1
|
Pandarangga P, McAllister MM, Peaston AE, Ngai YT, Cahyono MI, Hemmatzadeh F. Performance comparison of homologous and heterologous Newcastle disease virus in vaccines and antibody tests. Res Vet Sci 2022; 149:82-89. [PMID: 35777283 DOI: 10.1016/j.rvsc.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
Antigenic differences between commercial Newcastle Disease Virus (NDV) vaccine and circulating field virus reduce vaccine efficacy. Fifty-layer chickens were divided into five groups: three vaccinated chicken groups using killed LaSota (Genotype II/GII), Mega, or VD (Genotype VII/GVII) viral strains, negative, and positive control groups. On day 28, Hemagglutination Inhibition (HI) serology of vaccinated chickens was performed using whole virus antigens of RIVS, LaSota, Mega, and VD strains. Sera were also tested with an alternative antigen, using an ELISA to detect antibody for the cleavage site F protein peptide from GII and GVII NDV strains. Vaccinated and unvaccinated positive control birds underwent infectious challenges using VD and Mega strains. HI testing showed that antibody titers were higher when tested using homologous antigens than heterologous antigens. ELISA performed with alternative antigens did not perform as well as the established HI test using homologous strains. Viral shedding was reduced by vaccination that was homologous to the infectious challenge in comparison with vaccination using the LaSota strain virus. We conclude that superior results are obtained when serological testing, vaccinations, and vaccine challenge experiments all use circulating strains of ND virus. Implementation of this recommendation would likely reduce viral shedding by vaccinated chickens and be more effective in preventing outbreaks of virulent NDV.
Collapse
Affiliation(s)
- Putri Pandarangga
- School of Animal and Veterinary Sciences, The University of Adelaide, 5371, South Australia, Australia; Departemen Klinik, Reproduksi, Patologi, dan Nutrisi, Fakultas Kedokteran dan Kedokteran Hewan, Universitas Nusa Cendana, Kupang, 85001, Indonesia.
| | - Milton M McAllister
- School of Animal and Veterinary Sciences, The University of Adelaide, 5371, South Australia, Australia
| | - Anne E Peaston
- School of Animal and Veterinary Sciences, The University of Adelaide, 5371, South Australia, Australia
| | - Yuen T Ngai
- The University of South Australia, 5001, South Australia, Australia
| | - Mohammad I Cahyono
- Indonesian Research Centre for Veterinary Science, West Java, 16114, Indonesia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, 5371, South Australia, Australia
| |
Collapse
|
2
|
Tsunekuni R, Tanikawa T, Nakaya T, Saito T. Improvement of a recombinant avian avulavirus serotype 10 vectored vaccine by the addition of untranslated regions. Vaccine 2019; 38:822-829. [PMID: 31718900 DOI: 10.1016/j.vaccine.2019.10.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND We have previously developed a recombinant avian avulavirus serotype 10 (rAAvV-10/HA) expressing the hemagglutinin (HA) gene of a highly pathogenic avian influenza virus (HPAIV) as an emergency vaccine for poultry. rAAvV-10/HA can overcome the activity of the anti-AAvV-1 (Newcastle disease virus) antibody acquired by commercial chickens upon routine vaccination. Most chickens do not have the anti-AAvV-10 antibody, which could interfere with the vaccine efficacy. However, the vaccine efficacy of rAAvV-10/HA is not satisfactory in chickens even though it affords protection against an HPAIV challenge. In the present study, we improved the rAAvV-10/HA vaccine by enhancing the expression of the exogenous HA protein. METHODS The 5' and 3' untranslated regions (UTR) of each AAvV-10 gene were flanked with the exogenous HA gene cassette to modify rAAvV-10/HA, yielding different rAAv10-UTRs. As a control, rAAv10-nonUTR that did not contain any UTRs was generated. The effects of UTRs on mRNA transcription, HA protein expression, and vaccine efficacy were then examined using embryonated chicken eggs and white leghorn chickens. RESULTS The proportion of the HA gene mRNA among the vector-derived mRNAs (1.55-1.84-fold increase vs. the control) and HA protein levels (148-1151-fold increase vs. the control) in cells infected with rAAv10-UTRs were higher than in those infected with rAAv10-nonUTR. In vivo, vaccination of chickens with rAAv10-UTRs resulted in 100% protection against an HPAIV challenge. No chickens vaccinated with rAAv10-NP-UTR, rAAv10-F-UTR, or rAAv10-HN-UTR shed the virus in the throat and cloaca swabs. By contrast, rAAv10-nonUTR vaccination offered 70% protection, with 50% of chickens shedding the virus in the cloaca or throat swabs after the challenge. We conclude that the AAvV-10 UTRs can enhance the expression of the exogenous HA gene, resulting in improved efficacy of the rAAvV-10/HA vector vaccine. This improvement aids in the protection of flocks worldwide from the highly pathogenic avian influenza.
Collapse
Affiliation(s)
- Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan.
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan.
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan; United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1193, Japan.
| |
Collapse
|
3
|
Chimeric Newcastle disease virus-vectored vaccine protects chickens against H9N2 avian influenza virus in the presence of pre-existing NDV immunity. Arch Virol 2018; 163:3365-3371. [PMID: 30187143 DOI: 10.1007/s00705-018-4016-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/02/2018] [Indexed: 01/01/2023]
Abstract
A chimeric Newcastle disease virus (NDV) vector (NDV/AI4-TFHN) was constructed with the replacement of the ectodomains of the fusion and hemagglutinin-neuraminidase proteins by those from avian paramyxovirus type 2. The chimeric virus induced high antibody response in chickens pre-immunized with NDV. A recombinant vaccine candidate, NDV/AI4-TFHN-H9, expressing the hemagglutinin of H9N2 avian influenza virus, was generated, on the basis of the chimeric NDV vector mentioned above. The NDV/AI4-TFHN-H9 vaccine elicited H9-specific hemagglutination inhibition antibodies in chickens pre-immunized with NDV vaccine, and reduced the numbers of chickens shedding virus after H9N2 challenge. NDV/AI4-TFHN-H9 could serve as an alternative vaccine for the prevention of H9N2 infection in commercial poultry flocks.
Collapse
|
4
|
Shahar E, Haddas R, Goldenberg D, Lublin A, Bloch I, Bachner Hinenzon N, Pitcovski J. Newcastle disease virus: is an updated attenuated vaccine needed? Avian Pathol 2018; 47:467-478. [PMID: 29897786 DOI: 10.1080/03079457.2018.1488240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Newcastle disease virus (NDV) is a major cause of infectious mortality and morbidity in poultry worldwide. It is an enveloped virus with two outer-membrane proteins-haemagglutinin-neuraminidase (HN) and fusion protein (F)-that induce neutralizing antibodies. All NDV strains belong to one serotype. Yet, NDV vaccines, derived from genotype II, do not fully prevent infection or shedding of viruses from other genotypes. The aim of this study was to test if an updated vaccine is required. For this purpose, NDVs isolated from infected, albeit heavily vaccinated, flocks were genetically and immunologically characterized. Amino acid differences in F and HN protein sequences were identified between the vaccine strain and each of the isolates, some specifically at the neutralization sites. Whereas all tested isolates showed similar haemagglutination-inhibition (HI) titres, 100-100,000 times higher antibody-to-virus ratios were needed to neutralize viral propagation in embryos by the field isolates versus the vaccine strain. As a result, a model and an equation were developed to explain the phenomenon of escape in one-serotype viruses and to calculate the HI values needed for protection, depending on variation rate at key positions. In conclusion, to confer full protection against NDVs that differ from the vaccine strain at the neutralizing epitopes, very high levels of antibodies should be raised and maintained to compensate for the reduction in the number of effective epitopes; alternatively, an adjusted attenuated vaccine should be developed-a task made possible in the current era of reverse vaccinology.
Collapse
Affiliation(s)
- Ehud Shahar
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel
| | - Ruth Haddas
- b Division of Avian Diseases , Kimron Veterinary Institute , Bet-Dagan , Israel
| | - Dana Goldenberg
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel
| | - Avishai Lublin
- b Division of Avian Diseases , Kimron Veterinary Institute , Bet-Dagan , Israel
| | - Itai Bloch
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel
| | | | - Jacob Pitcovski
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel.,c Department of Biotechnology , Tel-Hai Academic College , Kiryat Shmona , Israel
| |
Collapse
|
5
|
Ewies SS, Ali A, Tamam SM, Madbouly HM. Molecular characterization of Newcastle disease virus (genotype VII) from broiler chickens in Egypt. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2017. [DOI: 10.1016/j.bjbas.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
6
|
Abstract
Over the past two decades, enormous advances have occurred in the structural and biological characterization of Newcastle disease virus (NDV). As a result, not only the complete sequence of the viral genome has been fully determined, but also a clearer understanding of the viral proteins and their respective roles in the life cycle has been achieved. This article reviews the progress in the molecular biology of NDV with emphasis on the new technologies. It also identifies the fundamental problems that need to be addressed and attempts to predict some research opportunities in NDV that can be realized in the near future for the diagnosis, prevention and treatment of disease(s).
Collapse
|
7
|
Maas RA, Oei HL, Kemper S, Koch G, Visser L. The use of homologous virus in the haemagglutination‐inhibition assay after vaccination with Newcastle disease virus strain La Sota or Clone30 leads to an over estimation of protective serum antibody titres. Avian Pathol 2007; 27:625-31. [DOI: 10.1080/03079459808419394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Yusoff K, Tan WS, Lau CH, Ng BK, Ibrahim AL. Sequence of the haemagglutinin‐neuraminidase gene of the Newcastle disease virus oral vaccine strain V4(UPM). Avian Pathol 2007; 25:837-44. [DOI: 10.1080/03079459608419185] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Huang Z, Panda A, Elankumaran S, Govindarajan D, Rockemann DD, Samal SK. The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence. J Virol 2004; 78:4176-84. [PMID: 15047833 PMCID: PMC374304 DOI: 10.1128/jvi.78.8.4176-4184.2004] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) plays a crucial role in the process of infection. However, the exact contribution of the HN gene to NDV pathogenesis is not known. In this study, the role of the HN gene in NDV virulence was examined. By use of reverse genetics procedures, the HN genes of a virulent recombinant NDV strain, rBeaudette C (rBC), and an avirulent recombinant NDV strain, rLaSota, were exchanged. The hemadsorption and neuraminidase activities of the chimeric viruses showed significant differences from those of their parental strains, but heterotypic F and HN pairs were equally effective in fusion promotion. The tissue tropism of the viruses was shown to be dependent on the origin of the HN protein. The chimeric virus with the HN protein derived from the virulent virus exhibited a tissue predilection similar to that of the virulent virus, and vice versa. The chimeric viruses with reciprocal HN proteins either gained or lost virulence, as determined by a standard intracerebral pathogenicity index test of chickens and by the mean death time in chicken embryos (a measure devised to classify these viruses), indicating that virulence is a function of the amino acid differences in the HN protein. These results are consistent with the hypothesis that the virulence of NDV is multigenic and that the cleavability of F protein alone does not determine the virulence of a strain.
Collapse
Affiliation(s)
- Zhuhui Huang
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | |
Collapse
|
10
|
Zaitsev V, von Itzstein M, Groves D, Kiefel M, Takimoto T, Portner A, Taylor G. Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion. J Virol 2004; 78:3733-41. [PMID: 15016893 PMCID: PMC371092 DOI: 10.1128/jvi.78.7.3733-3741.2004] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxoviruses are the leading cause of respiratory disease in children. Several paramyxoviruses possess a surface glycoprotein, the hemagglutinin-neuraminidase (HN), that is involved in attachment to sialic acid receptors, promotion of fusion, and removal of sialic acid from infected cells and progeny virions. Previously we showed that Newcastle disease virus (NDV) HN contained a pliable sialic acid recognition site that could take two states, a binding state and a catalytic state. Here we present evidence for a second sialic acid binding site at the dimer interface of HN and present a model for its involvement in cell fusion. Three different crystal forms of NDV HN now reveal identical tetrameric arrangements of HN monomers, perhaps indicative of the tetramer association found on the viral surface.
Collapse
Affiliation(s)
- Viatcheslav Zaitsev
- Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Enveloped viruses encode membrane-associated glycoproteins that direct the initial stages of virus infection. These usually oligomeric structures bind virions to cell surface receptors and, subsequently, direct fusion of viral membranes with cellular membranes. These structures are also the primary targets of neutralizing antibody as well as potential targets for antiviral agents. In several systems, solving the structure of a virus surface glycoprotein has been enormously valuable to our understanding of virus entry and the mechanisms of entry inhibition. The recent report of the structure of a paramyxovirus attachment protein should clarify the mechanism of cell entry by these viruses.
Collapse
Affiliation(s)
- T G Morrison
- Dept of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
12
|
Iorio RM, Field GM, Sauvron JM, Mirza AM, Deng R, Mahon PJ, Langedijk JP. Structural and functional relationship between the receptor recognition and neuraminidase activities of the Newcastle disease virus hemagglutinin-neuraminidase protein: receptor recognition is dependent on neuraminidase activity. J Virol 2001; 75:1918-27. [PMID: 11160691 PMCID: PMC115138 DOI: 10.1128/jvi.75.4.1918-1927.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terminal globular domain of the paramyxovirus hemagglutinin-neuraminidase (HN) glycoprotein spike has a number of conserved residues that are predicted to form its neuraminidase (NA) active site, by analogy to the influenza virus neuraminidase protein. We have performed a site-directed mutational analysis of the role of these residues in the functional activity of the Newcastle disease virus (NDV) HN protein. Substitutions for several of these residues result in a protein lacking both detectable NA and receptor recognition activity. Contribution of NA activity, either exogenously or by coexpression with another HN protein, partially rescues the receptor recognition activity of these proteins, indicating that the receptor recognition deficiencies of the mutated HN proteins result from their lack of detectable NA activity. In addition to providing support for the homology-based predictions for the structure of HN, these findings argue that (i) the HN residues that mediate its NA activity are not critical to its attachment function and (ii) NA activity is required for the protein to mediate binding to receptors.
Collapse
Affiliation(s)
- R M Iorio
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ong HKA, Ali AM, Omar AR, Yusoff K. Cloning and expression of the HN gene from the velogenic viscerotropic Newcastle disease virus strain AF2240 in Sf9 insect cells. Cytotechnology 2000; 32:243-51. [PMID: 19002985 PMCID: PMC3449894 DOI: 10.1023/a:1008136326756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The haemagglutinin-neuraminidase (HN) gene ofNewcastle disease virus (NDV) strain AF2240, amplifiedfrom the viral genomic RNA ( approximately 1.8 kb) was directionallycloned and inserted into a baculovirus expressionvector system. The recombinant glycoprotein expressedin Spodoptera frugiperda (Sf9) cellsshowed haemagglutinin (HA), neuraminidase (NA) andhemadsorption activities. HA activity was detected inboth extra- and intra-cellular recombinant HN(recHNAF2240) samples. In addition, both HA andhemadsorption activities were inhibited by polyclonalanti-NDV sera. Furthermore, significant expression ofthe recombinant protein was observed on the surface ofinfected cells. SDS-PAGE analysis revealed thepresence of visually distinguishable bands between the70 and 80 kDa in size that were absent in thewild-type samples. Western blot analysis showed thatthe distinct approximately 63 kDa band and a approximately 75 kDa bandcorresponded to the unglycosylated and glycosylated HNglycoprotein respectively as reported in anotherstudy. These observations indicated that the HNrecombinant protein was not only expressed on thesurface of the infected cells as well as with theviral coat protein, but also appears to be functional.
Collapse
Affiliation(s)
- H. K. A. Ong
- Department of Biochemistry and Microbiology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| | - A. M. Ali
- Department of Biotechnology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| | - A. R. Omar
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| | - K. Yusoff
- Department of Biochemistry and Microbiology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Panshin A, Shihmanter E, Weisman Y, Orvell C, Lipkind M. Comparative characteristics of the Israeli Newcastle disease virus field strains by means of a wide panel of monoclonal antibodies against hemagglutinin-neuraminidase glycoprotein. Comp Immunol Microbiol Infect Dis 1999; 22:103-24. [PMID: 10051181 DOI: 10.1016/s0147-9571(98)00025-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Fourteen mouse monoclonal antibodies (MAB) were tested for their ability to react with 15 reference and 52 local Newcastle disease virus (NDV) strains isolated in Israel during the last decade from feral birds. All the field isolates had no antigenic difference when examined by classic serological tests. However, MAB-mediated analysis revealed wide antigenic heterogeneity amongst the studied viruses. By the pattern of the MAB reactivity, all the isolates could be distributed into 13 groups.
Collapse
Affiliation(s)
- A Panshin
- Division of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, Israel
| | | | | | | | | |
Collapse
|
15
|
Tan WS, Lau CH, Ng BK, Ibrahim AL, Yusoff K. Nucleotide sequence of the haemagglutinin-neuraminidase (HN) gene of a Malaysian heat resistant viscerotropic-velogenic Newcastle disease virus (NDV) strain AF2240. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1995; 6:47-50. [PMID: 8746461 DOI: 10.3109/10425179509074699] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The nucleotide sequence of the haemagglutinin-neuraminidase (HN) gene of Newcastle disease virus (NDV) viscerotropic-velogenic strain AF2240 was determined by direct RNA sequencing and by sequencing RT-PCR products. It encodes a single open reading frame of 581 amino acids with a calculated Mr of 63.8 kDa. The predicted sequence contains five asparagine glycosylation sites. Comparison of the AF2240 HN protein sequence with 13 other previously published sequences showed 88% homology. This HN protein is unique because it lacked the Arg 403 residue which is present in all of the other strains and cannot be grouped under the proposed three size classes of HN proteins in NDV.
Collapse
Affiliation(s)
- W S Tan
- Department of Biochemistry and Microbiology,Universiti Pertanian Malay sia, Selangor
| | | | | | | | | |
Collapse
|
16
|
Mirza A, Sheehan J, Hardy L, Glickman R, Iorio R. Structure and function of a membrane anchor-less form of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36941-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Iorio RM, Syddall RJ, Sheehan JP, Bratt MA, Glickman RL, Riel AM. Neutralization map of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus: domains recognized by monoclonal antibodies that prevent receptor recognition. J Virol 1991; 65:4999-5006. [PMID: 1651419 PMCID: PMC248963 DOI: 10.1128/jvi.65.9.4999-5006.1991] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Monoclonal antibodies (MAbs) to the hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus delineate seven overlapping antigenic sites which form a continuum on the surface of the molecule. Antibodies to five of these sites neutralize viral infectivity principally by preventing attachment of the virion to cellular receptors. Through the identification of single amino acid substitutions in variants which escape neutralization by MAbs to these five antigenic sites, a neutralization map of HN was constructed, identifying several residues that contribute to the epitopes recognized by MAbs which block the attachment function of the molecule. These epitopes are defined, at least in part, by three domains on HN: residues 193 to 201; 345 to 353 (which include the only linear epitope we have identified in HN); and a C-terminal domain composed of residues 494, 513 to 521, and 569. To identify HN residues directly involved in receptor recognition, each of the variants was tested for its ability to agglutinate periodate-modified chicken erythrocytes. One variant with a single amino acid substitution at residue 193 was 2.5- to 3-fold more resistant to periodate treatment of erythrocytes than the wild-type virus, suggesting that this residue influences the binding of virus to a sialic acid-containing receptor(s) on the cell surface.
Collapse
Affiliation(s)
- R M Iorio
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | |
Collapse
|
18
|
Hughes J, Yusoff K, Hardy R, McCartney H, Emmerson PT, Samson AC. Sequence analysis of temperature sensitive and "neuraminidase-tolerant" mutants of Newcastle disease virus (strain Beaudette C). Arch Virol 1991; 119:141-6. [PMID: 1863220 DOI: 10.1007/bf01314330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J Hughes
- Department of Biochemistry and Genetics, University of Newcastle upon Tyne, Medical School, U.K
| | | | | | | | | | | |
Collapse
|
19
|
Gorman WL, Takahashi T, Scroggs RA, Portner A. Identification of amino acid positions associated with neuraminidase activity of the hemagglutinin-neuraminidase glycoprotein of Sendai virus. Virology 1991; 180:803-8. [PMID: 1846501 DOI: 10.1016/0042-6822(91)90095-s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Identification of amino acid positions associated with neuraminidase activity on the hemagglutinin-neuraminidase (HN) glycoprotein of paramyxoviruses has been difficult because neuraminidase-inhibiting antibodies are not neutralizing and thus, escape mutants have not been isolated. Instead, many investigators have correlated an altered neuraminidase (NA) activity of natural virus variants, such as plaque-size variants, with sequence changes in the HN protein. To identify regions on the HN glycoprotein of Sendai virus (SV) that are associated with NA activity, we investigated NA activity of three plaque-size variants which potentially differed from the standard SV (SV/std). NA activity was measured by the ability of virus to elute from chicken erythrocytes as a result of cleaving sialic acid receptors, and by the ability of virus to cleave sialic acid from the small trisaccharide neuraminlactose and the larger substrate fetuin in an in vitro assay. Virions purified from each of the isolated plaques had a HN content and hemagglutinating activity similar to that of SV/std, yet each variant eluted much more rapidly from chicken erythrocytes than SV/std. In vitro NA activity of the plaque-size variants was 1.6 to 3.8 times greater than that of SV/std, providing supporting evidence for the elution data. Although all plaque-size variants showed elevated NA activity, there was no correlation of activity with plaque size. Sequence analysis showed that one of the variants had an amino acid change from glutamic acid to valine at position 165 and from lysine to glutamic acid at position 461, while a second variant had only the change at position 461. A third variant had a nearby change at position 468, from threonine to lysine. Taken together, these data support the conclusion that the amino acid residues at positions 461-468 and 165 are involved in neuraminidase activity of SV.
Collapse
Affiliation(s)
- W L Gorman
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | | | |
Collapse
|
20
|
Iorio RM, Syddall RJ, Glickman RL, Riel AM, Sheehan JP, Bratt MA. Identification of amino acid residues important to the neuraminidase activity of the HN glycoprotein of Newcastle disease virus. Virology 1989; 173:196-204. [PMID: 2479168 DOI: 10.1016/0042-6822(89)90235-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies (MAbs) to three overlapping antigenic sites (designated 12, 2, and 23) on the hemagglutinin-neuraminidase glycoprotein (HN) of Newcastle disease virus (NDV) were previously shown to inhibit neuraminidase activity (NA) on neuraminlactose (R. M. Iorio and M. A. Bratt, 1984a, J. Immunol. 133, 2215-2219; R. M. Iorio et al., 1989, Virus Res. 13, 245-262). However, a competitive inhibitor of NA blocks the binding of only MAbs to site 23, suggesting that the domain they recognize may be closely related to the NA site. Antigenic variants selected with site 23 MAbs have single amino acid substitutions at HN residues 192, 193, or 200. Virions of variants, which have a substitution at residue 193 or 200, have alterations in NA which are not attributable to a commensurate change in HN content. A revertant of a temperature-sensitive mutant, which has markedly diminished NA relative to the wild type, has an amino acid substitution at residue 175. A second step revertant having partially restored NA has an additional substitution at residue 192 identical to that in one of the site 23 variants, which, in turn, also makes the revertant resistant to neutralization by site 23 MAbs. Thus, an amino acid substitution at residue 175, 193, or 200 of the HN of NDV can have marked effects on the NA of the protein. The amino acids in the region around residue 175 are highly conserved between the HNs of NDV and other paramyxoviruses, suggesting that this domain is important to the integrity of the NA site in this group of viruses.
Collapse
Affiliation(s)
- R M Iorio
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | |
Collapse
|
21
|
Iorio RM, Glickman RL, Riel AM, Sheehan JP, Bratt MA. Functional and neutralization profile of seven overlapping antigenic sites on the HN glycoprotein of Newcastle disease virus: monoclonal antibodies to some sites prevent viral attachment. Virus Res 1989; 13:245-61. [PMID: 2475989 DOI: 10.1016/0168-1702(89)90019-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously identified five antigenic sites on the hemagglutinin-neuraminidase (HN) glycoprotein of the Australia-Victoria isolate of Newcastle disease virus (Iorio and Bratt, J. Virol. 48, 440-450; Iorio et al., J. Gen. Virol. 67, 1393-1403). Two additional sites (designated 12 and 23) are now described, bringing to a total of seven the number of antigenic sites defined by our panel of neutralizing anti-HN antibodies. Competition antibody binding and additive neutralization assays reveal that each of these newly-identified sites overlaps two previously-defined ones. The seven HN antigenic sites thus form a continuum in the three-dimensional conformation of the molecule. Studies on the inhibition of hemagglutination (HA), neuraminidase (NA) and the attachment of virus to chick cell monolayers have been used to construct a functional profile of each antigenic site. Monoclonal antibodies (mAbs) to three overlapping sites (12, 2 and 23) inhibit HA and NA and prevent viral attachment to chick cell monolayers. These findings are consistent with the domains recognized by these mAbs being close to the NA and receptor-binding sites. MAbs to two other overlapping sites, 14 and 1 (which in turn, overlap site 12), inhibit HA quite effectively, and attachment to a lesser extent. Sites 14 and 1 probably identify a second domain involved in receptor recognition. MAbs to the two remaining sites (3 and 4), though neutralizing, are negative in all three assays, thus recognizing domains not involved in HA or NA or attachment to chick cells.
Collapse
Affiliation(s)
- R M Iorio
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01605
| | | | | | | | | |
Collapse
|