1
|
Lee AR, Hwang J, Hur JH, Ryu KS, Kim KK, Choi BS, Kim NK, Lee JH. NMR Dynamics Study Reveals the Zα Domain of Human ADAR1 Associates with and Dissociates from Z-RNA More Slowly than Z-DNA. ACS Chem Biol 2019; 14:245-255. [PMID: 30592616 DOI: 10.1021/acschembio.8b00914] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human RNA editing enzyme ADAR1 deaminates adenosine in pre-mRNA to yield inosine. The Zα domain of human ADAR1 (hZαADAR1) binds specifically to left-handed Z-RNA as well as Z-DNA and stabilizes the Z-conformation. To answer the question of how hZαADAR1 can induce both the B-Z transition of DNA and the A-Z transition of RNA, we investigated the structure and dynamics of hZαADAR1 in complex with 6-base-pair Z-DNA or Z-RNA. We performed chemical shift perturbation and relaxation dispersion experiments on hZαADAR1 upon binding to Z-DNA as well as Z-RNA. Our study demonstrates the unique dynamics of hZαADAR1 during the A-Z transition of RNA, in which the hZαADAR1 protein forms a thermodynamically stable complex with Z-RNA, similar to Z-DNA, but kinetically converts RNA to the Z-form more slowly than DNA. We also discovered some distinct structural features of hZαADAR1 in the Z-RNA binding conformation. Our results suggest that the A-Z transition of RNA facilitated by hZαADAR1 displays unique structural and dynamic features that may be involved in targeting ADAR1 for a role in recognition of RNA substrates.
Collapse
Affiliation(s)
- Ae-Ree Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, South Korea
| | - Jihyun Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jeong Hwan Hur
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Gyeonggi 16419, South Korea
| | - Kyoung-Seok Ryu
- Protein Structure Research Team, Korea Basic Science Institute, Chungbuk 28119, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Gyeonggi 16419, South Korea
| | - Byong-Seok Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, South Korea
| |
Collapse
|
2
|
Biswas N, Wang T, Ding M, Tumne A, Chen Y, Wang Q, Gupta P. ADAR1 is a novel multi targeted anti-HIV-1 cellular protein. Virology 2011; 422:265-77. [PMID: 22104209 DOI: 10.1016/j.virol.2011.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/29/2011] [Accepted: 10/16/2011] [Indexed: 11/29/2022]
Abstract
We examined the antiviral activity of ADAR1 against HIV-1. Our results indicated that ADAR1 in a transfection system inhibited production of viral proteins and infectious HIV-1 in various cell lines including 293T, HeLa, Jurkat T and primary CD4+ T cells, and was active against a number of X4 and R5 HIV-1 of different clades. Further analysis showed that ADAR1 inhibited viral protein synthesis without any effect on viral RNA synthesis. Mutational analysis showed that ADAR1 introduced most of the A-to-G mutations in the rev RNA, in the region of RNA encoding for Rev Response Element (RRE) binding domain and in env RNA. These mutations inhibited the binding of rev to the RRE and inhibited transport of primary transcripts like gag, pol and env from nucleus to cytoplasm resulting in inhibition of viral protein synthesis without any effect on viral RNA synthesis. Furthermore, ADAR1 induced mutations in the env gene inhibited viral infectivity.
Collapse
Affiliation(s)
- Nabanita Biswas
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Samuel CE. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 2011; 411:180-93. [PMID: 21211811 DOI: 10.1016/j.virol.2010.12.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 12/18/2022]
Abstract
A-to-I RNA editing, the deamination of adenosine (A) to inosine (I) that occurs in regions of RNA with double-stranded character, is catalyzed by a family of Adenosine Deaminases Acting on RNA (ADARs). In mammals there are three ADAR genes. Two encode proteins that possess demonstrated deaminase activity: ADAR1, which is interferon-inducible, and ADAR2 which is constitutively expressed. ADAR3, by contrast, has not yet been shown to be an active enzyme. The specificity of the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, dependent on the duplex structure of the substrate RNA. A-to-I editing is a form of nucleotide substitution editing, because I is decoded as guanosine (G) instead of A by ribosomes during translation and by polymerases during RNA-dependent RNA replication. Additionally, A-to-I editing can alter RNA structure stability as I:U mismatches are less stable than A:U base pairs. Both viral and cellular RNAs are edited by ADARs. A-to-I editing is of broad physiologic significance. Among the outcomes of A-to-I editing are biochemical changes that affect how viruses interact with their hosts, changes that can lead to either enhanced or reduced virus growth and persistence depending upon the specific virus.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
4
|
Barraud P, Allain FHT. ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol 2011; 353:35-60. [PMID: 21728134 DOI: 10.1007/82_2011_145] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adenosine deaminases acting on RNA (ADAR) catalyze adenosine to inosine editing within double-stranded RNA (dsRNA) substrates. Inosine is read as a guanine by most cellular processes and therefore these changes create codons for a different amino acid, stop codons or even a new splice-site allowing protein diversity generated from a single gene. We review here the current structural and molecular knowledge on RNA editing by the ADAR family of protein. We focus especially on two types of nucleic acid binding domains present in ADARs, namely the dsRNA and Z-DNA binding domains.
Collapse
Affiliation(s)
- Pierre Barraud
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zürich, Switzerland
| | | |
Collapse
|
5
|
Placido D, Brown BA, Lowenhaupt K, Rich A, Athanasiadis A. A left-handed RNA double helix bound by the Z alpha domain of the RNA-editing enzyme ADAR1. Structure 2007; 15:395-404. [PMID: 17437712 PMCID: PMC2082211 DOI: 10.1016/j.str.2007.03.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/27/2007] [Accepted: 03/02/2007] [Indexed: 11/26/2022]
Abstract
The A form RNA double helix can be transformed to a left-handed helix, called Z-RNA. Currently, little is known about the detailed structural features of Z-RNA or its involvement in cellular processes. The discovery that certain interferon-response proteins have domains that can stabilize Z-RNA as well as Z-DNA opens the way for the study of Z-RNA. Here, we present the 2.25 A crystal structure of the Zalpha domain of the RNA-editing enzyme ADAR1 (double-stranded RNA adenosine deaminase) complexed to a dUr(CG)(3) duplex RNA. The Z-RNA helix is associated with a unique solvent pattern that distinguishes it from the otherwise similar conformation of Z-DNA. Based on the structure, we propose a model suggesting how differences in solvation lead to two types of Z-RNA structures. The interaction of Zalpha with Z-RNA demonstrates how the interferon-induced isoform of ADAR1 could be targeted toward selected dsRNAs containing purine-pyrimidine repeats, possibly of viral origin.
Collapse
Affiliation(s)
| | | | | | - Alexander Rich
- *Corresponding Authors: AA e-mail , Tel. ++617-2534704, Fax ++617-2538699, AR Tel. ++617-2534715, Fax ++617-2538699
| | - Alekos Athanasiadis
- *Corresponding Authors: AA e-mail , Tel. ++617-2534704, Fax ++617-2538699, AR Tel. ++617-2534715, Fax ++617-2538699
| |
Collapse
|
6
|
Abstract
ADARs are RNA editing enzymes that target double-stranded regions of nuclear-encoded RNA and viral RNA. These enzymes are particularly abundant in the nervous system, where they diversify the information encoded in the genome, for example, by altering codons in mRNAs. The functions of ADARs in known substrates suggest that the enzymes serve to fine-tune and optimize many biological pathways, in ways that we are only starting to imagine. ADARs are also interesting in regard to the remarkable double-stranded structures of their substrates and how enzyme specificity is achieved with little regard to sequence. This review summarizes ongoing investigations of the enzyme family and their substrates, focusing on biological function as well as biochemical mechanism.
Collapse
Affiliation(s)
- Brenda L Bass
- Department of Biochemistry and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
7
|
Goodbourn S, Didcock L, Randall RE. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 2000; 81:2341-2364. [PMID: 10993923 DOI: 10.1099/0022-1317-81-10-2341] [Citation(s) in RCA: 723] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- S Goodbourn
- Department of Biochemistry and Immunology, St George's Hospital Medical School, University of London, London SW17 0RE, UK1
| | - L Didcock
- Biomolecular Sciences Building, North Haugh, University of St Andrews, Fife KY16 9TS, UK2
| | - R E Randall
- Biomolecular Sciences Building, North Haugh, University of St Andrews, Fife KY16 9TS, UK2
| |
Collapse
|
8
|
Schneider-Schaulies S, ter Meulen V. Pathogenic aspects of measles virus infections. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1999; 15:139-58. [PMID: 10470275 DOI: 10.1007/978-3-7091-6425-9_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Measles virus (MV) infections normally cause an acute self limiting disease which is resumed by a virus-specific immune response and leads to the establishment of a lifelong immunity. Complications associated with acute measles can, on rare occasions, involve the central nervous system (CNS). These are postinfectious measles encephalitis which develops soon after infection, and, months to years after the acute disease, measles inclusion body encephalitis (MIBE) and subacute sclerosing panencephalitis (SSPE) which are based on a persistent MV infection of brain cells. Before the advent of HIV, SSPE was the best studied slow viral infection of the CNS, and particular restrictions of MV gene expression as well as MV interactions with neural cells have revealed important insights into the pathogenesis of persistent viral CNS infections. MV CNS complication do, however, not large contribute to the high rate of mortality seen in association with acute measles worldwide. The latter is due to a virus-induced suppression of immune functions which favors the establishment of opportunistic infections. Mechanisms underlying MV-mediated immunosuppression are not well understood. Recent studies have indicated that MV-induced disruption of immune functions may be multifactorial including the interference with cytokine synthesis, the induction of soluble inhibitory factors or apoptosis and negative signalling to T cells by the viral glycoproteins expressed on the surface of infected cells, particularly dendritic cells.
Collapse
|
9
|
Grosjean H, Szweykowska-Kulinska Z, Motorin Y, Fasiolo F, Simos G. Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie 1997; 79:293-302. [PMID: 9258438 DOI: 10.1016/s0300-9084(97)83517-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In eukaryotic cells, especially in yeast, several genes encoding tRNAs contain introns. These are removed from pre-tRNAs during the maturation process by a tRNA-specific splicing machinery that is located within the nucleus at the nuclear envelope. Before and after the intron removal, several nucleoside modifications are added in a stepwise manner, but most of them are introduced prior to intron removal. Some of these early nucleoside modifications are catalyzed by intron-dependent enzymes while most of the others are catalyzed in an intron-independent manner. In the present paper, we review all known cases where the nucleoside modifications were shown to depend strictly on the presence of an intron. These are pseudouridines at anticodon positions 34, 35 and 36 and 5-methylcytosine at position 34 of several eukaryotic tRNAs. One common property of the corresponding intron-dependent modifying enzymes is that their activities are essentially dependent on the local specific architecture of the pre-tRNA molecule that comprises the anticodon stem and loop prolonged by the intron domain. Thus introns clearly serve as internal (cis-type) RNAs that guide nucleoside modifications by providing transient target sites in tRNA for selected nuclear modifying enzymes. This situation may be similar to the recently discovered (trans-type) snoRNA-guided process of ribose methylations of ribosomal RNAs within the nucleolus of eukaryotic cells.
Collapse
Affiliation(s)
- H Grosjean
- CNRS, Laboratoire d'Enzymologie et de Biochimie Structurales, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
10
|
Grosjean H, Auxilien S, Constantinesco F, Simon C, Corda Y, Becker HF, Foiret D, Morin A, Jin YX, Fournier M, Fourrey JL. Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review. Biochimie 1996; 78:488-501. [PMID: 8915538 DOI: 10.1016/0300-9084(96)84755-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inosine (6-deaminated adenosine) is a characteristic modified nucleoside that is found at the first anticodon position (position 34) of several tRNAs of eukaryotic and eubacterial origins, while N1-methylinosine is found exclusively at position 37 (3' adjacent to the anticodon) of eukaryotic tRNA(Ala) and at position 57 (in the middle of the psi loop) of several tRNAs from halophilic and thermophilic archaebacteria. Inosine has also been recently found in double-stranded RNA, mRNA and viral RNAs. As for all other modified nucleosides in RNAs, formation of inosine and inosine derivative in these RNA is catalysed by specific enzymes acting after transcription of the RNA genes. Using recombinant tRNAs and T7-runoff transcripts of several tRNA genes as substrates, we have studied the mechanism and specificity of tRNA-inosine-forming enzymes. The results show that inosine-34 and inosine-37 in tRNAs are both synthesised by a hydrolytic deamination-type reaction, catalysed by distinct tRNA:adenosine deaminases. Recognition of tRNA substrates by the deaminases does not strictly depend on a particular "identity' nucleotide. However, the efficiency of adenosine to inosine conversion depends on the nucleotides composition of the anticodon loop and the proximal stem as well as on 3D-architecture of the tRNA. In eukaryotic tRNA(Ala), N1-methylinosine-37 is formed from inosine-37 by a specific SAM-dependent methylase, while in the case of N1-methylinosine-57 in archaeal tRNAs, methylation of adenosine-57 into N1-methyladenosine-57 occurs before the deamination process. The T psi-branch of fragmented tRNA is the minimalist substrate for the N1-methylinosine-57 forming enzymes. Inosine-34 and N1-methylinosine-37 in human tRNA(Ala) are targets for specific autoantibodies which are present in the serum of patients with inflammatory muscle disease of the PL-12 polymyositis type. Here we discuss the mechanism, specificity and general properties of the recently discovered RNA:adenosine deaminases/editases acting on double-stranded RNA, intron-containing mRNA and viral RNA in relation to those of the deaminases acting on tRNAs.
Collapse
Affiliation(s)
- H Grosjean
- CNRS, Laboratoire d'Enzymologie et de Biochimie Structurales, Gif-sur-Yvétte, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|