Gyenes M, Lustyik G, Nagy V, Jeney F, Nagy I. Age-dependent decrease of the passive Rb+ and K+ permeability of the nerve cell membranes in rat brain cortex as revealed by in vivo measurement of the Rb+ discrimination ratio.
Arch Gerontol Geriatr 1984;
3:11-31. [PMID:
6742945 DOI:
10.1016/0167-4943(84)90012-8]
[Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Young, adult and old male CFY rats (2, 12 and 24 mth of age, respectively) were treated with a daily dose of 30 mg RbCl/100 g body weight, in form of aqueous solution injected intraperitoneally for 14 days. A considerable part of the intracellular K+-content of the body was replaced by Rb+ during this treatment. After cessation of the RbCl injections, a relative steady state came into being in each age group, called Rb+-release period. During this period Rb+ and K+ contents of the blood serum and the cisternal CSF were measured by atomic absorption spectrophotometry, and of the intracellular space of brain cortical cells by energy-dispersive X-ray microanalysis. Ultrastructural features of the brain cortex were also checked by transmission electron microscopy. For X-ray microanalysis, the L-line of Rb at 1.694 keV energy was used at 10 kV accelerating voltage in a scanning electron microscope equipped with an EDAX System F. Rb+ and K+ concentrations were obtained for the cellular dry mass and converted into wet concentrations on the basis of intracellular water contents known from former experiments. Rb+-replacement of K+ did not cause any ultrastructural alteration in the brain cortex. However, the Rb+ accumulation displayed a very significant age-dependent increase: at the beginning of release, adult and old rats had 32.6 and 44.7 mM Rb+ in their intracellular water as against the 8.6 mM found in the young group, and similar proportional difference persisted during 20 days of the release. Rb+ discrimination ratios (DR) calculated either for the blood or the CSF displayed very considerable age-dependent increase: the values of the adult and old groups were 191 and 242% of the young one, indicating that the passive Rb+ (and K+) permeability of the nerve cell membrane decreases throughout the life span of rats. These results give further support to the membrane hypothesis of aging.
Collapse