1
|
Cui Q, Gan S, Zhong Y, Yang H, Wan Y, Zuo Y, Yang H, Li M, Zhang S, Negahdary M, Zhang Y. High-throughput and specific detection of microorganisms by intelligent modular fluorescent photoelectric microbe detector. Anal Chim Acta 2023; 1265:341282. [PMID: 37230579 DOI: 10.1016/j.aca.2023.341282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Food safety has emerged as a major global issue. Detecting foodborne pathogenic microorganisms and controlling them is vital to guard against foodborne diseases caused by microorganisms. However, the current detection methods need to meet the demand for real-time detection on the spot after a simple operation. Considering unresolved challenges, we developed an Intelligent Modular Fluorescent Photoelectric Microbe (IMFP) system containing a special detection reagent. This IMFP system can automatically monitor microbial growth in which the photoelectric detection, temperature control, fluorescent probe, and bioinformatics screen are integrated into one platform and employed to detect pathogenic microorganisms. Moreover, a specific culture medium was also developed, which matched the system platform for Coliform bacteria and Salmonella typhi. The developed IMFP system could attain a limit of detection (LOD) of about 1 CFU/mL for both bacteria, while the selectivity could reach 99%. In addition, the IMFP system was applied to detect 256 bacterial samples simultaneously. This platform reflects the high-throughput needs of fields for microbial identification and related requirements, such as the development of pathogenic microbial diagnostic reagents, antibacterial sterilization performance tests, and microbial growth kinetics. The IMFP system also confirmed the other merits, such as high sensitivity, high-throughput, and operation simplicity compared to conventional methods, and it has a high potential as a tool for application in the health and food security fields.
Collapse
Affiliation(s)
- Qian Cui
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shanqun Gan
- Hainan Viewkr Biotechnology Co. , Ltd, Haikou, 570228, China
| | - Yongjie Zhong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Hui Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yong Zuo
- Hainan Viewkr Biotechnology Co. , Ltd, Haikou, 570228, China
| | - Hao Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Mengjia Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shurui Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Yunuo Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Alterki A, Joseph S, Thanaraj TA, Al-Khairi I, Cherian P, Channanath A, Sriraman D, Ebrahim MAK, Ibrahim A, Tiss A, Al-Mulla F, Rahman AMA, Abubaker J, Abu-Farha M. Targeted Metabolomics Analysis on Obstructive Sleep Apnea Patients after Multilevel Sleep Surgery. Metabolites 2020; 10:metabo10090358. [PMID: 32882816 PMCID: PMC7569907 DOI: 10.3390/metabo10090358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is caused by partial or complete obstruction of the upper airways. Corrective surgeries aim at removing obstructions in the nasopharynx, oropharynx, and hypopharynx. OSA is associated with an increased risk of various metabolic diseases. Our objective was to evaluate the effect of surgery on the plasma metabolome. METHODS This study included 39 OSA patients who underwent Multilevel Sleep Surgery (MLS). Clinical and anthropometric measures were taken at baseline and five months after surgery. RESULTS The mean Apnea-Hypopnea Index (AHI) significantly dropped from 22.0 ± 18.5 events/hour to 8.97 ± 9.57 events/hour (p-Value < 0.001). Epworth's sleepiness Score (ESS) dropped from 12.8 ± 6.23 to 2.95 ± 2.40 (p-Value < 0.001), indicating the success of the surgery in treating OSA. Plasma levels of metabolites, phosphocholines (PC) PC.41.5, PC.42.3, ceremide (Cer) Cer.44.0, and triglyceride (TG) TG.53.6, TG.55.6 and TG.56.8 were decreased (p-Value < 0.05), whereas lysophosphatidylcholines (LPC) 20.0 and PC.39.3 were increased (p-Value < 0.05) after surgery. CONCLUSION This study highlights the success of MLS in treating OSA. Treatment of OSA resulted in an improvement of the metabolic status that was characterized by decreased TG, PCs, and Cer metabolites after surgery, indicating that the success of the surgery positively impacted the metabolic status of these patients.
Collapse
Affiliation(s)
- Abdulmohsen Alterki
- Department of Otolaryngology Head & Neck Surgery, Zain and Al Sabah Hospitals and Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.); (M.A.K.E.); (A.I.)
| | - Shibu Joseph
- Special Service Facility Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.J.); (D.S.); (F.A.-M.)
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (T.A.T.); (A.C.)
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (I.A.-K.); (P.C.); (A.T.)
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (I.A.-K.); (P.C.); (A.T.)
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (T.A.T.); (A.C.)
| | - Devarajan Sriraman
- Special Service Facility Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.J.); (D.S.); (F.A.-M.)
| | - Mahmoud A. K. Ebrahim
- Department of Otolaryngology Head & Neck Surgery, Zain and Al Sabah Hospitals and Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.); (M.A.K.E.); (A.I.)
| | - Alaaeldin Ibrahim
- Department of Otolaryngology Head & Neck Surgery, Zain and Al Sabah Hospitals and Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.); (M.A.K.E.); (A.I.)
| | - Ali Tiss
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (I.A.-K.); (P.C.); (A.T.)
| | - Fahd Al-Mulla
- Special Service Facility Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.J.); (D.S.); (F.A.-M.)
| | - Anas M. Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Jehad Abubaker
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
- Correspondence: (J.A.); (M.A.-F.); Tel.: +965-2224-2999 (ext. 3563) (J.A.); +965-2224-2999 (ext. 3010) (M.A.-F.)
| | - Mohamed Abu-Farha
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
- Correspondence: (J.A.); (M.A.-F.); Tel.: +965-2224-2999 (ext. 3563) (J.A.); +965-2224-2999 (ext. 3010) (M.A.-F.)
| |
Collapse
|
3
|
Kurbanoglu EB, Algur OF. Utilization of ram horn hydrolysate as a supplement for recovery of heat- and freeze-injured bacteria. Food Control 2006. [DOI: 10.1016/j.foodcont.2004.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Abstract
This review describes some recent developments in chromogenic and fluorogenic culture media in microbiological diagnostic. The detection of beta-D-glucuronidase (GUD) activity for enumeration of Escherichia coli is well known. E. coli O157:H7 strains are usually GUD-negative and do not ferment sorbitol. These characteristics are used in selective media for these organisms and new chromogenic media are available. Some of the new chromogenic media make the Salmonella diagnostic easier and faster. The use of chromogenic and fluorogenic substrates for detection of beta-D-glucosidase (beta-GLU) activity to differentiate enterococci has received considerable attention and new media are described. Rapid detection of Clostridium perfringens, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus are other application of enzyme detection methods in food and water microbiology.
Collapse
Affiliation(s)
- M Manafi
- Hygiene Institute, University of Vienna, Austria.
| |
Collapse
|
5
|
Kang DH, Fung DY. Application of thin agar layer method for recovery of injured Salmonella typhimurium. Int J Food Microbiol 2000; 54:127-32. [PMID: 10746583 DOI: 10.1016/s0168-1605(99)00174-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xylose lysine decarboxylase (XLD) medium, a selective plating medium, can inhibit heat-injured Salmonella typhimurium from growing, whereas tryptic soy agar (TSA), a nonselective medium, does not. To facilitate recovery of heat-injured S. typhimurium cells while providing selectivity of isolation of S. typhimurium from other bacteria in the sample, a thin agar layer (TAL) procedure was developed by overlaying 14 ml of nonselective medium (TSA) onto prepoured and solidified XLD medium in a 8.5 cm diameter Petri dish. During the first few hours of incubating the plate, the injured S. typhimurium repaired and started to grow in the TSA. During the resuscitation of injured cells, the selective agents from XLD were diffused to the TSA top layer part. Once the selective agents diffused to the top part of the TAL, the resuscitated S. typhimurium started to produce a typical reaction (black color) and other microorganisms were inhibited by the selective agents. The recovery rate for heat-injured (55 degrees C for 15 min) S. typhimurium with the TAL method was compared with TSA, XLD, and the traditional overlay method (OV; pouring selective agar on top of resuscitated cells on TSA agar 3-4 h after incubation). No significant difference occurred among TSA, OV, and TAL (P > 0.05) for enumeration of heat-injured S. typhimurium, but they recovered significantly higher numbers than from XLD agar (P < 0.05).
Collapse
Affiliation(s)
- D H Kang
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506-1600, USA.
| | | |
Collapse
|
6
|
Manafi M. Fluorogenic and chromogenic enzyme substrates in culture media and identification tests. Int J Food Microbiol 1996; 31:45-58. [PMID: 8880296 DOI: 10.1016/0168-1605(96)00963-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rapid detection and identification of microorganisms is extremely important in many fields of applied and research microbiology. In general, fluorogenic and chromogenic substrates have proved to be a powerful tool, utilizing specific enzymatic activities of certain microorganisms, either in parallel with or instead of traditional methods. By incorporation of synthetic fluorogenic or chromogenic substrates into primary selective media, enumeration and detection can be performed directly on the isolation plate. The introduction of many of these media and identification tests has led to improved accuracy and faster detection of target organisms, often reducing the need for isolation of pure cultures and confirmatory tests.
Collapse
Affiliation(s)
- M Manafi
- Hygiene Institute, University of Vienna, Austria
| |
Collapse
|
7
|
Manafi M, Willinger B. Comparison of three rapid methods for identification of Salmonella spp. Lett Appl Microbiol 1994. [DOI: 10.1111/j.1472-765x.1994.tb00467.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Manafi M, Sommer R. Comparison of three rapid screening methods for Salmonella spp.: ‘MUCAP Test, MicroScreenRLatex and Rambach Agar’. Lett Appl Microbiol 1992. [DOI: 10.1111/j.1472-765x.1992.tb00674.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Abstract
Immunochemical assays are powerful bioanalytical techniques with application to several areas in food science, including food analysis, microbiology, nutrition, food safety, food quality, and process control. In principle, immunochemical techniques can be applied to the analysis of any compound, with only one specific antibody needed that can be obtained either from laboratory animals or, when available, from commercial sources. A well-designed immunochemical assay can detect targeted compounds at levels as low as 10(-12) M. Immunochemical techniques require little or no sample pretreatment, making these analytical procedures relatively rapid. The initial cost of developing an immunoanalytical assay may be high, but when the procedure is well established, the cost per test is often a fraction of that for other analytical methods. For these reasons, immunoanalytical assays provide an attractive alternative for the food analyst who requires either inexpensive qualitative screening tests or reliable quantitative methods with a high degree of sensitivity. This review concentrates on the use of enzyme immunoassay to address analytical problems in food chemistry and the analysis of various food components.
Collapse
Affiliation(s)
- S S Gazzaz
- Institute for Food Science and Technology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
10
|
Beumer RR, Brinkman E, Rombouts FM. Enzyme-linked immunoassays for the detection of Salmonella spp.: a comparison with other methods. Int J Food Microbiol 1991; 12:363-74. [PMID: 1854604 DOI: 10.1016/0168-1605(91)90150-n] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first enzyme immunoassay for Salmonella was reported in 1977 and since that time several enzyme-linked immuno assays (ELISAs) have been developed, using either polyclonal or monoclonal antibodies that will detect most Salmonella serotypes. Two of these kits have been declared official first status by the Association of Official Analytical Chemists (AOAC). In comparison with a culture method used in collaborative studies, the total assay time is reduced by 2 days and statistical analysis of the data indicated no significant difference. The main problem related to all methods other than traditional culture methods is the occurrence of false-positive and/or false-negative results. False-positive ELISA results can be eliminated by using (combinations of) highly specific monoclonal antibodies. Good enrichment procedures are very important to be sure that the detection limit of approx. 10(5) cells/ml will be reached. In the future even better limits of detection may be achieved by using enzyme amplification or chemiluminescence to decrease the number of false-negative results.
Collapse
Affiliation(s)
- R R Beumer
- Agricultural University, Laboratory of Food Microbiology, Wageningen, The Netherlands
| | | | | |
Collapse
|