1
|
Mistry K, Markande AR, Patel JK, Parekh K. Screening, Isolation and Characterization of Aerobic Magnetotactic Bacteria From Western Ghats Forest Soil. Indian J Microbiol 2024; 64:1257-1265. [PMID: 39282193 PMCID: PMC11399505 DOI: 10.1007/s12088-024-01316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/15/2024] [Indexed: 09/18/2024] Open
Abstract
Magnetotactic bacteria (MTB) are a unique ecophysiological group of iron-metabolizing bacteria that have immense potential biotechnological applications. These bacteria have predominantly been isolated from oxygen-limited conditions of aquatic niches and rarely from the soils. The Western Ghats biodiversity hotspot has been well-studied for its fauna and flora diversity. The present study includes optimization of enrichment medium for cultivation of MTB, to suit aerobic mesophiles from forest soil. The major components included were Ferric quinate and Resazurin. The enrichment and isolates were characterized for their magnetic properties using magnetotaxis on agar plates, Vibrating Sampler Magnetometer (VSM), and X-ray diffraction (XRD) analysis. The isolates, namely Bacillus sp. S1 (MN212953), Sphingoaurantiacus sp. S2_03 (MN212954), Burkholderia sp. S2_08 (MN212955) and Microvirga sp. S2_09 (MN212956) were isolated and characterized to have a magnetosome size of 2.5-8 nm. Our study is the first report on the enrichment and isolation of MTB from Western Ghats forest soil. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01316-4.
Collapse
Affiliation(s)
- Kruti Mistry
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Gujarat 388421 India
| | - Anoop R Markande
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Gujarat 388421 India
- Present Address: Department of Microbiology, School of Basic & Applied Sciences, B- Block, Innovation Campus, Dayananda Sagar University, Kudlu Gate, Hosur Road, Bengaluru, 560068 India
| | - Janki K Patel
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Gujarat 388421 India
| | - Kinnari Parekh
- Dr. K.C. Patel R&D Center, Charotar University of Science & Technology (CHARUSAT), Changa, Gujarat 388421 India
| |
Collapse
|
2
|
Li J, Liu P, Menguy N, Benzerara K, Bai J, Zhao X, Leroy E, Zhang C, Zhang H, Liu J, Zhang R, Zhu K, Roberts AP, Pan Y. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: strategy for culture-independent study. Environ Microbiol 2022; 24:5019-5038. [PMID: 35726890 DOI: 10.1111/1462-2920.16109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular magnetic nanocrystals and swim along geomagnetic field lines. While few axenic MTB cultures exist, living cells can be separated magnetically from natural environments for analysis. The bacterial universal 27F/1492R primer pair has been used widely to amplify nearly full-length 16S rRNA genes and to provide phylogenetic portraits of MTB communities. However, incomplete coverage and amplification biases inevitably prevent detection of some phylogenetically specific or non-abundant MTB. Here, we propose a new formulation of the upstream 390F primer that we combined with the downstream 1492R primer to specifically amplify 1,100-bp 16S rRNA gene sequences of sulfate-reducing MTB in freshwater sediments from Lake Weiyanghu, Xi'an, northwestern China. With correlative fluorescence in situ hybridization and scanning/transmission electron microscopy, three novel MTB strains (WYHR-2, WYHR-3, and WYHR-4) from the Desulfobacterota phylum were identified phylogenetically and structurally at the single cell level. Strain WYHR-2 produces bullet-shaped magnetosome magnetite, while the other two strains produce both cubic/prismatic greigite and bullet-shaped magnetite. Our results expand knowledge of bacterial diversity and magnetosome biomineralization of sulfate-reducing MTB. We also propose a general strategy for identifying and characterizing uncultured MTB from natural environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Eric Leroy
- ICMPE, University Paris East, UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais Cedex, France
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Heng Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Keilei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Tan SM, Ismail MH, Cao B. Biodiversity of magnetotactic bacteria in the tropical marine environment of Singapore revealed by metagenomic analysis. ENVIRONMENTAL RESEARCH 2021; 194:110714. [PMID: 33422504 DOI: 10.1016/j.envres.2021.110714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Most studies on the diversity of magnetotactic bacteria (MTB) have been conducted on samples obtained from the Northern or the Southern hemispheres. The diversity of MTB in tropical Asia near the geo-equator, with a close-to-zero geomagnetic inclination, weak magnetic field and constantly high seawater temperature has never been explored. This study aims to decipher the diversity of MTB in the marine environment of Singapore through shotgun metagenomics. Although MTB has been acknowledged to be ubiquitous in aquatic environments, we did not observe magnetotactic behaviour in the samples. However, we detected the presence and determined the diversity of MTB through bioinformatic analyses. Metagenomic analysis suggested majority of the MTB in the seafloor sediments represents novel MTB taxa that cannot be classified at the species level. The relative abundance of MTB (~0.2-1.69%) in the samples collected from the marine environment of Singapore was found to be substantially lower than studies for other regions. In contrast to other studies, the genera Magnetovibrio and Desulfamplus, but not Magnetococcus, were the dominant MTB. Additionally, we recovered 3 MTB genomic bins that are unclassified at the species level, with Magnetovibrio blakemorei being the closest-associated genome. All the recovered genomic bins contain homologs of at least 5 of the 7 mam genes but lack homologs for mamI, a membrane protein suggested to take part in the magenetosome invagination. This study fills in the knowledge gap of MTB biodiversity in the tropical marine environment near the geo-equator. Our findings will facilitate future research efforts aiming to unravel the ecological roles of MTB in the tropical marine environments as well as to bioprospecting novel MTB that have been adapted to tropical marine environments for biotechnological applications.
Collapse
Affiliation(s)
- Shi Ming Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore
| | - Muhammad Hafiz Ismail
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, N1-01C-69, 639798, Singapore.
| |
Collapse
|
4
|
Ali I, Peng C, Khan ZM, Naz I. Yield cultivation of magnetotactic bacteria and magnetosomes: A review. J Basic Microbiol 2017; 57:643-652. [PMID: 28464298 DOI: 10.1002/jobm.201700052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/11/2017] [Accepted: 04/09/2017] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria (MTB) have started to be employed for the biosynthesis of magnetic nanoparticles, due to the rapidly increasing demand for nanoparticles in biomedical, biotechnology and environmental protection. MBT are the group of prokaryotes that have the ability to produce bio-magnetic minerals or bio-magnetic crystals of either magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in numerous shapes and size ranges, known as magnetosomes (MS). MS compel MTB to respond to the applied external magnetic field. However, it is extremely difficult to grow MTB and produce high yield of MS under artificial environmental conditions, thus creating a major hurdle to relocate MTB technology from laboratory scale to industrial or commercial level. Therefore, to best of our knowledge this review is the first attempt to highlight existing research developments about the laboratory scale and mass production of MS by MTB. Moreover, the optimum culture media and environmental conditions used for the cultivation of MTB were also considered. Finally, future research is encouraged for the improvement of MS yield which will result in the development of advanced nanotechnology/magnetotechnology.
Collapse
Affiliation(s)
- Imran Ali
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Changsheng Peng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zahid M Khan
- Department of Agricultural Engineering, Bahauddin Zakariya University, Multan, Pakistan
| | - Iffat Naz
- Department of Biology, Scientific Unit, Deanship of Educational services, Qassim University, Buraidah, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Tajer Mohammad Ghazvini P, Kermanshahi RK, Nozad Golikand A, Sadeghizadeh M. Isolation and Characterization of a Novel Magnetotactic Bacterium From Iran: Iron Uptake and Producing Magnetic Nanoparticles in Alphaproteobacterium MTB-KTN90. Jundishapur J Microbiol 2014; 7:e19343. [PMID: 25485070 PMCID: PMC4255385 DOI: 10.5812/jjm.19343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/07/2014] [Accepted: 06/21/2014] [Indexed: 12/19/2022] Open
Abstract
Background: Magnetotactic bacteria (MTB) have the ability to biomineralize unique intracellular magnetic nanosize particles. These bacteria and their magnetosomes are under special attraction because of their great useful potential in nano-biotechnological and biomedical applications. MTB are ubiquitous in aquatic environments, but their isolation and axenic cultivation in pure culture is very difficult and only a limited number of them have been isolated in pure culture. Objectives: The main goal of this study was screening, isolation and cultivation of a new strain of these fastidious bacteria in pure culture from Iran to use them and their magnetosomes. Materials and Methods: Thirty samples were collected from various aquatic habitats. Most important physicochemical environmental factors that are involved in growth of MTB in the microcosms were investigated using inductively coupled plasma atomic emission spectroscopy (ICP-AES), portable dissolved oxygen meter, etc. Capillary racetrack technique and magnetic separation were used to purify and enrich MTB. Various isolation media were simultaneously used for isolation of a new magnetotactic bacterium in pure culture. Two imaging techniques were used to visualize the characterizations and cell division: transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FESEM). Polymerase chain reaction (PCR), ChromasPro software and MEGA5 were applied for sequence analysis of the 16S rRNA gene. Results: The results revealed a correlation of important physicochemical factors such as pH and iron with growth and blooms of these bacteria in the microcosms. New strain MTB-KTN90 was isolated in a modified isolation medium at microaerophilic zone from Anzali lagoon, Iran and cultured in a modified growth medium subsequently. The phylogenetic analysis showed that the strain belongs to Alphaproteobacteria. Growth and iron uptake studies indicated an important role by this bacterium in the iron biogeochemical cycle. For the first time, this paper introduced a cultured magnetotactic Alphaproteobacterium, able to synthesize magnetosomes in the temperatures above 30°C and reduce selenate oxyanion. Conclusions: This paper may serve as a guide to screening, isolation, and cultivation of more new MTB. The new isolated strain opens up good opportunities for biotechnological applications such as medicine to bioremediation processes due to its unique abilities.
Collapse
Affiliation(s)
| | - Rouha Kasra Kermanshahi
- Department of Biology, Faculty of Science, Alzahra University, Tehran, IR Iran
- Corresponding author: Rouha Kasra Kermanshahi, Department of Biology, Faculty of Science, Alzahra University, Tehran, IR Iran. Tel: +98-2188044051-53 (2709), Fax: +98-2188058912, E-mail:
| | - Ahmad Nozad Golikand
- Material Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, IR Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, IR Iran
| |
Collapse
|
6
|
Postec A, Tapia N, Bernadac A, Joseph M, Davidson S, Wu LF, Ollivier B, Pradel N. Magnetotactic bacteria in microcosms originating from the French Mediterranean Coast subjected to oil industry activities. MICROBIAL ECOLOGY 2012; 63:1-11. [PMID: 21766218 DOI: 10.1007/s00248-011-9910-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/30/2011] [Indexed: 05/31/2023]
Abstract
Magnetotactic bacteria (MTB) mineralize nanosized magnetite or greigite crystals within cells and thus play an important role in the biogeochemical process. Despite decades of research, knowledge of MTB distribution and ecology, notably in areas subjected to oil industry activities, is still limited. In the present study, we investigated the presence of MTB in the Gulf of Fos, French Mediterranean coast, which is subjected to intensive oil industry activities. Microcosms containing sediments/water (1:2, v/v) from several sampling sites were monitored over several weeks. The presence of MTB was revealed in five of eight sites. Diverse and numerous MTB were revealed particularly from one site (named CAR), whilst temporal variations of a homogenous magnetotactic cocci population was shown within the LAV site microcosm over a 4-month period. Phylogenetic analysis revealed that they belonged to Alphaproteobacteria, and a novel genus from the LAV site was evidenced. Among the physicochemical parameters measured, a correlation was shown between the variation of MTB abundance in microcosms and the redox state of sulphur compounds.
Collapse
Affiliation(s)
- Anne Postec
- IRD, UMR_D 180, Université Aix Marseille, ESIL case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T. Formation of magnetite by bacteria and its application. J R Soc Interface 2008; 5:977-99. [PMID: 18559314 PMCID: PMC2475554 DOI: 10.1098/rsif.2008.0170] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Magnetic particles offer high technological potential since they can be conveniently collected with an external magnetic field. Magnetotactic bacteria synthesize bacterial magnetic particles (BacMPs) with well-controlled size and morphology. BacMPs are individually covered with thin organic membrane, which confers high and even dispersion in aqueous solutions compared with artificial magnetites, making them ideal biotechnological materials. Recent molecular studies including genome sequence, mutagenesis, gene expression and proteome analyses indicated a number of genes and proteins which play important roles for BacMP biomineralization. Some of the genes and proteins identified from these studies have allowed us to express functional proteins efficiently onto BacMPs, through genetic engineering, permitting the preservation of the protein activity, leading to a simple preparation of functional protein-magnetic particle complexes. They were applicable to high-sensitivity immunoassay, drug screening and cell separation. Furthermore, fully automated single nucleotide polymorphism discrimination and DNA recovery systems have been developed to use these functionalized BacMPs. The nano-sized fine magnetic particles offer vast potential in new nano-techniques.
Collapse
Affiliation(s)
- Atsushi Arakaki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | | | | | | | | |
Collapse
|