the checkpoint clamp/clamp loader system is effectively different from that by the structurally analogous replication system.
Collapse
Affiliation(s)
- Jerzy Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
7
|
Anand M, Chakraburtty K, Marton MJ, Hinnebusch AG, Kinzy TG. Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3. J Biol Chem 2003; 278:6985-91. [PMID: 12493761 DOI: 10.1074/jbc.m209224200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translation elongation machinery in fungi differs from other eukaryotes in its dependence upon eukaryotic elongation factor 3 (eEF3). eEF3 is essential in vivo and required for each cycle of the translation elongation process in vitro. Models predict eEF3 affects the delivery of cognate aminoacyl-tRNA, a function performed by eEF1A, by removing deacylated tRNA from the ribosomal Exit site. To dissect eEF3 function and its link to the A-site activities of eEF1A, we have identified a temperature-sensitive allele of the YEF3 gene. The F650S substitution, located between the two ATP binding cassettes, reduces both ribosome-dependent and intrinsic ATPase activities. In vivo this mutation increases sensitivity to aminoglycosidic drugs, causes a 50% reduction of total protein synthesis at permissive temperatures, slows run-off of polyribosomes, and reduces binding to eEF1A. Reciprocally, excess eEF3 confers synthetic slow growth, increased drug sensitivity, and reduced translation in an allele specific fashion with an E122K mutation in the GTP binding domain of eEF1A. In addition, this mutant form of eEF1A shows reduced binding of eEF3. Thus, optimal in vivo interactions between eEF3 and eEF1A are critical for protein synthesis.
Collapse
Affiliation(s)
- Monika Anand
- Department of Molecular Genetics, Microbiology & Immunology, University of Medicine and Dentistry of New Jersey Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Elongation factor 3 is a cytosolic protein required by the fungal ribosomes for in vitro protein synthesis and for in vivo growth. EF-3 stimulates binding of EF-1:GTP:aa-tRNA ternary complex to the ribosomal A site by facilitated release of the deacylated tRNA from the E site. The reaction requires ATP hydrolysis. EF-3 contains two ATP binding sequence (NBS) motifs. NBSI is sufficient for the intrinsic ATPase activity. NBSII is essential for the ribosome-stimulated functions.
Collapse
Affiliation(s)
- K Chakraburtty
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA.
| |
Collapse
|
9
|
Abstract
Elongation factor 3 (EF-3) is a unique and essential requirement of the fungal translational apparatus. EF-3 is a monomeric protein with a molecular mass of 116,000. EF-3 is required by yeast ribosomes for in vitro translation and for in vivo growth. The protein stimulates the binding of EF-1 alpha :GTP:aa-tRNA ternary complex to the ribosomal A-site by facilitating release of deacylated-tRNA from the E-site. The reaction requires ATP hydrolysis. EF-3 contains two ATP-binding sequence motifs (NBS). NBSI is sufficient for the intrinsic ATPase function. NBSII is essential for ribosome-stimulated activity. By limited proteolysis, EF-3 was divided into two distinct functional domains. The N-terminal domain lacking the highly charged lysine blocks failed to bind ribosomes and was inactive in the ribosome-stimulated ATPase activity. The C-terminally derived lysine-rich fragment showed strong binding to yeast ribosomes. The purported S5 homology region of EF-3 at the N-terminal end has been reported to interact with 18S ribosomal RNA. We postulate that EF-3 contacts rRNA and/or protein(s) through the C-terminal end. Removal of these residues severely weakens its interaction mediated possibly through the N-terminal domain of the protein.
Collapse
Affiliation(s)
- K Chakraburtty
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA.
| |
Collapse
|
10
|
Ladror US, Egan DA, Snyder SW, Capobianco JO, Goldman RC, Dorwin SA, Johnson RW, Edalji R, Sarthy AV, McGonigal T, Walter KA, Holzman TF. Domain structure analysis of elongation factor-3 from Saccharomyces cerevisiae by limited proteolysis and differential scanning calorimetry. Protein Sci 1998; 7:2595-601. [PMID: 9865954 PMCID: PMC2143895 DOI: 10.1002/pro.5560071213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Elongation-factor-3 (EF-3) is an essential factor of the fungal protein synthesis machinery. In this communication the structure of EF-3 from Saccharomyces cerevisiae is characterized by differential scanning calorimetry (DSC), ultracentrifugation, and limited tryptic digestion. DSC shows a major transition at a relatively low temperature of 39 degrees C, and a minor transition at 58 degrees C. Ultracentrifugation shows that EF-3 is a monomer; thus, these transitions could not reflect the unfolding or dissociation of a multimeric structure. EF-3 forms small aggregates, however, when incubated at room temperature for an extended period of time. Limited proteolysis of EF-3 with trypsin produced the first cleavage at the N-side of Gln775, generating a 90-kDa N-terminal fragment and a 33-kDa C-terminal fragment. The N-terminal fragment slowly undergoes further digestion generating two major bands, one at approximately 75 kDa and the other at approximately 55 kDa. The latter was unusually resistant to further tryptic digestion. The 33-kDa C-terminal fragment was highly sensitive to tryptic digestion. A 30-min tryptic digest showed that the N-terminal 60% of EF-3 was relatively inaccessible to trypsin, whereas the C-terminal 40% was readily digested. These results suggest a tight structure of the N-terminus, which may give rise to the 58 degrees C transition, and a loose structure of the C-terminus, giving rise to the 39 degrees C transition. Three potentially functional domains of the protein were relatively resistant to proteolysis: the supposed S5-homologous domain (Lys102-Ile368), the N-terminal ATP-binding cassette (Gly463-Lys622), and the aminoacyl-tRNA-synthase homologous domain (Glu820-Gly865). Both the basal and ribosome-stimulated ATPase activities were inactivated by trypsin, but the ribosome-stimulated activity was inactivated faster.
Collapse
Affiliation(s)
- U S Ladror
- Pharmaceutical Discovery Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gontarek RR, Li H, Nurse K, Prescott CD. The N terminus of eukaryotic translation elongation factor 3 interacts with 18 S rRNA and 80 S ribosomes. J Biol Chem 1998; 273:10249-52. [PMID: 9553076 DOI: 10.1074/jbc.273.17.10249] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongation factor-3 (EF-3) is an essential fungal-specific translation factor which exhibits a strong ribosome-dependent ATPase activity and has sequence homologies that may predict domains critical for its role in protein synthesis, including a domain at the N terminus, which exhibits sequence homology with Escherichia coli ribosomal protein S5. A portion of the N terminus of Saccharomyces cerevisiae EF-3 (spanning the S5 homology region) has been cloned, expressed, and purified from E. coli. UV cross-linking experiments revealed that the N-terminal EF-3 protein (N-term EF-3) can be specifically cross-linked to 18 S rRNA. Filter-binding assays confirmed these data, and also established that the interaction has a Kd approximately 238 nM. Additional evidence shows that N-term EF-3 is able to associate with yeast ribosomes and inhibit the ribosome-dependent ATPase activity of native EF-3. These data taken together suggest that at least one of the ribosome-binding sites of EF-3 is located at the N terminus.
Collapse
Affiliation(s)
- R R Gontarek
- RNA Research Group, Department of Molecular Recognition, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | |
Collapse
|
12
|
Kambampati R, Chakraburtty K. Overexpression and purification of elongation factor 3 from Saccharomyces cerevisiae. Protein Expr Purif 1997; 10:209-13. [PMID: 9226717 DOI: 10.1006/prep.1997.0728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The translational elongation factor 3 (EF-3) from Saccharomyces cerevisiae was overexpressed and purified to near homogeneity from the post-ribosomal supernatant fraction (S-100). A detailed protocol for the isolation of overexpressed EF-3 is presented. The procedure involves ion-exchange chromatography on DEAE-Sepharose and CM-Sepharose and affinity chromatography on ATP-agarose. A protein purity of > or = 96% was established by quantitating the silver-stained SDS/polyacrylamide gel. The present method facilitates isolation of EF-3 in large amounts in high yield.
Collapse
Affiliation(s)
- R Kambampati
- Medical College of Wisconsin, Department of Biochemistry, Milwaukee 53226, USA
| | | |
Collapse
|