1
|
Takahashi M, Sugiuchi Y, Shinoda Y. Brainstem Neural Circuits Triggering Vertical Saccades and Fixation. J Neurosci 2024; 44:e1657232023. [PMID: 37968118 PMCID: PMC10851683 DOI: 10.1523/jneurosci.1657-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023] Open
Abstract
Neurons in the nucleus raphe interpositus have tonic activity that suppresses saccadic burst neurons (BNs) during eye fixations, and that is inhibited before and during saccades in all directions (omnipause neurons, OPNs). We have previously demonstrated via intracellular recording and anatomical staining in anesthetized cats of both sexes that OPNs are inhibited by BNs in the medullary reticular formation (horizontal inhibitory BNs, IBNs). These horizontal IBNs receive monosynaptic input from the caudal horizontal saccade area of the superior colliculus (SC), and then produce monosynaptic inhibition in OPNs, providing a mechanism to trigger saccades. However, it is well known that the neural circuits driving horizontal components of saccades are independent from the circuits driving vertical components. Thus, our previous results are unable to explain how purely vertical saccades are triggered. Here, we again apply intracellular recording to show that a disynaptic vertical IBN circuit exists, analogous to the horizontal circuit. Specifically, we show that stimulation of the SC rostral vertical saccade area produces disynaptic inhibition in OPNs, which is not abolished by midline section between the horizontal IBNs. This excludes the possibility that horizontal IBNs could be responsible for the OPN inhibition during vertical saccades. We then show that vertical IBNs in the interstitial nucleus of Cajal, which receive monosynaptic input from rostral SC, are responsible for the disynaptic inhibition of OPNs. These results indicate that a similarly functioning SC-IBN-OPN circuit exists for both the horizontal and vertical oculomotor pathways. These two IBN-mediated circuits are capable of triggering saccades in any direction.Significance Statement Saccades shift gaze to objects of interest, moving their image to the central retina, where it is maintained for detailed examination (fixation). During fixation, high gain saccade burst neurons (BNs) are tonically inhibited by omnipause neurons (OPNs). Our previous study showed that medullary horizontal inhibitory BNs (IBNs) activated from the caudal superior colliculus (SC) inhibit tonically active OPNs in order to initiate horizontal saccades. The present study addresses the source of OPN inhibition for vertical saccades. We find that OPNs monosynaptically inhibit vertical IBNs in the interstitial nucleus of Cajal during fixation. Those same vertical IBNs are activated by the rostral SC, and inhibit OPN activity to initiate vertical saccades.
Collapse
Affiliation(s)
- M Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Y Sugiuchi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Y Shinoda
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
2
|
Sugiuchi Y, Takahashi M, Shinoda Y. Input-output organization of inhibitory neurons in the interstitial nucleus of Cajal projecting to the contralateral trochlear and oculomotor nucleus. J Neurophysiol 2013; 110:640-57. [PMID: 23657283 DOI: 10.1152/jn.01045.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons in the interstitial nucleus of Cajal (INC) that are known to be involved in eye and head movements are excitatory. We investigated the input-output organization of inhibitory INC neurons involved in controlling vertical saccades. Intracellular recordings were made in INC neurons activated antidromically by stimulation of the contralateral trochlear or oculomotor nucleus, and their synaptic input properties from the superior colliculi (SCs) and the contralateral INC were analyzed in anesthetized cats. Many INC neurons projected to the contralateral trochlear nucleus, Forel's field H, INC, and oculomotor nucleus, and mainly received monosynaptic excitation followed by disynaptic inhibition from the ipsi- and contralateral SCs. After sectioning the commissural connections between the SCs, these neurons received monosynaptic excitation from the ipsilateral medial SC and disynaptic inhibition via the INC from the contralateral lateral SC. Another group of INC neurons were antidromically activated from the contralateral oculomotor nucleus, INC and Forel's field H, but not from the trochlear nucleus, and received monosynaptic excitation from the ipsilateral lateral SC and disynaptic inhibition from the contralateral medial SC. The former group was considered to inhibit contralateral trochlear and inferior rectus motoneurons in upward saccades, whereas the latter was considered to inhibit contralateral superior rectus and inferior oblique motoneurons in downward saccades. The mutual inhibition existed between these two groups of INC neurons for upward saccades on one side and downward saccades on the other. This pattern of input-output organization of inhibitory INC neurons suggests that the basic neural circuits for horizontal and vertical saccades are similar.
Collapse
Affiliation(s)
- Y Sugiuchi
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | |
Collapse
|
3
|
Yamamoto K, Kobayashi Y, Takemura A, Kawano K, Kawato M. A mathematical analysis of the characteristics of the system connecting the cerebellar ventral paraflocculus and extraoculomotor nucleus of alert monkeys during upward ocular following responses. Neurosci Res 2000; 38:425-35. [PMID: 11164569 DOI: 10.1016/s0168-0102(00)00194-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Movements of the visual scene evoke short-latency ocular-following-responses (OFR). Many studies suggest that a neural pathway containing the cerebellar-ventral-paraflocculus (VPFL) mediates OFR. The relationship between eye movement and simple-spike firing in the VPFL during OFR has been studied in detail using an inverse dynamics approach. The relationship between eye movement and cell firing in the extraoculomotor nucleus (MN) has already been reported. However, no studies have examined the information transformation that occurs between the VPFL and the MN during OFR. In this paper, using an inverse dynamics approach, we derive a transfer function that represents the characteristics of the structure connecting the VPFL and the MN during upward OFR. This structure appears to contain a kind of neural integrator, which constructs eye-velocity-and-position information from eye-acceleration-and-velocity information. We propose a diagram for the neural integration commonly at work during all types of upward eye movement. This is a closed-loop circuit containing a low-pass filter. The low-pass filter can construct eye-velocity-and-position information from an eye-acceleration-velocity-position command similar to the final motor command used commonly for all upward eye movements. Anatomical and electrophysiological data suggest that the vestibular nuclei-interstitial nucleus of Cajal-vestibular nuclei loop might perform such neural integration.
Collapse
Affiliation(s)
- K Yamamoto
- Japan Science and Technology Corporation, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | | | | | |
Collapse
|
4
|
Chimoto S, Iwamoto Y, Yoshida K. Projections and firing properties of down eye-movement neurons in the interstitial nucleus of Cajal in the cat. J Neurophysiol 1999; 81:1199-211. [PMID: 10085347 DOI: 10.1152/jn.1999.81.3.1199] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the role of the interstitial nucleus of Cajal (INC) in the control of vertical eye movements, projections of burst-tonic and tonic neurons in and around the INC were studied. This paper describes neurons with downward ON directions. We examined, by antidromic activation, whether these down INC (d-INC) neurons contribute to two pathways: a commissural pathway to the contralateral (c-) INC and a descending pathway to the ipsilateral vestibular nucleus (i-VN). Stimulation of the two pathways showed that as many as 74% of neurons were activated antidromically from one of the pathways. Of 113 d-INC neurons tested, 44 were activated from the commissural pathway and 40 from the descending pathway. No neurons were activated from both pathways. We concluded that commissural and descending pathways from the INC originate from two separate groups of neurons. Tracking of antidromic microstimulation in the two nuclei revealed multiple low-threshold sites and varied latencies; this was interpreted as a sign of existence of axonal arborization. Neurons with commissural projections tended to be located more dorsally than those with descending projections. Neurons with descending projections had significantly greater eye-position sensitivity and smaller saccadic sensitivity than neurons with commissural projections. The two groups of INC neurons increased their firing rate in nose-up head rotations and responded best to the rotation in the plane of contralateral posterior/ipsilateral anterior canal pair. Neurons with commissural projections showed a larger phase lag of response to sinusoidal rotation (54.6 +/- 7.6 degrees ) than neurons with descending projections (45.0 +/- 5.5 degrees ). Most neurons with descending projections received disynaptic excitation from the contralateral vestibular nerve. Neurons with commissural projections rarely received such disynaptic input. We suggest that downward-position-vestibular (DPV) neurons in the VN and VN-projecting d-INC neurons form a loop, together with possible commissural loops linking the bilateral VNs and the bilateral INCs. By comparing the quantitative measures of d-INC neurons with those of DPV neurons, we further suggest that integration of head velocity signals proceeds from DPV neurons to d-INC neurons with descending projections and then to d-INC neurons with commissural projections, whereas saccadic velocity signals are processed in the reverse order.
Collapse
Affiliation(s)
- S Chimoto
- Department of Physiology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | |
Collapse
|
5
|
Yamamoto K, Kobayashi Y, Takemura A, Kawano K, Kawato M. A mathematical model that reproduces vertical ocular following responses from visual stimuli by reproducing the simple spike firing frequency of Purkinje cells in the cerebellum. Neurosci Res 1997; 29:161-9. [PMID: 9359465 DOI: 10.1016/s0168-0102(97)00085-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A mathematical model that accurately reproduces eye movements from visual stimuli and incorporates intermediate neural signals is useful for quantitative analysis of the neural mechanisms involved in transforming visual stimuli to eye movements. Here we describe a mathematical model consisting of two systems: a non-linear system that relates retinal slip to simple spike firing frequency of Purkinje cells in the ventral paraflocculus (VPFL) and a linear system that relates VPFL simple spike firing frequency to eye movement. This model accurately reproduced the firing frequency of Purkinje cells and ocular following responses from visual stimulation paradigms used in physiological experiments.
Collapse
Affiliation(s)
- K Yamamoto
- ATR Human Information Processing Research Laboratories, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
6
|
Wang SF, Spencer RF. Spatial organization of premotor neurons related to vertical upward and downward saccadic eye movements in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) in the cat. J Comp Neurol 1996; 366:163-80. [PMID: 8866852 DOI: 10.1002/(sici)1096-9861(19960226)366:1<163::aid-cne11>3.0.co;2-s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) contains premotor neurons that are related to the control of vertical and torsional saccadic eye movements. In the present study, complimentary light microscopic anterograde biocytin and retrograde horseradish peroxidase experiments have been performed to determine the organization of premotor neurons in the riMLF in the cat that are related intimately to the vertical motoneuron populations in the oculomotor and trochlear nuclei. The results indicate a rostral-caudal topographic arrangement of neurons in the riMLF that is related to the target projections to vertical downward (inferior rectus and superior oblique) and vertical upward (superior rectus and inferior oblique) motoneurons, respectively, in the oculomotor and trochlear nuclei. Both the anterograde and the retrograde studies are consistent, in that they demonstrate the tendency for downward and upward riMLF neurons to be separated spatially by a distance of approximately 0.5 mm in the rostral-caudal axis of the nucleus. The riMLF projections to inferior oblique and superior oblique motoneurons are predominantly ipsilateral. Projections to inferior rectus and superior rectus motoneurons, however, are bilateral, and, presumably, they provide one means for assuring the conjugacy of vertical saccadic eye movements. Because premotor burst neurons that encode parameters for upward or downward saccades are intermingled within the riMLF, and excitatory and inhibitory premotor neurons also coexist in this region, the findings from this study suggest that subregions of the riMLF contain coexistent populations of excitatory and inhibitory neurons that are related to opposite directions of vertical eye movements. The spatial segregation of excitatory premotor neurons in the riMLF that are related to vertical upward vs. downward movements, furthermore, provides a basis for the interpretation of vertical upward and/or downward gaze palsies that might result from discrete lesions at the mesodiencephalic junction in humans.
Collapse
Affiliation(s)
- S F Wang
- Department of Anatomy, Virginia Commonwealth University, Richmond 23298, USA
| | | |
Collapse
|
7
|
Fukushima K, Chin S, Fukushima J, Tanaka M. Simple-spike activity of floccular Purkinje cells responding to sinusoidal vertical rotation and optokinetic stimuli in alert cats. Neurosci Res 1996; 24:275-89. [PMID: 8815447 DOI: 10.1016/0168-0102(95)01002-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To understand how the cerebellar flocculus is involved in the processing of semicircular canal signals in the vertical vestibulo-ocular reflex (VOR), we analyzed the simple-spike activity of floccular Purkinje (P) cells that was modulated by sinusoidal pitch rotation, and then analyzed their activity during presentation of sinusoidal vertical optokinetic stimuli in alert, head-fixed cats. The great majority of P cells also responded to optokinetic stimuli with peak discharge near peak stimulus velocity. Eighty percent of P cells that responded to both pitch and optokinetic stimuli showed increased activity when the directions of the resultant eye movements were the same. During rapid modification of the VOR induced by visual pattern movement, modulation amplitudes of the cells tested increased together with the eye velocity increase. Maximal activation directions of these cells studied during vertical rotation in many planes were near the vertical canal planes, similar to those in our previous studies. The remaining 20% of P cells showed increased discharge for the same direction of stimulus movement. These results suggest that the activity of the majority of pitch-responding P cells contains, at least partly, a vertical eye velocity component during presentation of vestibular or optokinetic stimuli in addition to canal inputs during pitch rotation.
Collapse
Affiliation(s)
- K Fukushima
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
8
|
Fukushima K, Chin S, Fukushima J, Tanaka M, Kurkin S. Further evidence for the specific involvement of the flocculus in the vertical vestibulo-ocular reflex (VOR). PROGRESS IN BRAIN RESEARCH 1996; 112:431-40. [PMID: 8979848 DOI: 10.1016/s0079-6123(08)63348-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We examined the simple-spike activity of floccular Purkinje (P) cells during sinusoidal pitch rotation and vertical optokinetic stimuli in alert, head-fixed cats. The great majority of pitch-responding P cells also responded to optokinetic stimuli with increased activity when the directions of the resultant eye movements were the same. During rapid modification of the VOR induced by visual pattern movement, modulation amplitudes of the cells tested increased together with the eye velocity increase. Maximal activation directions of these cells studied during vertical rotation in many planes were near the vertical canal planes. These results suggest that the activity of the majority of pitch-responding P cells contains a vertical eye velocity component during vestibular or optokinetic stimuli in addition to canal inputs during pitch rotation.
Collapse
Affiliation(s)
- K Fukushima
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
9
|
Abstract
The interstitial nucleus of Cajal (INC) and the nucleus prepositus hypoglossi (nph) are key elements in the vertical and horizontal oculomotor neural integrators, respectively. In this article, we attempt to develop possible circuits for these vestibular integrators by synthesizing recent information on the properties and connections of neurons involved in the integration process. We also examine how the cerebellar flocculus could play a role in the vertical integrator and vestibulo-ocular reflex (VOR) as well as in the modulation and plasticity of the VOR. We suggest that the circuitry for the vertical integrator involves the cerebellar flocculus in addition to the already proposed circuits distributed between the INC and the vestibular nuclei. The horizontal vestibular integrator is also distributed and seems to be characterized by functional compartmentalization. Both integrators play a wider role than simply transforming velocity-coded signals into position commands and may be pivotal in the short- and long-term modulation of the various oculomotor subsystems.
Collapse
Affiliation(s)
- K Fukushima
- Department of Physiology, Hokkaido University School of Medicine, Japan
| | | |
Collapse
|
10
|
Fukushima K, Ohashi T, Fukushima J. Effects of chemical deactivation of the interstitial nucleus of Cajal on the vertical vestibulo-collic reflex induced by pitch rotation in alert cats. Neurosci Res 1994; 20:281-6. [PMID: 7838429 DOI: 10.1016/0168-0102(94)90098-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The basic circuitry for the vestibulo-collic reflex (VCR) is a three-neuron arc, and this reflex requires the temporal and spatial transformation of vestibular signals to activate the appropriate neck muscles. Signals carried by vestibulo-collic neurons are insufficient to explain the responses of neck muscles. However, it is still unknown as to where the additional signal conversion is performed in the vertical VCR. We examined the effects of chemical deactivation of the interstitial nucleus of Cajal (INC) on the responses of biventer cervicis EMG induced by pitch rotation in the dark in alert head-fixed cats, and compared the results with the vertical vestibulo-ocular reflex (VOR) and also with the VCR and VOR induced by horizontal rotation. Muscimol infusion into the bilateral INC resulted in phase advance and gain drop in both the vertical VCR and the VOR, although the change was smaller in the VCR. The response phases of the horizontal VCR and VOR were not affected. Muscimol infusion outside the INC did not affect the phase of the vertical VCR or VOR. These results suggest that the INC is partially involved in temporal conversion of vestibular signals in the vertical VCR as well as in the VOR evoked by pitch rotation in alert cats.
Collapse
Affiliation(s)
- K Fukushima
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | |
Collapse
|