1
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
2
|
Immunodominant "asymptomatic" herpes simplex virus 1 and 2 protein antigens identified by probing whole-ORFome microarrays with serum antibodies from seropositive asymptomatic versus symptomatic individuals. J Virol 2012; 86:4358-69. [PMID: 22318137 DOI: 10.1128/jvi.07107-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) and HSV-2 are medically significant pathogens. The development of an effective HSV vaccine remains a global public health priority. HSV-1 and HSV-2 immunodominant "asymptomatic" antigens (ID-A-Ags), which are strongly recognized by B and T cells from seropositive healthy asymptomatic individuals, may be critical to be included in an effective immunotherapeutic HSV vaccine. In contrast, immunodominant "symptomatic" antigens (ID-S-Ags) may exacerbate herpetic disease and therefore must be excluded from any HSV vaccine. In the present study, proteome microarrays of 88 HSV-1 and 84 HSV-2 open reading frames(ORFs) (ORFomes) were constructed and probed with sera from 32 HSV-1-, 6 HSV-2-, and 5 HSV-1/HSV-2-seropositive individuals and 47 seronegative healthy individuals (negative controls). The proteins detected in both HSV-1 and HSV-2 proteome microarrays were further classified according to their recognition by sera from HSV-seropositive clinically defined symptomatic (n = 10) and asymptomatic (n = 10) individuals. We found that (i) serum antibodies recognized an average of 6 ORFs per seropositive individual; (ii) the antibody responses to HSV antigens were diverse among HSV-1- and HSV-2-seropositive individuals; (iii) panels of 21 and 30 immunodominant antigens (ID-Ags) were identified from the HSV-1 and HSV-2 ORFomes, respectively, as being highly and frequently recognized by serum antibodies from seropositive individuals; and (iv) interestingly, four HSV-1 and HSV-2 cross-reactive asymptomatic ID-A-Ags, US4, US11, UL30, and UL42, were strongly and frequently recognized by sera from 10 of 10 asymptomatic patients but not by sera from 10 of 10 symptomatic patients (P < 0.001). In contrast, sera from symptomatic patients preferentially recognized the US10 ID-S-Ag (P < 0.001). We have identified previously unreported immunodominant HSV antigens, among which were 4 ID-A-Ags and 1 ID-S-Ag. These newly identified ID-A-Ags could lead to the development of an efficient "asymptomatic" vaccine against ocular, orofacial, and genital herpes.
Collapse
|
3
|
Zheng C, Lin F, Wang S, Xing J. A novel virus-encoded nucleocytoplasmic shuttling protein: the UL3 protein of herpes simplex virus type 1. J Virol Methods 2011; 177:206-10. [PMID: 21864580 DOI: 10.1016/j.jviromet.2011.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/07/2011] [Accepted: 08/04/2011] [Indexed: 01/20/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) UL3 protein is a nuclear protein. In this study, the molecular mechanism of the subcellular localization of UL3 was characterized by fluorescence microscopy in living cells. A nuclear localization signal (NLS) and a nuclear export signal (NES) were also identified. UL3 was demonstrated to target to the cytoplasm through the NES via chromosomal region maintenance 1 (CRM-1) dependent pathway, and to the nucleus through RanGTP-dependent mechanism. Heterokaryon assays confirmed that UL3 was capable of shuttling between the nucleus and the cytoplasm. These results demonstrate that the UL3 protein is a novel HSV-1 encoded nucleocytoplasmic shuttling protein.
Collapse
Affiliation(s)
- Chunfu Zheng
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, 44 Xiaohongshan, Wuchang, Wuhan 430071, China.
| | | | | | | |
Collapse
|
4
|
Lin F, Ren X, Guo H, Ding Q, Zheng AC. Expression, purification of the UL3 protein of herpes simplex virus type 1, and production of UL3 polyclonal antibody. J Virol Methods 2010; 166:72-6. [PMID: 20188759 DOI: 10.1016/j.jviromet.2010.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a common pathogen which causes infections of the mucocutaneous membranes. The UL3 protein belongs to a group of HSV-1 late proteins. To date, the function of the UL3 protein in cell culture, animal models, and natural infection is unknown. To investigate further the function of the UL3 protein, this study was undertaken to express the UL3 protein and raise a polyclonal antibody. The UL3 gene was cloned in the prokaryotic expression vector pET-28a (+) to yield pET-28a (+)-UL3. The His6-tagged UL3 protein was expressed in Escherichia coli (E. coli) BL21 (DE3) cells and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). After purification by nickel affinity chromatography and refolding, the recombinant protein was used to raise the anti-UL3 polyclonal antibody. Western blot analysis demonstrated that the UL3 protein was recognized by the polyclonal antibody, and immunofluorescent assay also showed that the antibody was able to recognize the UL3 protein in the cells infected with HSV-1.
Collapse
Affiliation(s)
- Fusen Lin
- Molecular Virology and Viral Immunology Research Group, National Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuchang, Wuhan, Hubei 430071, China
| | | | | | | | | |
Collapse
|
5
|
Yoshii H, Sadaoka K, Matsuura M, Nagaike K, Takahashi M, Yamanishi K, Mori Y. Varicella-zoster virus ORF 58 gene is dispensable for viral replication in cell culture. Virol J 2008; 5:54. [PMID: 18445300 PMCID: PMC2412858 DOI: 10.1186/1743-422x-5-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 04/30/2008] [Indexed: 11/23/2022] Open
Abstract
Background Open reading frame 58 (ORF58) of varicella-zoster virus (VZV) lies at the 3'end of the Unique long (UL) region and its functional is unknown. In order to clarify whether ORF58 is essential for the growth of VZV, we constructed a deletion mutant of ORF58 (pOka-BACΔ58) from the Oka parental genome cloned into a bacterial artificial chromosome (pOka-BAC). Results The ORF58-deleted virus (rpOkaΔ58) was reconstituted from the pOka-BACΔ58 genome in MRC-5 cells, indicating that the ORF58 gene is non-essential for virus growth. Comparison of the growth rate of rpOkaΔ58 and recombinant wild-type virus by assessing plaque sizes revealed no significant differences between them both in MRC-5 cells and malignant melanoma cells. Conclusion This study shows that the ORF58 gene is dispensable for viral replication and does not affect the virus' ability to form plaques in vitro.
Collapse
Affiliation(s)
- Hironori Yoshii
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Markovitz NS. The herpes simplex virus type 1 UL3 transcript starts within the UL3 open reading frame and encodes a 224-amino-acid protein. J Virol 2007; 81:10524-31. [PMID: 17626086 PMCID: PMC2045449 DOI: 10.1128/jvi.00123-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 07/02/2007] [Indexed: 11/20/2022] Open
Abstract
Several different herpes simplex viruses (HSVs) and vectors are being explored as therapeutic products for use in the treatment of cancer and neurological disorders. The viral strain and the combination of mutant viral genes that ultimately may serve as a safe and optimal backbone for such products are still being explored. The large genome size and complexity of the viral life cycle make such determinations difficult, because the significance of differences between proposed products is difficult to evaluate. For example, we previously reported that two lineages of gamma34.5-deleted HSVs used in clinical studies differ from each other in the size of the UL3 protein expressed (M. J. Dambach et al., Mol. Ther. 13:891-898, 2006). Because the function of UL3 is not known and UL3 gene expression is poorly understood, the significance of such a difference cannot be predicted. Here, I begin to address the function of UL3 by investigating UL3 gene expression. I report that the transcript start site of UL3 mRNA isolated from HSV type 1 (HSV-1)-infected cells maps to a position downstream of the predicted translation start site. By constructing and characterizing the recombinant virus CB8116, which has a mutation in the first in-frame start codon of this UL3 transcript, I demonstrated that UL3 protein translation initiates at the second in-frame start codon of the UL3 open reading frame. This information adds to the body of basic knowledge of HSV-1 biology that forms the foundation for our current understanding of HSV-based products. Future research on HSV-1 biology will facilitate the rational design and evaluation of future generations of therapeutic viruses.
Collapse
Affiliation(s)
- Nancy S Markovitz
- Division of Cellular and Gene Therapies, HFM-725, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852, USA.
| |
Collapse
|
7
|
Klupp BG, Granzow H, Fuchs W, Mundt E, Mettenleiter TC. Pseudorabies virus UL3 gene codes for a nuclear protein which is dispensable for viral replication. J Virol 2004; 78:464-72. [PMID: 14671126 PMCID: PMC303397 DOI: 10.1128/jvi.78.1.464-472.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many of the products of the ca. 80 genes encoded by alphaherpesviruses have already been identified and, at least tentatively, functionally characterized. Among the least characterized proteins are the products of the genes homologous to herpes simplex virus UL3, which are present only in the subfamily Alphaherpesvirinae: To identify the UL3 protein of the porcine alphaherpesvirus pseudorabies virus (PrV), the complete PrV UL3 open reading frame was cloned, expressed in Escherichia coli as a glutathione S-transferase fusion protein, and used for immunization of a rabbit. In Western blots, the generated antiserum specifically detected a 34-kDa protein in PrV-infected cells, which was absent from purified virus preparations, indicating that PrV UL3 encodes a nonstructural protein. In indirect immunofluorescence analysis, the anti-UL3 serum produced predominantly nuclear staining in transfected as well as in infected cells, which was not altered in the absence of other virus-encoded nuclear proteins such as the UL31 and UL34 gene products. To investigate UL3 function, a deletion mutant, PrV-DeltaUL3F2, was constructed and characterized. This mutant replicated and formed plaques on noncomplementing cells indistinguishable from wild-type PrV, demonstrating that PrV UL3 is not required for virus propagation in cultured cells. Moreover, ultrastructural examinations revealed no impairment of capsid formation in the nucleus, nuclear egress of capsids, virion maturation in the cytoplasm, or virus release. Thus, the overall properties of PrV UL3 are similar to those described for the homologous herpes simplex virus proteins which may be indicative of a common, yet hitherto unknown, function in alphaherpesvirus replication. However, based on our studies, an involvement of the UL3 homologs in virion formation appears unlikely.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institutes of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | | | |
Collapse
|
8
|
Markovitz NS, Roizman B. Small dense nuclear bodies are the site of localization of herpes simplex virus 1 U(L)3 and U(L)4 proteins and of ICP22 only when the latter protein is present. J Virol 2000; 74:523-8. [PMID: 10590143 PMCID: PMC111565 DOI: 10.1128/jvi.74.1.523-528.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus 1 U(L)3 and U(L)4 open reading frames are expressed late in infection and are not essential for viral replication in cultured cells in vitro. An earlier report showed that the U(L)4 protein colocalizes with the products of the alpha22/U(S)1.5 genes in small nuclear dense bodies. Here we report that the U(L)3 protein also colocalized in these small nuclear dense bodies and the localization of U(L)3 and U(L)4 proteins in these bodies required the presence of alpha22/U(S)1.5 genes. In cells infected with a mutant lacking intact alpha22/U(S)1.5 genes, U(L)3 was diffused throughout the nucleus even though the overall accumulation of the gamma2 U(L)3 protein was decreased. The results suggest that ICP22 acts both as a regulator of U(L)3 accumulation and as the structural component and anchor of these small dense nuclear bodies.
Collapse
Affiliation(s)
- N S Markovitz
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
9
|
Markovitz NS, Filatov F, Roizman B. The U(L)3 protein of herpes simplex virus 1 is translated predominantly from the second in-frame methionine codon and is subject to at least two posttranslational modifications. J Virol 1999; 73:8010-8. [PMID: 10482549 PMCID: PMC112816 DOI: 10.1128/jvi.73.10.8010-8018.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The U(L)3 open reading frame (ORF) has the coding capacity of 235 codons. The proteins reacting with the anti-U(L)3 antibody form in denaturing polyacrylamide gel bands with apparent M(r)s of 34,000, 35,000, 38,000, 40,000, 41,000, and 42,000 and designated 1 to 6, respectively. Studies on their origins revealed the following. (i) The U(L)3 proteins forming all six bands were present in lysates of cells infected with wild-type virus and treated with tunicamycin or monensin or in cells infected with the mutant lacking the gene encoding the U(S)3 protein kinase. (ii) The proteins contained in the slower-migrating bands were absent from cells infected with the mutant lacking the U(L)13 protein kinase. Bands 1 and 3, however were phosphorylated in cells infected with this mutant. (iii) Band 2 protein was absent from cells transfected with a plasmid carrying a substitution of the predicted first methionine codon of the U(L)3 ORF and superinfected with the U(L)3(-) mutant. (iv) Band 1 and 3 proteins were absent from lysates of cells transfected with a plasmid carrying a substitution of the second (M12) methionine codon of the U(L)3 ORF and superinfected with the U(L)3(-) mutant. (v) Cells superinfected with mutants lacking both methionine codons did not accumulate any of the proteins contained in the six bands. (vi) In vitro transcription-translation studies indicated that the translation of band 1 protein was initiated from the second (M12) methionine codon and that band 3 protein represented a U(L)13-independent, posttranslationally processed form of these proteins. The results indicate that the U(L)3 protein of herpes simplex virus 1 is translated predominantly from the second in-frame methionine codon and is subject to at least two posttranslational modifications.
Collapse
Affiliation(s)
- N S Markovitz
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
10
|
Yamada H, Jiang YM, Zhu HY, Inagaki-Ohara K, Nishiyama Y. Nucleolar localization of the UL3 protein of herpes simplex virus type 2. J Gen Virol 1999; 80 ( Pt 8):2157-2164. [PMID: 10466815 DOI: 10.1099/0022-1317-80-8-2157] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rabbit polyclonal antiserum was raised against a recombinant 6 x His-UL3 fusion protein expressed in Escherichia coli and used to examine the intracellular localization of the UL3 protein of herpes simplex virus type 2 (HSV-2). The antiserum reacted specifically with 31 and 34 kDa proteins in HSV-2 186-infected Vero cells and with 31 and 35 kDa proteins in UL3-expressing COS-7 cells. The UL3 protein localized both in the cytoplasm and in five to ten bright fluorescent granules in the nucleus close to the nuclear membrane at 4 h post-infection (p.i.). These structures became bigger at 5 h p.i. and showed doughnut-like forms at 6 h p.i. In transfected Vero cells, the UL3 protein localized exclusively in the nucleoplasm and specifically in the nucleolus. Five deletion mutants of the UL3 protein were constructed for transfection assays and the results showed that the region containing amino acids 100-164 was important for nucleolar localization. Moreover, green fluorescent protein (GFP)-targetting experiments showed that the region containing amino acids 100-164 was able to transport non-nucleolar GFP to the nucleolus as a fusion protein.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan1
| | - Yue-Mei Jiang
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan1
| | - Hong-Yan Zhu
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan1
| | - Kyoko Inagaki-Ohara
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan1
| | - Yukihiro Nishiyama
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan1
| |
Collapse
|