1
|
Paronyan M, Koloyan H, Aganyants H, Hambardzumyan A, Soghomonyan T, Avetisyan S, Kocharov S, Panosyan H, Sakanyan V, Hovsepyan A. Structural Analysis and Substrate Specificity of D-Carbamoylase from Pseudomonas. BIOTECH 2024; 13:40. [PMID: 39449370 PMCID: PMC11503299 DOI: 10.3390/biotech13040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The synthesis of enantiomeric forms of D-amino acids can be achieved by a two-step "hydantoinase process" based on the sequential catalysis of substrates by specific enzymes, D-carbamoylase and D-hydantoinase. Here, we describe the structural features of D-carbamoylase from Pseudomonas, the encoded gene of which was chemically synthesized and cloned into Escherichia coli. A significant fraction of the overexpressed recombinant protein forms insoluble inclusion bodies, which are partially converted to a soluble state upon treatment with N-lauroylsarcosine or upon incubation of cells at 28 °C. Purified His-tagged protein exhibits the highest activity towards N-carbamoyl-D-alanine and N-carbamoyl-D-tryptophan. Comprehensive virtual analysis of the interactions of bulky carbamylated amino acids with D-carbamoylase provided valuable information. Molecular docking analysis revealed the location of the substrate binding site in the three-dimensional structure of D-carbamoylase. Molecular dynamics simulations showed that the binding pocket of the enzyme in complex with N-carbamoyl-D-tryptophan was stabilized within 100 nanoseconds. The free energy data showed that Arg176 and Asn173 formed hydrogen bonds between the enzyme and substrates. The studies of D-carbamoylases and the properties of our previously obtained D-hydantoinase suggest the possibility of developing a harmonized biotechnological process for the production of new drugs and peptide hormones.
Collapse
Affiliation(s)
- Marina Paronyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Haykanush Koloyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Hovsep Aganyants
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Artur Hambardzumyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Tigran Soghomonyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Sona Avetisyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Sergey Kocharov
- Scientific Technological Centre of Organic and Pharmaceutical Chemistry SNPO, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - Henry Panosyan
- Scientific Technological Centre of Organic and Pharmaceutical Chemistry SNPO, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - Vehary Sakanyan
- Faculty of Science and Technique, Nantes University, 44035 Nantes, France
| | - Anichka Hovsepyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| |
Collapse
|
2
|
Xu Y, Wang N, Peng L, Li S, Liang C, Song K, Song S, Zhou Y. Free Nitrous Acid Inhibits Atenolol Removal during the Sidestream Partial Nitritation Process through Regulating Microbial-Induced Metabolic Types. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11614-11624. [PMID: 35900075 DOI: 10.1021/acs.est.1c08845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Limited studies have attempted to evaluate pharmaceutical removal during the sidestream partial nitritation (PN) process. In this work, atenolol biodegradation by PN cultures was investigated by maintaining ammonium and pH at different levels. For the first time, free nitrous acid (FNA), other than ammonium, pH, and free ammonia, was demonstrated to inhibit atenolol removal, with biodegradation efficiencies of ∼98, ∼67, and ∼28% within 6 days at average FNA levels of 0, 0.03, and 0.19 mg-N L-1, respectively. Ammonia-oxidizing bacteria (AOB)-induced metabolism was predominant despite varying FNA concentrations. In the absence of ammonium/FNA, atenolol was mostly biodegraded via AOB-induced metabolism (65%) and heterotroph-induced metabolism (33%). AOB-induced metabolism was largely inhibited (down to 29%) at 0.03 mg-N L-1 FNA, while ∼27 and ∼11% were degraded via heterotroph-induced metabolism and AOB-induced cometabolism, respectively. Higher FNA (0.19 mg-N L-1) substantially reduced atenolol biodegradation via heterotroph-induced metabolism (4%), AOB-induced metabolism (16%), and AOB-induced cometabolism (8%). Newly identified products and pathways were related to metabolic types and FNA levels: (i) deamination and decarbonylation (AOB-induced cometabolism, 0.03 mg-N L-1 FNA); (ii) deamination from atenolol acid (heterotrophic biodegradation); and (iii) nitro-substitution (reaction with nitrite). This suggests limiting FNA to realize simultaneous nitrogen and pharmaceutical removal during the sidestream process.
Collapse
Affiliation(s)
- Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Ning Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Shengjun Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
3
|
Meynet P, Davenport RJ, Fenner K. Understanding the Dependence of Micropollutant Biotransformation Rates on Short-Term Temperature Shifts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12214-12225. [PMID: 32897072 DOI: 10.1021/acs.est.0c04017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Temperature is a key factor that influences chemical biotransformation potential and rates, on which exposure and fate models rely to predict the environmental (micro)pollutant fate. Arrhenius-based models are currently implemented in environmental exposure assessment to adapt biotransformation rates to actual temperatures, assuming validity in the 0-30 °C range. However, evidence on how temperature shifts affect the physicochemical and microbial features in biological systems is scarce, questioning the validity of the existing modeling approaches. In this work, laboratory-scale batch assays were designed to investigate how a mixed microbial community responds to short-term temperature shifts, and how this impacts its ability to biotransform a range of structurally diverse micropollutants. Our results revealed three distinct kinetic responses at temperatures above 20 °C, mostly deviating from the classic Arrhenius-type behavior. Micropollutants with similar temperature responses appeared to undergo mostly similar initial biotransformation reactions, with substitution-type reactions maintaining Arrhenius-type behavior up to higher temperatures than oxidation-type reactions. Above 20 °C, the microbial community also showed marked shifts in both composition and activity, which mostly correlated with the observed deviations from Arrhenius-type behavior, with compositional changes becoming a more relevant factor in biotransformations catalyzed by more specific enzymes (e.g., oxidation reactions). Our findings underline the need to re-examine and further develop current environmental fate models by integrating biological aspects, to improve accuracy in predicting the environmental fate of micropollutants.
Collapse
Affiliation(s)
- Paola Meynet
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Russell J Davenport
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
4
|
Liu Y, Xu G, Zhou J, Ni J, Zhang L, Hou X, Yin D, Rao Y, Zhao YL, Ni Y. Structure-Guided Engineering of d-Carbamoylase Reveals a Key Loop at Substrate Entrance Tunnel. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yafei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Jieyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Jie Ni
- Warshel Institute for Computational Biology, School of Life and Health Science, Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Lu Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Dejing Yin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| |
Collapse
|
5
|
Bellini RG, Coronado MA, Paschoal AR, Gaudencio do Rêgo T, Hungria M, Ribeiro de Vasconcelos AT, Nicolás MF. Structural analysis of a novel N-carbamoyl-d-amino acid amidohydrolase from a Brazilian Bradyrhizobium japonicum strain: In silico insights by molecular modelling, docking and molecular dynamics. J Mol Graph Model 2018; 86:35-42. [PMID: 30336451 DOI: 10.1016/j.jmgm.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
Abstract
In this work we performed several in silico analyses to describe the relevant structural aspects of an enzyme N-Carbamoyl-d-amino acid amidohydrolase (d-NCAase) encoded on the genome of the Brazilian strain CPAC 15 (=SEMIA 5079) of Bradyrhizobium japonicum, a nonpathogenic species belonging to the order Rhizobiales. d-NCAase has wide applications particularly in the pharmaceutical industry, since it catalyzes the production of d-amino acids such as D-p-hydroxyphenylglycine (D-HPG), an intermediate in the synthesis of β-lactam antibiotics. We applied a homology modelling approach and 50 ns of molecular dynamics simulations to predict the structure and the intersubunit interactions of this novel d-NCAase. Also, in order to evaluate the substrate binding site, the model was subjected to 50 ns of molecular dynamics simulations in the presence of N-Carbamoyl-d-p-hydroxyphenylglycine (Cp-HPG) (a d-NCAase canonical substrate) and water-protein/water-substrate interactions analyses were performed. Overall, the structural analysis and the molecular dynamics simulations suggest that d-NCAase of B. japonicum CPAC-15 has a homodimeric structure in solution. Here, we also examined the substrate specificity of the catalytic site of our model and the interactions with water molecules into the active binding site were comprehensively discussed. Also, these simulations showed that the amino acids Lys123, His125, Pro127, Cys172, Asp174 and Arg176 are responsible for recognition of ligand in the active binding site through several chemical associations, such as hydrogen bonds and hydrophobic interactions. Our results show a favourable environment for a reaction of hydrolysis that transforms N-Carbamoyl-d-p-hydroxyphenylglycine (Cp-HPG) into the active compound D-p-hydroxyphenylglycine (D-HPG). This work envisage the use of d-NCAase from the Brazilian Bradyrhizobium japonicum strain CPAC-15 (=SEMIA 5079) for the industrial production of D-HPG, an important intermediate for semi-synthesis of β-lactam antibiotics such as penicillins, cephalosporins and amoxicillin.
Collapse
Affiliation(s)
- Reinaldo G Bellini
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Mônika Aparecida Coronado
- Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade, Estadual Paulista (UNESP), São José do Rio Preto, 15054-000, SP, Brazil.
| | - Alexandre Rossi Paschoal
- Federal University of Technology - Paraná, Avenida Alberto Carazzai, 1640, 86300-000, Cornélio Procópio, PR, Brazil.
| | - Thaís Gaudencio do Rêgo
- Universidade Federal da Paraíba, Centro de Informática, Rua dos Escoteiros, S/N, João Pessoa, PB, 58055-000, Brazil.
| | | | | | | |
Collapse
|
6
|
Zhang J, Cai Z. Efficient and cost-effective production of D-p-hydroxyphenylglycine by whole-cell bioconversion. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0451-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Chu LN, Nanduri VB, Patel RN, Goswami A. Enzymes for the removal of N-carbobenzyloxy protecting groups from N-carbobenzyloxy-d- and l-amino acids. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Gradually accumulating beneficial mutations to improve the thermostability of N-carbamoyl-d-amino acid amidohydrolase by step-wise evolution. Appl Microbiol Biotechnol 2011; 90:1361-71. [DOI: 10.1007/s00253-011-3114-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 11/28/2022]
|
9
|
Carbamoylases: characteristics and applications in biotechnological processes. Appl Microbiol Biotechnol 2009; 85:441-58. [DOI: 10.1007/s00253-009-2250-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 09/07/2009] [Accepted: 09/07/2009] [Indexed: 11/26/2022]
|
10
|
Liu Y, Li Q, Hu X, Yang J. Construction and co-expression of polycistronic plasmid encoding d-hydantoinase and d-carbamoylase for the production of d-amino acids. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Jiang S, Li C, Zhang W, Cai Y, Yang Y, Yang S, Jiang W. Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli. Biochem J 2007; 402:429-37. [PMID: 17121498 PMCID: PMC1863561 DOI: 10.1042/bj20061457] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One of the greatest bottlenecks in producing recombinant proteins in Escherichia coli is that over-expressed target proteins are mostly present in an insoluble form without any biological activity. DCase (N-carbamoyl-D-amino acid amidohydrolase) is an important enzyme involved in semi-synthesis of beta-lactam antibiotics in industry. In the present study, in order to determine the amino acid sites responsible for solubility of DCase, error-prone PCR and DNA shuffling techniques were applied to randomly mutate its coding sequence, followed by an efficient screening based on structural complementation. Several mutants of DCase with reduced aggregation were isolated. Solubility tests of these and several other mutants generated by site-directed mutagenesis indicated that three amino acid residues of DCase (Ala18, Tyr30 and Lys34) are involved in its protein solubility. In silico structural modelling analyses suggest further that hydrophilicity and/or negative charge at these three residues may be responsible for the increased solubility of DCase proteins in E. coli. Based on this information, multiple engineering designated mutants were constructed by site-directed mutagenesis, among them a triple mutant A18T/Y30N/K34E (named DCase-M3) could be overexpressed in E. coli and up to 80% of it was soluble. DCase-M3 was purified to homogeneity and a comparative analysis with wild-type DCase demonstrated that DCase-M3 enzyme was similar to the native DCase in terms of its kinetic and thermodynamic properties. The present study provides new insights into recombinant protein solubility in E. coli.
Collapse
Affiliation(s)
- Shimin Jiang
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Chunhong Li
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Weiwen Zhang
- †Microbiology Department, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, U.S.A
| | - Yuanheng Cai
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Yunliu Yang
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Sheng Yang
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Weihong Jiang
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- ‡Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China
- To whom correspondence should be addressed (email )
| |
Collapse
|
12
|
Martínez-Rodríguez S, Andújar-Sánchez M, Clemente Jiménez JM, Jara-Pérez V, Rodríguez-Vico F, Las Heras-Vázquez FJ. Thermodynamic and mutational studies of l-N-carbamoylase from Sinorhizobium meliloti CECT 4114 catalytic centre. Biochimie 2006; 88:837-47. [PMID: 16519985 DOI: 10.1016/j.biochi.2006.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 01/27/2006] [Accepted: 01/30/2006] [Indexed: 11/29/2022]
Abstract
Purified site-directed mutants of Sinorhizobium meliloti CECT 4114 l-N-carbamoylase (SmLcar) in which Glu132, His230, Asn279 and Arg292 were replaced have been studied by kinetic methods and isothermal titration calorimetry (ITC). The importance of His230, Asn279 and Arg292 residues in the recognition of N-carbamoyl-l-alpha-amino acids has been proved. The role of Glu132 has been confirmed in substrate hydrolysis. ITC has confirmed two Ni atoms per monomer of wild type enzyme, and two equal and independent substrate binding sites (one per monomer). Homology modelling of SmLcar supports the importance of His87, His194, His386, Glu133 and Asp98 in metal binding. A comprehensive reaction mechanism is proposed on the basis of binding experiments measured by ITC, kinetic assays, and homology of the active centre with beta-alanine synthase from Saccharomyces kluyveri and other enzymes.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Departamento de Química-Física, Bioquímica y Química Inorgánica, Edificio C.I.T.E. I, Universidad de Almería, La Cañada de San Urbano, Almería 04120, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Nanba H, Ikenaka Y, Yamada Y, Yajima K, Takano M, Takahashi S. Production of thermotolerant N-carbamyl-D-amino acid amidohydrolase by recombinant Escherichia coli. J Biosci Bioeng 2005; 87:149-54. [PMID: 16232442 DOI: 10.1016/s1389-1723(99)89004-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1998] [Accepted: 10/23/1998] [Indexed: 10/17/2022]
Abstract
A plasmid, pNT4553, was constructed for high level production of N-carbamyl-d-amino acid amidohydrolase (DCase), the thermostability of which has been improved by amino acid substitution. The DCase activity and the stability of the plasmid in the host cells were dependent on the Escherichia coli strains used. E. coli HB101 was the most suitable host strain among the 13 types of E. coli tested. E. coli HB101 exhibited the highest activity, i.e. 6.36 units/ml of culture broth in 2YT medium (1.6% tryptone, 1.0% yeast extract, and 0.5% NaCl, pH 7.0), and the plasmid was stably maintained by cultivation in 5 types of E. coli including HB101. Casamino acids, NZ-amine, peptone, and protein extract (a mixture of hydrolyzates of corn gluten, wheat gluten and soybean), were found to be suitable as natural nitrogen sources for both enzyme activity and growth. When cultivation was carried out in the presence of high concentrations of glycerol (6.5%) as the carbon source, and protein extract (3.0%) as the nitrogen source, in a small volume of the medium (20 ml of medium in a 500-ml shaking flask), in which the aeration level was estimated to be high, growth and activity reached OD550=63.8 (17.1 mg of dry cell weight/ml of culture broth) and 22.9 units/ml of culture broth, respectively. The economical hyperproduction of DCase using only inexpensive constituents for the medium was achieved.
Collapse
Affiliation(s)
- H Nanba
- Fine Chemicals Research Laboratories, Kaneka Corporation, 1-8 Miyamae, Takasago, Hyogo 676-8688, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Nozaki H, Kira I, Watanabe K, Yokozeki K. Purification and properties of d-hydantoin hydrolase and N-carbamoyl-d-amino acid amidohydrolase from Flavobacterium sp. AJ11199 and Pasteurella sp. AJ11221. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.molcatb.2004.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Enzymatic production of d-p-hydroxyphenylglycine from dl-5-p-hydroxyphenylhydantoin by Sinorhizobium morelens S-5. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Nam SH, Park HS, Kim HS. Evolutionary relationship and application of a superfamily of cyclic amidohydrolase enzymes. CHEM REC 2005; 5:298-307. [PMID: 16211624 DOI: 10.1002/tcr.20057] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cyclic amidohydrolases belong to a superfamily of enzymes that catalyze the hydrolysis of cyclic C-N bonds. They are commonly found in nucleotide metabolism of purine and pyrimidine. These enzymes share similar catalytic mechanisms and show considerable structural homologies, suggesting that they might have evolved from a common ancestral protein. Homology searches based on common mechanistic properties and three-dimensional protein structures provide clues to the evolutionary relationships of these enzymes. Among the superfamily of enzymes, hydantoinase has been highlighted by its potential for biotechnological applications in the production of unnatural amino acids. The enzymatic process for the production of optically pure amino acids consists of three enzyme steps: hydantoin racemase, hydantoinase, and N-carbamoylase. For efficient industrial application, some critical catalytic properties such as thermostability, catalytic activity, enantioselectivity, and substrate specificity require further improvement. To this end, isolation of new enzymes with desirable properties from natural sources and the optimization of enzymatic processes were attempted. A combination of directed evolution techniques and rational design approaches has made brilliant progress in the redesign of industrially important catalytic enzymes; this approach is likely to be widely applied to the creation of designer enzymes with desirable catalytic properties.
Collapse
Affiliation(s)
- Sung-Hun Nam
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusung-dong, Yusung-gu, Daejeon 305-701, Korea
| | | | | |
Collapse
|
17
|
Ohmachi T, Narita M, Kawata M, Bizen A, Tamura Y, Asada Y. A novel N-carbamoyl-l-amino acid amidohydrolase of Pseudomonas sp. strain ON-4a: purification and characterization of N-carbamoyl-l-cysteine amidohydrolase expressed in Escherichia coli. Appl Microbiol Biotechnol 2004; 65:686-93. [PMID: 15300419 DOI: 10.1007/s00253-004-1687-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 06/02/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
N-carbamoyl-L-cysteine amidohydrolase (NCC amidohydrolase) was purified and characterized from the crude extract of Escherichia coli in which the gene for NCC amidohydrolase of Pseudomonas sp. strain ON-4a was expressed. The enzyme was purified 58-fold to homogeneity with a yield of 16.1% by three steps of column chromatography. The results of gel filtration on Sephacryl S-300 and SDS-polyacrylamide gel electrophoresis suggested that the enzyme was a tetramer protein of identical 45-kDa subunits. The optimum pH and temperature of the enzyme activity were pH 9.0 and 50 degrees, respectively. The enzyme required Mn(2+) ion for activity expression and was inhibited by EDTA, Hg(2+) and sulfhydryl reagents. The enzyme was strictly specific for the L-form of N-carbamoyl-amino acids as substrates and exhibited high activity in the hydrolysis of N-carbamoyl-L-cysteine as substrate. These results suggested that the NCC amidohydrolase is a novel L-carbamoylase, different from the known L-carbamoylases.
Collapse
Affiliation(s)
- Tetsuo Ohmachi
- Department of Biochemistry and Biotechnology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Nanduri VB, Goldberg S, Johnston R, Patel RN. Cloning and expression of a novel enantioselective N-carbobenzyloxy-cleaving enzyme. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Chen CY, Chiu WC, Liu JS, Hsu WH, Wang WC. Structural basis for catalysis and substrate specificity of Agrobacterium radiobacter N-carbamoyl-D-amino acid amidohydrolase. J Biol Chem 2003; 278:26194-201. [PMID: 12709423 DOI: 10.1074/jbc.m302384200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Carbamoyl-d-amino acid amidohydrolase is an industrial biocatalyst to hydrolyze N-carbamoyl-d-amino acids for producing valuable d-amino acids. The crystal structure of N-carbamoyl-d-amino acid amidohydrolase in the unliganded form exhibits a alpha-beta-beta-alpha fold. To investigate the roles of Cys172, Asn173, Arg175, and Arg176 in catalysis, C172A, C172S, N173A, R175A, R176A, R175K, and R176K mutants were constructed and expressed, respectively. All mutants showed similar CD spectra and had hardly any detectable activity except for R173A that retained 5% of relative activity. N173A had a decreased value in kcat or Km, whereas R175K or R176K showed high Km and very low kcat values. Crystal structures of C172A and C172S in its free form and in complex form with a substrate, along with N173A and R175A, have been determined. Analysis of these structures shows that the overall structure maintains its four-layer architecture and that there is limited conformational change within the binding pocket except for R175A. In the substrate-bound structure, side chains of Glu47, Lys127, and C172S cluster together toward the carbamoyl moiety of the substrate, and those of Asn173, Arg175, and Arg176 interact with the carboxyl group. These results collectively suggest that a Cys172-Glu47-Lys127 catalytic triad is involved in the hydrolysis of the carbamoyl moiety and that Arg175 and Arg176 are crucial in binding to the carboxyl moiety, hence demonstrating substrate specificity. The common (Glu/Asp)-Lys-Cys triad observed among N-carbamoyl-d-amino acid amidohydrolase, NitFhit, and another carbamoylase suggests a conserved and robust platform during evolution, enabling it to catalyze the reactions toward a specific nitrile or amide efficiently.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Park JH, Oh KH, Lee DC, Kim HS. Modeling and kinetic analysis of the reaction system using whole cells with separately and co-expressed D-hydantoinase and N-carbamoylase. Biotechnol Bioeng 2002; 78:779-93. [PMID: 12001170 DOI: 10.1002/bit.10259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We developed a kinetic model that describes a heterogeneous reaction system for the production of D-p-hydroxyphenylglycine from D,L-p-hydroxyphenyl-hydantoin using D-hydantoinase of Bacillus stearothermophilus SD1 and N-carbamoylase of Agrobacterium tumefaciens NRRL B11291. As a biocatalyst, whole cells with separately or co-expressed enzymes were used. The reaction system involves dissolution of substrate particles, enzymatic conversion, racemization of the L-form substrate, and transfer of the dissolved substrate, intermediate, and product through the cell membrane. Because the two enzymes have different pH optimum, kinetic parameters were evaluated at different pH for the reaction systems. The model was simulated using the kinetic parameters and compared with experimental data, and it was found that the kinetic model well describes the behavior of the reaction systems using whole cells with separately and co-expressed enzymes. Factors affecting the kinetics of the reaction systems were analyzed on the basis of the kinetic model. In the reaction system with separately expressed enzymes, racemization rate and transport of the reaction intermediate (N-carbamoyl-D-p-hydroxyphenylglycine) were revealed to be the limiting factors at neutral pH, resulting in accumulation of intermediate in the reaction medium. At alkaline condition, on the other hand, inhibition of N-carbamoylase by ammonia was severe, and thereby the reaction rate significantly reduced. In the co-expressed enzyme system, accumulation of intermediate was negligible in the reaction medium, and the improved performance was observed compared to that with separately expressed enzymes. The present model might be applied for the optimization and development of the reaction system using two sequential enzymes.
Collapse
Affiliation(s)
- Joo-Ho Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Kusung-dong Yusung-gu, Taejon, 305-701, Korea
| | | | | | | |
Collapse
|
21
|
Thermostable hydantoinase from a hyperthermophilic archaeon, Methanococcus jannaschii. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00047-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Sareen D, Sharma R, Vohra RM. Chaperone-assisted overexpression of an active D-carbamoylase from Agrobacterium tumefaciens AM 10. Protein Expr Purif 2001; 23:374-9. [PMID: 11722173 DOI: 10.1006/prep.2001.1532] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-carbamoyl-D-amino acid amidohydrolase (D-carbamoylase) gene (dcb) from Agrobacterium tumefaciens AM 10 was cloned by polymerase chain reaction in plasmid pET28a and was overexpressed in Escherichia coli JM109 (DE3). However, almost 80% of the enzyme remained trapped in inclusion bodies. To facilitate the expression of the properly folded active enzyme, the chaperones GroEL/ES were coexpressed in plasmid pKY206. This resulted in a 43-fold increase in active enzyme production compared to the wild-type strain. The histidyl-tagged D-carbamoylase was purified by a single step nickel-affinity chromatography to a specific activity of 9.5 U/mg protein.
Collapse
Affiliation(s)
- D Sareen
- Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | | | | |
Collapse
|
23
|
Tamura Y, Ohmachi T, Asada Y. Induction of 2-amino-D2-thiazoline-4-carboxylic acid hydrolase and N-carbamoyl-l-cysteine amidohydrolase by S-compounds in Pseudomonas putida AJ3865. J GEN APPL MICROBIOL 2001; 47:193-200. [PMID: 12483619 DOI: 10.2323/jgam.47.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The induction of 2-amino-Delta(2)-thiazoline-4-carboxylic acid hydrolase (ATCase) and N-carbamoylcysteine amidohydrolase (NCCase), both of which are involved in the conversion step of 2-amino-Delta(2)-thiazoline carboxylic acid (ATC) to cysteine, was studied with Pseudomonas putida AJ3865. We found that L-ATC induced L-ATCase and L-NCCase, but that D-ATC induced only L-NCCase, whereas L- or D-NCC and thiazoline derivatives did not induce both enzymes. The bacterium showed neither D-ATCase nor D-NCCase activities, indicating that the role of L-ATC and D-ATC was different in the enzyme induction. We also found new inducers, d- and l-methionine, S-methyl-L-cysteine, cysteic acid, and 2-aminoethane sulfonic acid. However, the induction level of both enzymes by new inducers was much lower than those by L-ATC and D-ATC. Furthermore, the induction rate of both enzymes was synergistically increased only under a combination of D,L-ATC and new inducers. S-Compounds, however, such as new inducers except S-methyl-L-cysteine, inhibited both enzyme activities. This is the first report on the new inducers, synergistic induction, and the new inhibitors of L-ATCase and L-NCCase.
Collapse
Affiliation(s)
- Yoshiharu Tamura
- Nippon Rikagaku Yakuhin K.K. Research Center, Adati-ku, Tokyo 123-0873, Japan
| | | | | |
Collapse
|
24
|
Gojković Z, Sandrini MP, Piskur J. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity. Genetics 2001; 158:999-1011. [PMID: 11454750 PMCID: PMC1461717 DOI: 10.1093/genetics/158.3.999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
beta-Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamyl-beta-alanine as the sole nitrogen source and exhibits diminished beta-alanine synthase activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has no pyrimidine catabolic pathway, it enabled growth on N-carbamyl-beta-alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta-alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial N-carbamyl amidohydrolases. All three beta-alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta-alanine, but not by uracil. This work establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta-alanine production in eukaryotes.
Collapse
Affiliation(s)
- Z Gojković
- Section of Molecular Microbiology, BioCentrum DTU, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
25
|
Wang WC, Hsu WH, Chien FT, Chen CY. Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft. J Mol Biol 2001; 306:251-61. [PMID: 11237598 DOI: 10.1006/jmbi.2000.4380] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-carbamoyl-D-amino-acid amidohydrolase (D-NCAase) is used on an industrial scale for the production of D-amino acids. The crystal structure of D-NCAase was solved by multiple isomorphous replacement with anomalous scattering using xenon and gold derivatives, and refined to 1.95 A resolution, to an R-factor of 18.6 %. The crystal structure shows a four-layer alpha/beta fold with two six-stranded beta sheets packed on either side by two alpha helices. One exterior layer faces the solvent, whereas the other one is buried and involved in the tight intersubunit contacts. A long C-terminal fragment extends from a monomer to a site near a dyad axis, and associates with another monomer to form a small and hydrophobic cavity, where a xenon atom can bind. Site-directed mutagenesis of His129, His144 and His215 revealed strict geometric requirements of these conserved residues to maintain a stable conformation of a putative catalytic cleft. A region located within this cleft involving Cys172, Glu47, and Lys127 is proposed for D-NCAase catalysis and is similar to the Cys-Asp-Lys site of N-carbamoylsarcosine amidohydrolase. The homologous active-site framework of these enzymes with distinct structures suggests convergent evolution of a common catalytic mechanism.
Collapse
Affiliation(s)
- W C Wang
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | | | | | | |
Collapse
|
26
|
Sareen D, Sharma R, Nandanwar HS, Vohra RM. Two-step purification of d(-)-specific carbamoylase from Agrobacterium tumefaciens AM 10. Protein Expr Purif 2001; 21:170-5. [PMID: 11162403 DOI: 10.1006/prep.2000.1336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A simple, economical and rapid affinity chromatography procedure with red dye as a ligand has been described for the two-step purification of a relatively thermostable d(-)-carbamoylase from the cell-free extract of Agrobacterium tumefaciens AM 10. The enzyme was purified 232-fold to homogeneity with a recovery of 30% in the presence of 2 mM dithiothreitol. The specific activity of the enzyme was 7.88 U/mg protein. The enzyme is a dimer with a native molecular mass of 67 kDa and a subunit relative molecular mass of 38 kDa. The isoelectric point of the enzyme was found to be 5.83. The K(m) values for N-carbamoyl-dl-methionine and N-carbamoyl-d-phenylglycine were 3.84 and 5.0 mM, respectively.
Collapse
Affiliation(s)
- D Sareen
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | | | | |
Collapse
|
27
|
Ogawa J, Ryono A, Xie SX, Vohra RM, Indrati R, Akamatsu M, Miyagawa H, Ueno T, Shimizu S. Separative preparation of the four stereoisomers of β-methylphenylalanine with N-carbamoyl amino acid amidohydrolases. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1381-1177(00)00205-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Soong CL, Ogawa J, Shimizu S. Cyclic ureide and imide metabolism in microorganisms producing a d-hydantoinase useful for d-amino acid production. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1381-1177(00)00204-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
|
30
|
Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, Ueki T, Nanba H, Ikenaka Y, Takahashi S, Sato M, Tsukihara T. Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure 2000; 8:729-37. [PMID: 10903946 DOI: 10.1016/s0969-2126(00)00160-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND N-carbamyl-D-amino acid amidohydrolase (DCase) catalyzes the hydrolysis of N-carbamyl-D-amino acids to the corresponding D-amino acids, which are useful intermediates in the preparation of beta-lactam antibiotics. To understand the catalytic mechanism of N-carbamyl-D-amino acid hydrolysis, the substrate specificity and thermostability of the enzyme, we have determined the structure of DCase from Agrobacterium sp. strain KNK712. RESULTS The crystal structure of DCase has been determined to 1.7 A resolution. The enzyme forms a homotetramer and each monomer consists of a variant of the alpha + beta fold. The topology of the enzyme comprises a sandwich of parallel beta sheets surrounded by two layers of alpha helices, this topology has not been observed in other amidohydrolases such as the N-terminal nucleophile (Ntn) hydrolases. CONCLUSIONS The catalytic center could be identified and consists of Glu46, Lys126 and Cys171. Cys171 was found to be the catalytic nucleophile, and its nucleophilic character appeared to be increased through general-base activation by Glu46. DCase shows only weak sequence similarity with a family of amidohydrolases, including beta-alanine synthase, aliphatic amidases and nitrilases, but might share highly conserved residues in a novel framework, which could provide a possible explanation for the catalytic mechanism for this family of enzymes.
Collapse
Affiliation(s)
- T Nakai
- Kaneka Corporation, Takasago-cho, Takasago, 676-8688, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Soong CL, Ogawa J, Shimizu S. A novel amidase (half-amidase) for half-amide hydrolysis involved in the bacterial metabolism of cyclic imides. Appl Environ Microbiol 2000; 66:1947-52. [PMID: 10788365 PMCID: PMC101438 DOI: 10.1128/aem.66.5.1947-1952.2000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel amidase involved in bacterial cyclic imide metabolism was purified from Blastobacter sp. strain A17p-4. The enzyme physiologically functions in the second step of cyclic imide degradation, i.e., the hydrolysis of monoamidated dicarboxylates (half-amides) to dicarboxylates and ammonia. Enzyme production was enhanced by cyclic imides such as succinimide and glutarimide but not by amide compounds which are conventional substrates and inducers of known amidases. The purified amidase showed high catalytic efficiency toward half-amides such as succinamic acid (K(m) = 6.2 mM; k(cat) = 5.76 s(-1)) and glutaramic acid (K(m) = 2.8 mM; k(cat) = 2.23 s(-1)). However, the substrates of known amidases such as short-chain (C(2) to C(4)) aliphatic amides, long-chain (above C(16)) aliphatic amides, amino acid amides, aliphatic diamides, alpha-keto acid amides, N-carbamoyl amino acids, and aliphatic ureides were not substrates for the enzyme. Based on its high specificity toward half-amides, the enzyme was named half-amidase. This half-amidase exists as a monomer with an M(r) of 48,000 and was strongly inhibited by heavy metal ions and sulfhydryl reagents.
Collapse
Affiliation(s)
- C L Soong
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
32
|
Recombinant Escherichia coli cell for d-p-hydroxyphenylglycine production from d-N-carbamoyl-p-hydroxyphenylglycine. Enzyme Microb Technol 2000; 26:222-228. [PMID: 10689081 DOI: 10.1016/s0141-0229(99)00163-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Recombinant Escherichia coli cell containing D-amidohydrolase was employed to convert D-N-carbamoyl-p-hydroxyphenylglycine (D-CpHPG) to D-p-hydroxyphenylglycine (D-pHPG). Biotransformations under pH 7 and 40 degrees C allowed to complete conversion of D-CpHPG into D-pHPG. Under the same reaction pH, the D-amidohydrolase activity of the cell in the phosphate buffer was higher than that in the Tris buffer. The activity decreased with the increase of phosphate buffer concentration. Instead of using buffer, the reaction pH maintained constant at 7 by titrating with 1 N HCl resulted in a higher D-pHPG production rate. Flocculating the cell suspension with chitosan and cross-linked by glutaraldehyde made the cell recovery for repeated use much easier. Both the cross-linking and (PMSF; a protease inhibitor) treatments could increase the cell reusability and storage stability. However, the cross-linking decreased the D-amidohydrolase activity of the cell to about 50%. The D-amidohydrolase activities of free and cross-linked cell were inhibited at substrate concentration higher than 150 mM and 100 mM, respectively. The conversion of 150 mM D-CpHPG to D-pHPG could be completed within 7 h for the free cell at the concentration of 10% (wet weight/volume).
Collapse
|
33
|
Vreken P, van Kuilenburg AB, Hamajima N, Meinsma R, van Lenthe H, Göhlich-Ratmann G, Assmann BE, Wevers RA, van Gennip AH. cDNA cloning, genomic structure and chromosomal localization of the human BUP-1 gene encoding beta-ureidopropionase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:251-7. [PMID: 10542323 DOI: 10.1016/s0167-4781(99)00182-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A full-length cDNA clone encoding human beta-ureidopropionase was isolated. A 1152-nucleotide open reading frame which corresponds to a protein of 384 amino acids with a calculated molecular weight of 43¿ omitted¿158 Da, surrounded by a 5'-untranslated region of 61 nucleotides and a 3'-untranslated region of 277 nucleotides was identified. The protein showed 91% similarity with the translation product of the rat beta-ureidopropionase cDNA. Expression of the human cDNA in an Escherichia coli and eukaryotic COS-7 expression system revealed a very high beta-ureidopropionase enzymatic activity, thus confirming the identity of the cDNA. Since human EST libraries from brain, liver, kidney and heart contained partial beta-ureidopropionase cDNAs, the enzyme seems to be expressed in these tissues, in agreement with the expression profile of this enzyme in rat. Using the human cDNA as a probe a genomic P1 clone could be isolated containing the complete human beta-ureidopropionase gene. The gene consist of 11 exons spanning approximately 20 kB of genomic DNA. Fluorescence in situ hydridization localized the human beta-ureidopropionase gene to 22q11.2.
Collapse
Affiliation(s)
- P Vreken
- Academic Medical Center, Departments of Clinical Chemistry and Division Emma Children's Hospital, Amsterdam, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee DC, Park JH, Kim GJ, Kim HS. Modeling, simulation, and kinetic analysis of a heterogeneous reaction system for the enzymatic conversion of poorly soluble substrate. Biotechnol Bioeng 1999; 64:272-83. [PMID: 10397864 DOI: 10.1002/(sici)1097-0290(19990805)64:3<272::aid-bit3>3.0.co;2-m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We developed a kinetic model that describes a heterogeneous reaction system consisting of a solid substrate suspension for the production of D-amino acid using D-hydantoinase. As a biocatalyst, mass-produced free and whole cell enzymes were used. The heterogeneous reaction system involves dissolution of a solid substrate, enzymatic conversion of the dissolved D-form substrate, spontaneous racemization of an L-form substrate to D-form, and deactivation of the enzyme. In the case of using whole cell enzymes, transfer of the dissolved substrate and product through the cell membrane was considered. The kinetic parameters were determined from experiments, literature data, and by using Marquardt's method of nonlinear regression analysis. The model was simulated using the kinetic parameters and compared with experimental data, and a good agreement was observed between the experimental results and the simulation ones. Factors affecting the kinetics of the heterogeneous reaction system were analyzed on the basis of the kinetic model, and the efficiency of the reaction systems using free and whole cell enzymes was also compared.
Collapse
Affiliation(s)
- D C Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Kusung-Dong, Yusung-Gu, Taejon 305-701, Korea
| | | | | | | |
Collapse
|
35
|
Soong CL, Ogawa J, Honda M, Shimizu S. Cyclic-imide-hydrolyzing activity of D-hydantoinase from Blastobacter sp. strain A17p-4. Appl Environ Microbiol 1999; 65:1459-62. [PMID: 10515797 PMCID: PMC91207 DOI: 10.1128/aem.65.4.1459-1462.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclic-imide-hydrolyzing activity of a prokaryotic cyclic-ureide-hydrolyzing enzyme, D-hydantoinase, was investigated. The enzyme hydrolyzed cyclic imides with bulky substituents such as 2-methylsuccinimide, 2-phenylsuccinimide, phthalimide, and 3,4-pyridine dicarboximide to the corresponding half-amides. However, simple cyclic imides without substituents, which are substrates of imidase (ie.g., succinimide, glutarimide, and sulfur-containing cyclic imides such as 2,4-thiazolidinedione and rhodanine), were not hydrolyzed. The combined catalytic actions of bacterial D-hydantoinase and imidase can cover the function of a single mammalian enzyme, dihydropyrimidinase. Prokaryotic D-hydantoinase also catalyzed the dehyrative cyclization of the half-amide phthalamidic acid to the corresponding cyclic imide, phthalimide. The reversible hydrolysis of cyclic imides shown by prokaryotic D-hydantoinase suggested that, in addition to pyrimidine metabolism, it may also function in cyclic-imide metabolism.
Collapse
Affiliation(s)
- C L Soong
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | |
Collapse
|
36
|
Nanba H, Ikenaka Y, Yamada Y, Yajima K, Takano M, Ohkubo K, Hiraishi Y, Yamada K, Takahashi S. Immobilization of thermotolerant N-carbamyl-d-amino acid amidohydrolase. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1381-1177(98)00078-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Ikenaka Y, Nanba H, Yajima K, Yamada Y, Takano M, Takahashi S. Thermostability reinforcement through a combination of thermostability-related mutations of N-carbamyl-D-amino acid amidohydrolase. Biosci Biotechnol Biochem 1999; 63:91-5. [PMID: 10052127 DOI: 10.1271/bbb.63.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For the improvement of N-carbamyl-D-amino acid amidohydrolase (DCase), which can be used for the industrial production of D-amino acids, the stability of DCase from Agrobacterium sp. KNK712 was improved through various combinations of thermostability-related mutations. The thermostable temperature (defined as the temperature on heat treatment for 10 min that caused a decrease in the DCase activity of 50%) of the enzyme which had three amino acids, H57Y, P203E, and V236A, replaced was increased by about 19 degrees C. The mutant DCase, designated as 455M, was purified and its enzymatic properties were studied. The enzyme had highly increased stability against not only temperature but also pH, the optimal temperature of the enzyme being about 75 degrees C. The substrate specificity of the enzyme for various N-carbamyl-D-amino acids was changed little in comparison with that of the native enzyme. Enzymochemical parameters were also measured.
Collapse
Affiliation(s)
- Y Ikenaka
- Fine Chemicals Research Laboratories, Kaneka Corporation, Hyogo, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Lee DC, Kim HS. Optimization of a heterogeneous reaction system for the production of optically active D-amino acids using thermostable D-hydantoinase. Biotechnol Bioeng 1998; 60:729-38. [PMID: 10099482 DOI: 10.1002/(sici)1097-0290(19981220)60:6<729::aid-bit9>3.0.co;2-g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A thermostable D-hydantoinase from Bacillus stearothermophilus SD-1 was previously mass-produced by batch cultivation of the recombinant E. coli harboring the gene encoding the enzyme (Lee et al., 1997). In this work, we attempted to optimize the process for the production of N-carbamoyl-D-p-hydroxyphenylglycine, which is readily hydrolyzed to D-p-hydroxyphenylglycine under acidic conditions, from 5-(4-hydroxyphenyl)hydantoin using the mass-produced D-hydantoinase. In an effort to overcome the low solubility of the substrate, enzyme reaction was carried out in a heterogeneous system consisting of a high substrate concentration up to 300 g/L. In this reaction system, most of substrate is present in suspended particles. Optimal temperature and pH were determined to be 45 degrees C and 8.5, respectively, by taking into account the reaction rate and conversion yield. When the free enzyme was employed as a biocatalyst, enzyme loading higher than 300 unit/g-substrate was required to achieve maximum conversion. Use of whole cell enzyme resulted in maximum conversion even at lower enzyme loadings than the free enzyme, showing 96% conversion yield at 300 g/L substrate. The heterogeneous reaction system used in this work might be applied to the enzymatic production of other valuable compounds from a rarely water-soluble substrate.
Collapse
Affiliation(s)
- D C Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Kusung-Dong, Yusung-Gu, Taejon 305-701, Korea
| | | |
Collapse
|
39
|
Grifantini R, Galli G, Carpani G, Pratesi C, Frascotti G, Grandi G. Efficient conversion of 5-substituted hydantoins to D-alpha-amino acids using recombinant Escherichia coli strains. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 4):947-954. [PMID: 9579068 DOI: 10.1099/00221287-144-4-947] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
D-Amino acids, important intermediates in the production of semisynthetic penicillins and cephalosporins, are currently prepared from the corresponding hydantoins using bacterial biomass containing two enzymes, hydantoinase and carbamylase. These enzymes convert the hydantoins first into carbamyl derivatives and then into the corresponding D-amino acids. In an attempt to select more efficient biocatalysts, the hydantoinase and carbamylase genes from Agrobacterium tumefaciens (formerly A. radiobacter) were cloned in Escherichia coli. The genes were assembled to give two operon-type structures, one having the carbamylase gene preceding the hydantoinase gene and the other with the carbamylase gene following the hydantoinase gene. The recombinant strains stably and constitutively produced the two enzymes and efficiently converted the corresponding hydantoins into p-hydroxyphenylglycine and phenylglycine. The order of the genes within the operon and the growth temperature of the strains turned out to be important for both enzyme and D-amino acid production. The configuration with the carbamylase gene preceding the hydantoinase gene was the most efficient one when the biomass was grown at 25 degrees C rather than 37 degrees C. This biomass produced D-amino acid twice as efficiently as the industrial strain of A. tumefaciens. The efficiency was found to be correlated with the level of carbamylase produced, indicating that the concentration of this enzyme is the rate-limiting factor in D-amino acid production under the conditions used on an industrial scale.
Collapse
Affiliation(s)
- Renata Grifantini
- Eniricerche SpA, Via F. Maritano26, 20097 San Donato Milanese, Milan, Italy
| | - Giuliano Galli
- Eniricerche SpA, Via F. Maritano26, 20097 San Donato Milanese, Milan, Italy
| | - Giovanna Carpani
- Eniricerche SpA, Via F. Maritano26, 20097 San Donato Milanese, Milan, Italy
| | - Claudio Pratesi
- Eniricerche SpA, Via F. Maritano26, 20097 San Donato Milanese, Milan, Italy
| | - Gianni Frascotti
- Eniricerche SpA, Via F. Maritano26, 20097 San Donato Milanese, Milan, Italy
| | - Guido Grandi
- Eniricerche SpA, Via F. Maritano26, 20097 San Donato Milanese, Milan, Italy
| |
Collapse
|
40
|
|
41
|
Ogawa J, Shimizu S. Diversity and versatility of microbial hydantoin-transforming enzymes. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1381-1177(96)00020-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Ogawa J, Soong CL, Honda M, Shimizu S. Imidase, a dihydropyrimidinase-like enzyme involved in the metabolism of cyclic imides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:322-7. [PMID: 9030755 DOI: 10.1111/j.1432-1033.1997.0322a.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Imidase, which preferably hydrolyzed cyclic imides to monoamidated dicarboxylates, was purified to homogeneity from a cell-free extract of Blastobacter sp. A17p-4. Cyclic imides are known to be hydrolyzed by mammalian dihydropyrimidinases. However, imidase was quite different from known dihydropyrimidinases in structure and substrate specificity. The enzyme has a relative molecular mass of 105 000 and consists of three identical subunits. The purified enzyme showed higher activity and affinity toward cyclic imides, such as succinimide (Km = 0.94 mM; Vmax = 910 micromol x min(-1) x mg(-1)), glutarimide (Km = 4.5 mM; Vmax = 1000 micromol min (-1) x mg (-1) and maleimide (Km = 0.34 mM; Vmax = 5800 micromol x min(-1)x mg(-1)), than toward cyclic ureides, which are the substrates of dihydropyrimidinases, such as dihydrouracil and hydantoin. Sulfur-containing cyclic imides, such as 2,4-thiazolidinedione and rhodanine, were also hydrolyzed. The enzyme catalyzed the reverse reaction, cyclization, but with much lower activity and affinity. The enzyme was non-competitively inhibited by succinate, which was found to be a key compound in cyclic-imide transformation in relation with the tricarboxylic acid cycle in this bacterium, suggesting that the role of imidase is to catalyze the initial step of cyclic-imide degradation.
Collapse
Affiliation(s)
- J Ogawa
- Department of Agricultural Chemistry, Kyoto University, Sakyo-ku, Japan
| | | | | | | |
Collapse
|
43
|
Garcia MJ, Azerad R. Production of ring-substituted D-phenylglycines by microbial or enzymatic hydrolysis/deracemisation of the corresponding DL-hydantoins. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0957-4166(96)00488-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Yamanaka H, Kawamoto T, Tanaka A. Efficient preparation of optically active p-trimethylsilylphenylalanine by using cell-free extract of Blastobacter sp. A17p-4. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)82051-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Shimizu S, Ogawa J, Kataoka M, Kobayashi M. Screening of novel microbial enzymes for the production of biologically and chemically useful compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1997; 58:45-87. [PMID: 9103911 DOI: 10.1007/bfb0103302] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Enzymes have been generally accepted as superior catalysts in organic synthesis. Micro-organisms in particular have been regarded as treasure sources of useful enzymes. The synthetic technology using microbial enzymes or micro-organisms themselves is called microbial transformation. In designing a microbial transformation process, one of the most important points is to find a suitable enzyme for the reaction of interest. Various kinds of novel enzymes for specific transformations have been discovered in micro-organisms and their potential characteristics revealed. This article reviews our current results on the discovery of novel enzymes for the production of biologically and chemically useful compounds, and emphasizes the importance of screening enzymes in a diverse microbial world.
Collapse
Affiliation(s)
- S Shimizu
- Department of Agricultural Chemistry, Kyoto University, Japan
| | | | | | | |
Collapse
|
46
|
n-carbamoyl-d-p-hydroxyphenylglycine production using immobilized d-hydantoinase from recombinant E. coli. Enzyme Microb Technol 1996. [DOI: 10.1016/s0141-0229(96)00078-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Buson A, Negro A, Grassato L, Tagliaro M, Basaglia M, Grandi C, Fontana A, Nuti MP. Identification, sequencing and mutagenesis of the gene for a D-carbamoylase from Agrobacterium radiobacter. FEMS Microbiol Lett 1996; 145:55-62. [PMID: 8931327 DOI: 10.1111/j.1574-6968.1996.tb08556.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A clone positive for D-carbamoylase activity (2.7 kb HindIII-BamHI DNA fragment) was obtained by screening a genomic library of Agrobacterium radiobacter in Escherichia coli. This DNA fragment contains an open reading frame of 912 bp which is predicted to encode a peptide of 304 amino acids with a calculated molecular mass of 34247 Da. The D-carbamoylase gene, named cauA, was placed under the control of T7 RNA-dependent promoter and expressed in E. coli BL21(DE3). After induction with isopropyl-thio-beta-D-galactopyranoside, the synthesis of D-carbamoylase in E. coli reached about 40% of the total protein. The expressed protein was shown to possess a molecular mass, on SDS-PAGE, of 36 kDa and showed an enhanced stability with respect to that of the wild-type enzyme derived from A. radiobacter. Site-directed mutagenesis experiments allowed us to establish that a Pro14-->Leu14 exchange leads to an inactive enzyme species, while a Cys279-->Ser279 exchange did not impair the functional properties of the enzyme.
Collapse
Affiliation(s)
- A Buson
- CRIBI Biotechnology Centre, University of Padua, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rapid and sensitive detection of D-hydantoinase producing microorganisms by using microtiter plate assay. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf00154677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Ogawa J, Soong CL, Honda M, Shimizu S. Novel Metabolic Transformation Pathway for Cyclic Imides in Blastobacter sp. Strain A17p-4. Appl Environ Microbiol 1996; 62:3814-7. [PMID: 16535426 PMCID: PMC1388964 DOI: 10.1128/aem.62.10.3814-3817.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolic transformation pathway for cyclic imides in microorganisms was studied in Blastobacter sp. strain A17p-4. This novel pathway involves, in turn, hydrolytic ring opening of a cyclic imide to yield a monoamidated dicarboxylate, hydrolytic deamidation of the monoamidated dicarboxylate to yield a dicarboxylate, and dicarboxylate transformation similar to that in the tricarboxylic acid cycle. The initial step is catalyzed by a novel enzyme, imidase. Imidase and subsequent enzymes involved in this metabolic pathway are induced by some cyclic imides, such as succinimide and glutarimide. Induced cells metabolize various cyclic imides.
Collapse
|
50
|
TANAKA ATSUO, YAMANAKA HAYATO, KAWAMOTO TAKUO. Enzymatic Preparation of Optically Active Silicon-containing Amino Acids. Ann N Y Acad Sci 1996. [DOI: 10.1111/j.1749-6632.1996.tb33288.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|