1
|
Kola G, Hamada E, Dhingra RR, Jacono FJ, Dick TE, Dewald D, Strohl KP, Fleury-Curado T, Dutschmann M. Persistent glossopharyngeal nerve respiratory discharge patterns after ponto-medullary transection. Respir Physiol Neurobiol 2024; 327:104281. [PMID: 38768741 DOI: 10.1016/j.resp.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Shape and size of the nasopharyngeal airway is controlled by muscles innervated facial, glossopharyngeal, vagal, and hypoglossal cranial nerves. Contrary to brainstem networks that drive facial, vagal and hypoglossal nerve activities (FNA, VNA, HNA) the discharge patterns and origins of glossopharyngeal nerve activity (GPNA) remain poorly investigated. Here, an in situ perfused brainstem preparation (n=19) was used for recordings of GPNA in relation to phrenic (PNA), FNA, VNA and HNA. Brainstem transections were performed (n=10/19) to explore the role of pontomedullary synaptic interactions in generating GPNA. GPNA generally mirrors FNA and HNA discharge patterns and displays pre-inspiratory activity relative to the PNA, followed by robust inspiratory discharge in coincidence with PNA. Postinspiratory (early expiratory) discharge was, contrary to VNA, generally absent in FNA, GPNA or HNA. As described previously FNA and HNA discharge was virtually eliminated after pontomedullary transection while an apneustic inspiratory motor discharge was maintained in PNA, VNA and GPNA. After brainstem transection GPNA displayed an increased tonic activity starting during mid-expiration and thus developed prolonged pre-inspiratory activity compared to control. In conclusion respiratory GPNA reflects FNA and HNA which implies similar function in controlling upper airway patency during breathing. That GPNA preserved its pre-inspiratory/inspiratory discharge pattern in relation PNA after pontomedullary transection suggest that GPNA premotor circuits may have a different anatomical distribution compared HNA and FNA and thus may therefore hold a unique role in preserving airway patency.
Collapse
Affiliation(s)
- Gijnovefa Kola
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eriko Hamada
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Rishi R Dhingra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Pulmonary Section, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Denise Dewald
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44130, USA; Center for Sleep Disorders Research, Louis Stokes Cleveland VA Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kingman P Strohl
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Center for Sleep Disorders Research, Louis Stokes Cleveland VA Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomaz Fleury-Curado
- Center for Sleep Disorders Research, Louis Stokes Cleveland VA Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Department of Otolaryngology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Mathias Dutschmann
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Center for Sleep Disorders Research, Louis Stokes Cleveland VA Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Iizuka M. Respiratory activity in glossopharyngeal, vagus and accessory nerves and pharyngeal constrictors in newborn rat in vitro. J Physiol 2001; 532:535-48. [PMID: 11306670 PMCID: PMC2278554 DOI: 10.1111/j.1469-7793.2001.0535f.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Previously, in a brainstem-spinal cord-rib preparation from neonatal rats we demonstrated that a decrement in extracellular pH (from about 7.4 to 7.1) caused expiratory activity in an internal intercostal muscle (IIM) during the first half of the expiratory phase (Ea). As the initial step in finding nerves or muscles firing during the second half of the expiratory phase (Eb), the patterns of activity in the glossopharyngeal, vagus and accessory nerves were examined in the present study. 2. Since the emerging motor rootlets of these three nerves (> 20; collected into about 10 bundles before the jugular foramen) are distributed in a continuous fashion from rostral to caudal levels of the brainstem, visual identification was impossible. Therefore, antidromic compound action potentials evoked by stimulation of the glossopharyngeal nerve (IX), the pharyngeal branch of the vagus nerve (PhX), the superior laryngeal nerve (SLN), the cervical vagus nerve (CX) and the accessory nerve (XI) were recorded from the peripheral stumps of the various rootlets. Nerve rootlets could be categorised into rostral, intermediate and caudal groups (rostIX-XI, intIX-XI, caudIX-XI). The rostIX-XI rootlets showed their largest potential on IX stimulation, while the intIX-XI and caudIX-XI rootlets showed their largest potentials on CX stimulation. The intIX-XI rootlets showed larger potentials on PhX and SLN stimulation than the caudIX-XI rootlets. 3. Activity was recorded simultaneously from the central stumps of the rootlets in the above three groups. Most rootlets showed inspiratory bursts. Under low pH conditions, all representatives of group rostIX-XI, most of intIX-XI and about half of caudIX-XI showed additional bursts during the Ea phase. Groups intIX-XI and caudIX-XI but not rostIX-XI also showed discrete bursts during the Eb phase in some preparations. In general, expiratory activity was prominent in intIX-XI. The spinal branch of XI showed no consistent respiratory activity. 4. Since the intIX-XI rootlets showed Eb bursts and large antidromic potentials on stimulation of PhX and SLN (which innervate the inferior pharyngeal constrictor muscle (IPC)), electromyograms were recorded from the rostral and caudal parts of IPC (rIPC and cIPC). Under low pH conditions, cIPC showed bursts during the Ea and Eb phases, while rIPC showed bursts predominantly during the Eb phase. 5. These results indicate that recording from rIPC would be a useful way of examining the neuronal mechanisms responsible for Eb phase activity.
Collapse
Affiliation(s)
- M Iizuka
- Centre for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki 300-0394, Japan.
| |
Collapse
|
3
|
Fukuda Y. Respiratory neural activity responses to chemical stimuli in newborn rats: reversible transition from normal to 'secondary' rhythm during asphyxia and its implication for 'respiratory like' activity of isolated medullary preparation. Neurosci Res 2000; 38:407-17. [PMID: 11164567 DOI: 10.1016/s0168-0102(00)00191-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To clarify a possible origin of 'respiratory like' rhythmic activities observed in in vitro brainstem preparation, the phrenic (Phr) and cranial nerve (XII or IX) inspiratory activities were analyzed in halothane-anesthetized, vagotomized and artificially ventilated newborn (2--6 days after birth) and young adult rats (30--50 days) during altered chemical stimuli and prolonged asphyxia at 25 degrees C. The newborn rat showed regular rhythmic inspiratory discharges of short duration, and their responses to CO(2) and hypoxia did not differ from those seen in adult rats. In the newborn rat the Phr and cranial nerve inspiratory discharges increased first, then respiratory frequency decreased and finally ceased completely for approximately 1--2 min during asphyxia. Thereafter, 'secondary' rhythmic inspiratory activity emerged at a slower rate with decremental inspiratory discharge profile, which persisted for a period more than 40 min of asphyxia. A normal respiratory activity recovered after resumption of artificial ventilation. Though young adult rats exhibited similar sequential changes in respiratory activity during asphyxia, the 'secondary' rhythmic activity persisted for a period of several min only. The pattern of 'secondary' respiratory activity corresponded well with that of rhythmic activities seen in the isolated medullary block preparation of newborn rat. 'Respiratory like' activity found in isolated medullary preparations of newborn animals may arise from a mechanism that generates 'secondary' (or so called 'gasping' type) rhythmic inspiratory activity during prolonged asphyxia in in vivo preparations.
Collapse
Affiliation(s)
- Y Fukuda
- Department of Physiology II, School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8670, Japan.
| |
Collapse
|
4
|
Umezaki T, Shiba K, Zheng Y, Miller AD. Upper airway motor outputs during vomiting versus swallowing in the decerebrate cat. Brain Res 1998; 781:25-36. [PMID: 9507057 DOI: 10.1016/s0006-8993(97)01145-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Swallowing and vomiting are antagonistic motor acts; nevertheless, vomiting can be immediately followed by swallowing. The purpose of this study was to clarify the interrelationship between these two behaviors, particularly in regard to comparing the upper airway motor patterns at the end of the expulsion phase with those during subsequent swallowing. Experiments were conducted using both paralyzed and non-paralyzed decerebrate cats, in which recordings were obtained either from upper airway muscles, the diaphragm and abdominal muscles or from the nerves that innervate those muscles. The activity patterns of most nerves recorded in paralyzed animals were consistent with the behavior recorded in non-paralyzed animals from the muscles innervated by those nerves, with the exception of the cricothyroid and stylopharyngeus muscles. Vomiting can be divided into a series of retches followed by expulsion, which itself can be further subdivided into three phases. The final stage of expulsion, characterized by burst-like exaggerated activity of the laryngeal elevator thyrohyoid and the pharyngeal constrictors, proved to be different from pharyngeal swallowing, as judged from differences in the spatio-temporal patterns of the upper airway motor outputs. However, post-vomiting swallowing activity was still observed even after total deafferentation of the laryngeal and pharyngeal areas in paralyzed animals. It is therefore likely that the central processes for vomiting and swallowing closely relate in generating these two behaviors.
Collapse
Affiliation(s)
- T Umezaki
- The Rockefeller University, Box 79, 1230 York Avenue, New York, NY 10021-6399, USA
| | | | | | | |
Collapse
|
5
|
Miura M, Okada J, Takayama K. Parapyramidal rostroventromedial medulla as a respiratory rhythm modulator. Neurosci Lett 1996; 203:41-4. [PMID: 8742042 DOI: 10.1016/0304-3940(95)12260-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After inhalation of 15% CO2, immunoreactions to glutamate and glutamic acid decarboxylase were found in some c-Fos or c-Jun-labeled neurons distributed in the reticular region just dorsal to the pyramidal tract in the rostroventromedial medulla (parapyramidal RVMM). This region forms vertically the narrow strip between the nucleus raphe pallidus and nucleus parapyramidalis superficialis, and extends rostrocaudally from the level just ahead of the inferior olivary complex to the level just behind the nucleus of the trapezoid body. When we placed lesions with kainate in the parapyramidal RVMM, hyperpneic and tachypneic responses to brief inhalation of 15% CO2 were completely abolished, and the eupneic rhythm changed into the gasping rhythm. This study suggests that the parapyramidal RVMM consists of neuronal substrates that subserve as the respiratory rhythm modulator.
Collapse
Affiliation(s)
- M Miura
- Department of Physiology 1st Division, Gunma University School of Medicine, Maebashi-shi, Japan
| | | | | |
Collapse
|