1
|
Straughan D. Progress in Applying the Three Rs to the Potency Testing of Botulinum Toxin Type A. Altern Lab Anim 2019; 34:305-13. [PMID: 16831062 DOI: 10.1177/026119290603400314] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Botulinum toxin type A (BTA) is being increasingly used for a range of therapeutic purposes and also for cosmetic reasons. For many years, the potency of BTA has been measured by using an LD50 assay in mice. This assay is a cause for concern due to its unpleasant nature and extreme severity, and the requirement for high numbers of mice to be used. Alternatives to this potency assay are presently reviewed with particular reference to the work at the National Institute for Biological Standards and Control (NIBSC), and to recent work by the UK manufacturer of the substance. An in vivo local paralysis assay with considerably less severity has been developed and is in use at the NIBSC. Alternative, ex vivo functional assays in use include the measurement of BTA-induced paralysis of neurally-stimulated rodent diaphragm or rat intercostal muscle. The latter method has the advantage of allowing more preparations to be derived from one animal. However, these ex vivo methods have not yet been fully validated and accepted by regulatory agencies as potency assays. Endopeptidase assays, although not measuring muscle paralysis directly, may provide a very useful consistency test for batch release and may replace the routine use of the LD50 test for that purpose. These assays measure the cleavage of the SNAP-25 protein (the final stage of BTA action), and have been validated for batch release by the National Control Laboratory (NIBSC), and are in regular use there. ELISA assays, used alongside the endopeptidase assay, also provide useful confirmatory information on the amounts of functional (and non-functional) BTA present. The UK manufacturer is further validating its endopeptidase assay, an ex vivo muscle assay and an ELISA. It is anticipated that their work will lead to a change in the product license, hopefully within the next two years, and will form a critical milestone towards the end of the LD50 potency test.
Collapse
|
2
|
Duracova M, Klimentova J, Fucikova A, Dresler J. Proteomic Methods of Detection and Quantification of Protein Toxins. Toxins (Basel) 2018; 10:toxins10030099. [PMID: 29495560 PMCID: PMC5869387 DOI: 10.3390/toxins10030099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.
Collapse
Affiliation(s)
- Miloslava Duracova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jana Klimentova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Alena Fucikova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, CZ-160 00 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Torii Y, Goto Y, Nakahira S, Ginnaga A. Establishment of alternative potency test for botulinum toxin type A using compound muscle action potential (CMAP) in rats. Toxicon 2014; 90:97-105. [PMID: 25110177 DOI: 10.1016/j.toxicon.2014.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/24/2014] [Accepted: 07/24/2014] [Indexed: 12/27/2022]
Abstract
The biological activity of botulinum toxin type A has been evaluated using the mouse intraperitoneal (ip) LD50 test. This method requires a large number of mice to precisely determine toxin activity, and, as such, poses problems with regard to animal welfare. We previously developed a compound muscle action potential (CMAP) assay using rats as an alternative method to the mouse ip LD50 test. In this study, to evaluate this quantitative method of measuring toxin activity using CMAP, we assessed the parameters necessary for quantitative tests according to ICH Q2 (R1). This assay could be used to evaluate the activity of the toxin, even when inactive toxin was mixed with the sample. To reduce the number of animals needed, this assay was set to measure two samples per animal. Linearity was detected over a range of 0.1-12.8 U/mL, and the measurement range was set at 0.4-6.4 U/mL. The results for accuracy and precision showed low variability. The body weight was selected as a variable factor, but it showed no effect on the CMAP amplitude. In this study, potency tests using the rat CMAP assay of botulinum toxin type A demonstrated that it met the criteria for a quantitative analysis method.
Collapse
Affiliation(s)
- Yasushi Torii
- The Chemo-Sero- Therapeutic Research Institute (KAKETSUKEN), 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | - Yoshitaka Goto
- The Chemo-Sero- Therapeutic Research Institute (KAKETSUKEN), 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan
| | - Shinji Nakahira
- The Chemo-Sero- Therapeutic Research Institute (KAKETSUKEN), 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan
| | - Akihiro Ginnaga
- The Chemo-Sero- Therapeutic Research Institute (KAKETSUKEN), 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan
| |
Collapse
|
4
|
Kim CS, Jang W, Son I, Nam S, Kim Y, Park K, Kim B, Kim M. Electrophysiological study for comparing the effect of biological activity between type A botulinum toxins in rat gastrocnemius muscle. Hum Exp Toxicol 2013; 32:914-20. [DOI: 10.1177/0960327113479044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: New cosmetic applications and products based on the effects of botulinum toxin (BTX) treatment have stimulated demand for this class of natural compounds. This demand generates the need for appropriate standardized protocols to test and compare the effectiveness of new BTX preparations. Objectives: Based on the previously described electrophysiological methods, we measured and compared the inhibitory effects of two BTX type A (BTX-A) preparations on neuromuscular transmission through split-body test. Methods: The effectiveness was evaluated in terms of the compound muscle action potential (CMAP) and conduction velocity after BTX-A injection. We used a split-body method to compare two different BTX-As in the rat. Results: Based on the changes in the CMAP, the two different BTX-As induced paralytic effect on the rat tibialis anterior muscle. However, the two different BTX-A preparations did not differ significantly in effectiveness and did not induce a delay in conduction velocity. Conclusions: The new BTX-A preparation used in this electrophysiological study had similar effect compared with the previously marketed BTX-A.[AQ: Please approve the edits made to the sentence “The new BTX-A preparation…”) We propose that a split-body electrophysiological protocol will be useful in establishing the comparative effectiveness of new BTX products.
Collapse
Affiliation(s)
- C-S. Kim
- Daewoong Pharmaceutical Co., Ltd, Seoul, Republic of Korea
| | - W.S. Jang
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - I.P. Son
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - S.H. Nam
- Daewoong Pharmaceutical Co., Ltd, Seoul, Republic of Korea
| | - Y.I. Kim
- Daewoong Pharmaceutical Co., Ltd, Seoul, Republic of Korea
| | - K.Y. Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - B.J. Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - M.N. Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Liu YY, Rigsby P, Sesardic D, Marks JD, Jones RG. A functional dual-coated (FDC) microtiter plate method to replace the botulinum toxin LD50 test. Anal Biochem 2012; 425:28-35. [DOI: 10.1016/j.ab.2012.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 11/17/2022]
|
6
|
Dorner MB, Schulz KM, Kull S, Dorner BG. Complexity of Botulinum Neurotoxins: Challenges for Detection Technology. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Abstract
Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most poisonous substances known to date, is essential for studies of medical applications of BoNTs and detection of poisoned food, as well as for response to potential bioterrorist threats. Currently, the most common method of BoNT detection is the mouse bioassay. While this assay is sensitive, it is slow, quite expensive, has limited throughput and requires sacrificing animals. Herein, we discuss and compare recently developed alternative in vitro detection methods and assess their ability to supplement or replace the mouse bioassay in the analysis of complex matrix samples.
Collapse
Affiliation(s)
- Petr Čapek
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Tobin J. Dickerson
- Department of Chemistry and Worm Institute for Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-858-784-2522; Fax: +1-858-784-2590
| |
Collapse
|
8
|
Čapek P, Dickerson TJ. Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins (Basel) 2010; 2:24-53. [PMID: 22069545 PMCID: PMC3206617 DOI: 10.3390/toxins2020024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 11/16/2022] Open
Abstract
Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most poisonous substances known to date, is essential for studies of medical applications of BoNTs and detection of poisoned food, as well as for response to potential bioterrorist threats. Currently, the most common method of BoNT detection is the mouse bioassay. While this assay is sensitive, it is slow, quite expensive, has limited throughput and requires sacrificing animals. Herein, we discuss and compare recently developed alternative in vitro detection methods and assess their ability to supplement or replace the mouse bioassay in the analysis of complex matrix samples.
Collapse
Affiliation(s)
- Petr Čapek
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Tobin J. Dickerson
- Department of Chemistry and Worm Institute for Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Sakamoto T, Torii Y, Takahashi M, Ishida S, Goto Y, Nakano H, Harakawa T, Ginnaga A, Kozaki S, Kaji R. Quantitative determination of the biological activity of botulinum toxin type A by measuring the compound muscle action potential (CMAP) in rats. Toxicon 2009; 54:857-61. [DOI: 10.1016/j.toxicon.2009.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 11/28/2022]
|
10
|
Torii Y, Goto Y, Takahashi M, Ishida S, Harakawa T, Sakamoto T, Kaji R, Kozaki S, Ginnaga A. Quantitative determination of biological activity of botulinum toxins utilizing compound muscle action potentials (CMAP), and comparison of neuromuscular transmission blockage and muscle flaccidity among toxins. Toxicon 2009; 55:407-14. [PMID: 19778548 DOI: 10.1016/j.toxicon.2009.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/18/2009] [Accepted: 09/15/2009] [Indexed: 11/28/2022]
Abstract
The biological activity of various types of botulinum toxin has been evaluated using the mouse intraperitoneal LD(50) test (ip LD(50)). This method requires a large number of mice to precisely determine toxin activity, and so has posed a problem with regard to animal welfare. We have used a direct measure of neuromuscular transmission, the compound muscle action potential (CMAP), to evaluate the effect of different types of botulinum neurotoxin (NTX), and we compared the effects of these toxins to evaluate muscle relaxation by employing the digit abduction scoring (DAS) assay. This method can be used to measure a broad range of toxin activities the day after administration. Types A, C, C/D, and E NTX reduced the CMAP amplitude one day after administration at below 1 ip LD(50), an effect that cannot be detected using the mouse ip LD(50) assay. The method is useful not only for measuring toxin activity, but also for evaluating the characteristics of different types of NTX. The rat CMAP test is straightforward, highly reproducible, and can directly determine the efficacy of toxin preparations through their inhibition of neuromuscular transmission. Thus, this method may be suitable for pharmacology studies and the quality control of toxin preparations.
Collapse
Affiliation(s)
- Yasushi Torii
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), 1-6-1 Okubo, Kumamoto-shi, Kumamoto 860-8568, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pickett A, O'Keeffe R, Judge A, Dodd S. The in vivo rat muscle force model is a reliable and clinically relevant test of consistency among botulinum toxin preparations. Toxicon 2008; 52:455-64. [PMID: 18639570 DOI: 10.1016/j.toxicon.2008.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 11/25/2022]
Abstract
To ensure safety and predictable clinical efficacy, the biological activity of type A botulinum toxin (BoNT-A) preparations must remain consistent. Several methods have been employed to assess consistency but lack clinical applicability and/or are associated with animal welfare concerns. Here, we describe a novel in vivo rat muscle force model for evaluating the biological activity of formulated BoNT-A product (Dysport) prepared from bulk toxin batches manufactured at different facilities. Toxin activity was assessed by measuring muscle force generation over time in the triceps surae muscles in the rat hind leg. Animals received 0.1 ml gelatine phosphate buffer (negative vehicle control) or 0.1 or 1.0 LD50 units of BoNT-A in phosphate buffer. Batch equivalence and consistency were confirmed by the lack of significant differences in muscle force generation and duration of effect between each test batch and the reference preparation tested in the same series of experiments. The reduction in muscle force generation was dose-related and reproducible for all active treatment groups. At appropriate dose levels, the rat muscle force model is a reliable tool for measuring biological activity in bulk toxin batches used to formulate clinical product and demonstrates the consistency of batches manufactured over many years.
Collapse
|
12
|
Abstract
Botulinum neurotoxin (BoNT), which cause the deadly neuroparalytic disease, botulism, is the most toxic substance known to man. BoNT can be used as potential bioterrorism agents, and therefore, pose great threat to national security and public health. Rapid and sensitive detection of BoNTs using molecular and biochemical techniques is an essential component in the diagnosis of botulism, and is yet to be achieved. The most sensitive and widely accepted assay method for BoNTs is mouse bioassay, which takes 4 days to complete. This clearly can not meet the need for clinical diagnosis of botulism, botulinum detection in field conditions, and screening of large scale samples. Consequently, the clinical diagnosis of botulism relies on the clinical symptom development, thus limiting the effectiveness of antitoxin treatment. In response to this critical need, many in vitro methods for BoNT detection are under development. This review is focused on recently developed in vitro detection methods for BoNTs, and emerging new technologies with potential for sensitive and rapid in vitro diagnostics for botulism.
Collapse
Affiliation(s)
- Shuowei Cai
- Botulinum Research Center, and Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA.
| | | | | |
Collapse
|
13
|
Botulinum type A toxin neutralisation by specific IgG and its fragments: a comparison of mouse systemic toxicity and local flaccid paralysis assays. Toxicon 2006; 48:246-54. [PMID: 16870221 DOI: 10.1016/j.toxicon.2006.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/12/2006] [Accepted: 05/30/2006] [Indexed: 11/24/2022]
Abstract
In this study, we have compared two in vivo assay methods to measure the type A botulinum toxin neutralising activity of specific immunoglobulin G (IgG) and its fragments (F(ab')(2), Fab', Fab) purified from pentavalent botulinum antisera raised in goats. Each assay method was repeated on three separate occasions in mice and relative potencies calculated with respect to a type A equine reference antitoxin. The conventional assay, which measures the number of mice surviving typically after 72 or 96 h following the intraperitoneal administration of a mixture of toxin and antitoxin, gave the following order of potency IgG>F(ab')(2)>Fab'>Fab (6.8>4.7>3.5>2.6 IU/mg). Differences in potency are likely to be due to differences in the pharmacokinetics of the antitoxins, which are related to their molecular weight. The alternative local flaccid paralysis assay, where toxin and antitoxin are injected subcutaneously into the left inguinocrural region, gave results with a narrower range of activities: IgG>Fab'>F(ab')(2)>Fab (6.0>5.9>5.5>4.6 IU/mg). Comparison of the two assay methods showed no significant differences for IgG, F(ab')(2) or Fab', although the Fab fragment was significantly more potent in the non-lethal assay probably because of the reduced influence of antitoxin pharmacokinetics in this localised assay. These findings show that a local flaccid paralysis assay provides a less time consuming and more humane alternative to the lethal assay for the potency testing of botulinum IgG and F(ab')(2) antitoxins.
Collapse
|
14
|
Sesardic D, Jones RGA, Leung T, Alsop T, Tierney R. Detection of antibodies against botulinum toxins. Mov Disord 2004; 19 Suppl 8:S85-91. [PMID: 15027059 DOI: 10.1002/mds.20021] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
After immunisation with botulinum vaccine, antibodies to multiple epitopes are produced. Only some of these will have the capacity to neutralise the toxin activity. In fact, the ability of toxoid vaccine to induce toxin neutralising antibodies has provided the basis for the use of therapeutic antitoxins and immunoglobulins for the prophylaxis and treatment of diseases caused by bacterial toxins. Increasing indications for the chronic use of botulinum toxin for therapy have inevitably resulted in concern for patients becoming unresponsive because of the presence of circulating toxin-specific antibodies. Highly sensitive and relevant assays to detect only clinically relevant toxin neutralising antibodies are essential. Although immunoassays often provide the sensitivity, their relevance and specificity is often questioned. The mouse protection LD(50) bioassay is considered most relevant but can often only detect 10 mIU/ml of antitoxin. This sensitivity, although sufficient for confirming protective immunity, is inadequate for patients undergoing toxin therapy. An intramuscular paralysis assay improves the sensitivity to ca. 1 mIU/ml, and a mouse ex vivo diaphragm assay, with sensitivity of < 0.5 mIU/ml, is the most sensitive functional assay to date for this purpose. Alternative approaches for the detection of antibodies to botulinum toxin have included in vitro endopeptidase activity neutralisation. Unlike any other functional assay, this approach is not reliant on serotype-specific antibodies for specificity. Most recent promising developments are focused on cellular assays utilising primary rat embryonic cord cells or more conveniently in vitro differentiated established cell lines such as human neuroblastoma cells.
Collapse
Affiliation(s)
- Dorothea Sesardic
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom.
| | | | | | | | | |
Collapse
|
15
|
Abstract
The explosive growth in the use of botulinum toxin for cosmetic purposes has undoubtedly had an impact on the number of animals used in the potency testing of this product. The test used is a classical LD50, a severe procedure during which animals experience increasing paralysis until the occurrence of death. The enthusiastic adoption by the general public of the use of botulinum toxin as an anti-wrinkle treatment has, at least in Europe, paradoxically taken place against a background of moves to stop animal testing of cosmetics and cosmetic ingredients. There appears to be a dearth of information aimed at the public concerning botulinum toxin testing. Botulinum toxin does have important medical applications; however, the question arises whether a blanket licence for the testing can be justified, when a large proportion of the product is being used cosmetically. A further question is why death continues to be the endpoint of the potency test, when a more-humane endpoint has been proposed. In addition, a number of alternative methods have been developed, which could have the potential to replace the lethal potency test altogether. These methods are discussed in this paper, and the importance of establishing a strategy for their validation is emphasised, a need that has become even more urgent in the light of the recently published draft monograph on botulinum toxin by the European Pharmacopoeia Commission.
Collapse
Affiliation(s)
- Krys Bottrill
- FRAME, Russell & Burch House, 96-98 North Sherwood Street, Nottingham NG1 4EE, UK
| |
Collapse
|
16
|
|
17
|
Pearce LB, First ER, MacCallum RD, Gupta A. Pharmacologic characterization of botulinum toxin for basic science and medicine. Toxicon 1997; 35:1373-412. [PMID: 9403963 DOI: 10.1016/s0041-0101(96)00180-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of Botulinum neurotoxin (BoNT) is increasing in both clinical and basic science. Clinically, intramuscular injection of nanogram quantities of BoNT is fast becoming the treatment of choice for a spectrum of disorders including movement disorders such as torticollis, blepharospasm, Meige Disease, and hemifacial spasm (Borodic et al., 1991, 1994a; Jankovic and Brin, 1991; Clarke, 1992). Neuroscientists are using BoNTs as tools to develop a better understanding of the mechanisms underlying the neurotransmitter release process. Consequently, our ability to accurately and reliably quantify the biologic activity of botulinum toxin has become more important than ever. The accurate measurement of the pharmacologic activity of BoNTs has become somewhat problematic with the most significant problems occurring with the clinical use of the toxins. The biologic activity of BoNTs has been measured using a variety of techniques including assessment of whole animal responses to in vitro effects on neurotransmitter release. The purpose of this review is to examine the approaches employed to characterize, quantify and investigate the actions of the BoNTs and to provide a guide to aid investigators in determining which of these methods is most appropriate for their particular application or use.
Collapse
Affiliation(s)
- L B Pearce
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, MA 02118, USA
| | | | | | | |
Collapse
|
18
|
Sesardic D, McLellan K, Ekong TA, Das RG. Refinement and validation of an alternative bioassay for potency testing of therapeutic botulinum type A toxin. PHARMACOLOGY & TOXICOLOGY 1996; 78:283-8. [PMID: 8737961 DOI: 10.1111/j.1600-0773.1996.tb01376.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The type A neurotoxin produced by Clostridium botulinum is a potent neuromuscular blocking agent which causes paralysis by preventing the release of neurotransmitter from motor neurones. This property has led to the use of the toxin in the treatment of a number of neuromuscular diseases involving muscle spasms. At present, the only recognised assay with the specificity and sensitivity to estimate accurately the potency of botulinum toxin in clinical preparations is bioassay, in which lethality is used as the end point. Refinement of this assay, with respect to the end point, was explored on the basis of the development of flaccid paralysis of muscles following subcutaneous injection of the toxin at the inguinocrural region. Potency estimates, relative to in house reference preparations, for different therapeutic preparations obtained using flaccid paralysis as a scored response gave excellent agreement with estimates obtained in independent assay using the currently required control method. This study demonstrates that an alternative, more humane bioassay for potency testing of clostridia neurotoxins gives valid estimates equivalent to those currently in use.
Collapse
Affiliation(s)
- D Sesardic
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK
| | | | | | | |
Collapse
|
19
|
|
20
|
Takahashi M, Noda H, Takeshita S, Fujiwara T, Nakanoin H, Mizunoya T, Sakaguchi G. Attempts to quantity Clostridium botulinum type A toxin and antitoxin in serum of two cases of infant botulism in Japan. JAPANESE JOURNAL OF MEDICAL SCIENCE & BIOLOGY 1990; 43:233-7. [PMID: 2101138 DOI: 10.7883/yoken1952.43.233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Serum samples taken from two infant botulism cases during hospitalization were titrated for botulinum toxin by both the intraperitoneal (ip) injection method and the score method in mice. By the ip method, in which death is the only parameter, such low levels of toxin as lower than 4 ip LD50/ml may not be titrated even though the surviving mice show abdominal palsy. By the score method based on the degree of abdominal palsy, such low levels of toxin as 1.1 and 0.8 ip LD50/ml were detected in specimens of one of the patient's serum. No antitoxin was demonstrated in either case of infant botulism by applying the score method. It is not known whether spontaneous recovery from infant botulism is due to the antitoxin production.
Collapse
Affiliation(s)
- M Takahashi
- Department of Applied Immunology, National Institute of Health, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|