1
|
Wang F, Qi H, Li H, Ma X, Gao X, Li C, Lu F, Mao S, Qin HM. State-of-the-art strategies and research advances for the biosynthesis of D-amino acids. Crit Rev Biotechnol 2024; 44:495-513. [PMID: 37160372 DOI: 10.1080/07388551.2023.2193861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 05/11/2023]
Abstract
D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.
Collapse
Affiliation(s)
- Fenghua Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hongbin Qi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Huimin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xuanzhen Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xin Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Shuhong Mao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hui-Min Qin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
2
|
Williams V, Cui Y, Jiang X, Zhang C, Zhao J, Zhang N. Co-immobilized Multienzyme System for the Cofactor-Driven Cascade Synthesis of ( R) -2-Amino-3-(2-bromophenyl)propanoic Acid: A Model Reaction. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vyasa Williams
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co., Ltd., Tianjin 300457, P. R. China
| | - Yuxia Cui
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co., Ltd., Tianjin 300457, P. R. China
| | - Xiangjun Jiang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co., Ltd., Tianjin 300457, P. R. China
| | - Chunyue Zhang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co., Ltd., Tianjin 300457, P. R. China
| | - Jiadong Zhao
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co., Ltd., Tianjin 300457, P. R. China
| | - Na Zhang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co., Ltd., Tianjin 300457, P. R. China
| |
Collapse
|
3
|
Song W, Chen X, Wu J, Xu J, Zhang W, Liu J, Chen J, Liu L. Biocatalytic derivatization of proteinogenic amino acids for fine chemicals. Biotechnol Adv 2020; 40:107496. [DOI: 10.1016/j.biotechadv.2019.107496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023]
|
4
|
Pollegioni L, Rosini E, Molla G. Advances in Enzymatic Synthesis of D-Amino Acids. Int J Mol Sci 2020; 21:E3206. [PMID: 32369969 PMCID: PMC7247363 DOI: 10.3390/ijms21093206] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
In nature, the D-enantiomers of amino acids (D-AAs) are not used for protein synthesis and during evolution acquired specific and relevant physiological functions in different organisms. This is the reason for the surge in interest and investigations on these "unnatural" molecules observed in recent years. D-AAs are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. In past years, a number of methods have been devised to produce D-AAs based on enantioselective enzymes. With the aim to increase the D-AA derivatives generated, to improve the intrinsic atomic economy and cost-effectiveness, and to generate processes at low environmental impact, recent studies focused on identification, engineering and application of enzymes in novel biocatalytic processes. The aim of this review is to report the advances in synthesis of D-AAs gathered in the past few years based on five main classes of enzymes. These enzymes have been combined and thus applied to multi-enzymatic processes representing in vitro pathways of alternative/exchangeable enzymes that allow the generation of an artificial metabolism for D-AAs synthetic purposes.
Collapse
Affiliation(s)
| | | | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (L.P.); (E.R.)
| |
Collapse
|
5
|
Zhou H, Meng L, Yin X, Liu Y, Xu G, Wu J, Wu M, Yang L. Artificial Biocatalytic Cascade with Three Enzymes in One Pot for Asymmetric Synthesis of Chiral Unnatural Amino Acids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haisheng Zhou
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Lijun Meng
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Xinjian Yin
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Yayun Liu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Gang Xu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Jianping Wu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Mianbin Wu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Lirong Yang
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| |
Collapse
|
6
|
Silva MVDM, Costa ICR, de Souza ROMA, Bornscheuer UT. Biocatalytic Cascade Reaction for the Asymmetric Synthesis of L‐ and D‐Homoalanine. ChemCatChem 2018. [DOI: 10.1002/cctc.201801413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marcus V. de M. Silva
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryGreifswald University Greifswald 17487 Germany
- Biocatalysis and Organic Synthesis GroupInstitute of ChemistryFederal University of Rio de Janeiro, Rio de Janeiro 21941-909 Brazil
| | - Ingrid C. R. Costa
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryGreifswald University Greifswald 17487 Germany
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis GroupInstitute of ChemistryFederal University of Rio de Janeiro, Rio de Janeiro 21941-909 Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryGreifswald University Greifswald 17487 Germany
| |
Collapse
|
7
|
Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516-1561. [DOI: 10.1039/c7cs00253j] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review summarizes the progress achieved in the enzymatic asymmetric synthesis of chiral amino acids from prochiral substrates.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
8
|
Polakovič M, Švitel J, Bučko M, Filip J, Neděla V, Ansorge-Schumacher MB, Gemeiner P. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications. Biotechnol Lett 2017; 39:667-683. [PMID: 28181062 DOI: 10.1007/s10529-017-2300-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/01/2017] [Indexed: 11/28/2022]
Abstract
Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.
Collapse
Affiliation(s)
- Milan Polakovič
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Juraj Švitel
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jaroslav Filip
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Vilém Neděla
- Institute of Scientific Instruments, Academy of Sciences Czech Republic, Brno, Czech Republic
| | | | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
9
|
|
10
|
Skalden L, Peters C, Dickerhoff J, Nobili A, Joosten HJ, Weisz K, Höhne M, Bornscheuer UT. Two subtle amino Acid changes in a transaminase substantially enhance or invert enantiopreference in cascade syntheses. Chembiochem 2015; 16:1041-5. [PMID: 25801772 DOI: 10.1002/cbic.201500074] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 11/07/2022]
Abstract
Amine transaminases (ATAs) are powerful enzymes for the stereospecific production of chiral amines. However, the synthesis of amines incorporating more than one stereocenter is still a challenge. We developed a cascade synthesis to access optically active 3-alkyl-substituted chiral amines by combining two asymmetric synthesis steps catalyzed by an enoate reductase and ATAs. The ATA wild type from Vibrio fluvialis showed only modest enantioselectivity (14 % de) in the amination of (S)-3-methylcyclohexanone, the product of the enoate-reductase-catalyzed reaction step. However, by protein engineering we created two variants with substantially improved diastereoselectivities: variant Leu56Val exhibited a higher R selectivity (66 % de) whereas the Leu56Ile substitution caused a switch in enantiopreference to furnish the S-configured diastereomer (70 % de). Addition of 30 % DMSO further improved the selectivity and facilitated the synthesis of (1R,3S)-1-amino-3-methylcyclohexane with 89 % de at 87 % conversion.
Collapse
Affiliation(s)
- Lilly Skalden
- Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu H, He YP, Gong LZ. The Combination of Relay and Cooperative Catalysis with a Gold/Palladium/Brønsted Acid Ternary System for the Cascade Hydroamination/Allylic Alkylation Reaction. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100922] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Ricca E, Brucher B, Schrittwieser JH. Multi-Enzymatic Cascade Reactions: Overview and Perspectives. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100256] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Ramezani M, White RL. Enantioselective catabolism of racemic serine: preparation of d-serine using whole cells of Fusobacterium nucleatum. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Yoshimura T, Mihara H, Ohshima T, Tanizawa K. Kenji Soda--researching enzymes with the spirit of an alpinist. J Biochem 2011; 148:371-9. [PMID: 20924059 DOI: 10.1093/jb/mvq095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Like an alpinist continuously seeking virgin peaks to climb, Kenji Soda has investigated a variety of unique enzymes for which there was little or no information available; and by doing so he opened up a variety of new fields in enzyme science and technology. In particular, he has promoted the study of enzymes requiring vitamin B-derived cofactors such as FAD, NAD(P) and pyridoxal 5'-phosphate, shedding light on their reaction mechanisms, enzymological properties, crystal structures and potential practical applications. Highlighted in this review are the studies of enzymes acting on d-amino acids and sulphur/selenium-containing amino acids and those from thermophilic and psychrophilic bacteria.
Collapse
Affiliation(s)
- Toru Yoshimura
- Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | | | | | | |
Collapse
|
15
|
Park JH, Chang KM, Chung YK. Catalytic Pauson–Khand-type reactions and related carbonylative cycloaddition reactions. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.08.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Koszelewski D, Lavandera I, Clay D, Guebitz GM, Rozzell D, Kroutil W. Formal asymmetric biocatalytic reductive amination. Angew Chem Int Ed Engl 2008; 47:9337-40. [PMID: 18972473 DOI: 10.1002/anie.200803763] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dominik Koszelewski
- Research Centre Applied Biocatalysis, c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
17
|
Koszelewski D, Lavandera I, Clay D, Guebitz G, Rozzell D, Kroutil W. Formal Asymmetric Biocatalytic Reductive Amination. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803763] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dominik Koszelewski
- Research Centre Applied Biocatalysis, c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria), Fax: (+43) 316‐380‐9840
| | - Iván Lavandera
- Research Centre Applied Biocatalysis, c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria), Fax: (+43) 316‐380‐9840
| | - Dorina Clay
- Research Centre Applied Biocatalysis, c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria), Fax: (+43) 316‐380‐9840
| | - Georg M. Guebitz
- Institute of Environmental Biotechnology, Research Centre Applied Biocatalysis, University of Technology, Petersgasse 12, 8010 Graz (Austria)
| | | | - Wolfgang Kroutil
- Research Centre Applied Biocatalysis, c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria), Fax: (+43) 316‐380‐9840
| |
Collapse
|
18
|
Phan NTS, Gill CS, Nguyen JV, Zhang ZJ, Jones CW. Expanding the Utility of One-Pot Multistep Reaction Networks through Compartmentation and Recovery of the Catalyst. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503445] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Phan NTS, Gill CS, Nguyen JV, Zhang ZJ, Jones CW. Expanding the Utility of One-Pot Multistep Reaction Networks through Compartmentation and Recovery of the Catalyst. Angew Chem Int Ed Engl 2006; 45:2209-12. [PMID: 16528763 DOI: 10.1002/anie.200503445] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nam T S Phan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
20
|
Ohshima T, Soda K. Biochemistry and biotechnology of amino acid dehydrogenases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 42:187-209. [PMID: 2291437 DOI: 10.1007/bfb0000734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade, amino acid dehydrogenases such as alanine dehydrogenase (Ala DH), leucine dehydrogenase (Leu DH), and phenylalanine dehydrogenase (Phe DH) have been applied to the enantiomer-specific synthesis and analysis of various amino acids. In perticular, amino acid dehydrogenases from thermophiles have received much attention because of their high stability. Their productivity was enhanced and the purification facilitated by the gene cloning. The advances in biotechnological applications of these enzymes are based on fundamental studies concerning characteristics of the enzymes and reaction mechanism as described in this chapter. Further elucidation of the structure and function of these enzymes based on genetic engineering and protein engineering may enable their properties to be improved for their future uses in biotechnology.
Collapse
Affiliation(s)
- T Ohshima
- Department of Chemistry, Kyoto University of Education, Japan
| | | |
Collapse
|
21
|
Affiliation(s)
- Julia-Christina Wasilke
- Department of Chemistry and Biochemistry, Institute for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
22
|
Wakayama M, Yoshimune K, Hirose Y, Moriguchi M. Production of d-amino acids by N-acyl-d-amino acid amidohydrolase and its structure and function. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(03)00074-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Application of a thermostable glutamate racemase from Bacillus sp. SK-1 for the production of d-phenylalanine in a multi-enzyme system. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1381-1177(02)00011-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
|
25
|
Bae HS, Lee SG, Hong SP, Kwak MS, Esaki N, Soda K, Sung MH. Production of aromatic d-amino acids from α-keto acids and ammonia by coupling of four enzyme reactions. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1381-1177(98)00073-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Taylor PP, Pantaleone DP, Senkpeil RF, Fotheringham IG. Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol 1998; 16:412-8. [PMID: 9807838 DOI: 10.1016/s0167-7799(98)01240-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transaminase enzymes are being increasingly applied to the large-scale synthesis of unnatural and nonproteinogenic amino acids. Typically displaying relaxed substrate specificity, rapid reaction rates and lacking the need for cofactor regeneration, they possess many characteristics that make them desirable as effective biocatalysts. By judiciously combining the transaminase reaction with additional enzymatic steps, this approach can be used very efficiently to prepare a broad range of D- and L-amino acids.
Collapse
Affiliation(s)
- P P Taylor
- NSC Technologies, Monsanto, Mount Prospect, IL 60056-1300, USA.
| | | | | | | |
Collapse
|
27
|
|
28
|
Galkin A, Kulakova L, Yamamoto H, Tanizawa K, Tanaka H, Esaki N, Soda K. Conversion of α-keto acids to d-amino acids by coupling of four enzyme reactions. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)80997-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Rosell C, Fernández-Lafuente R, Guisán J. Resolution of racemic mixtures by synthesis reactions catalyzed by immobilized derivatives of the enzyme penicillin G acylase. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0304-5102(93)85065-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Affiliation(s)
- K Soda
- Institute for Chemical Research, Kyoto University, Japan
| |
Collapse
|
31
|
UMEMURA ISAO, YANAGIYA KOJI, KOMATSUBARA SABURO, SATO TADASHI, TOSA TETSUYA. d-Alanine Production by Using Asymmetric Degrading Activity of Candida maltosa. Ann N Y Acad Sci 1990. [DOI: 10.1111/j.1749-6632.1990.tb18241.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|