1
|
Chen Q, Dong Y, Gai Y. Tactile Location Perception Encoded by Gamma-Band Power. Bioengineering (Basel) 2024; 11:377. [PMID: 38671798 PMCID: PMC11048554 DOI: 10.3390/bioengineering11040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The perception of tactile-stimulation locations is an important function of the human somatosensory system during body movements and its interactions with the surroundings. Previous psychophysical and neurophysiological studies have focused on spatial location perception of the upper body. In this study, we recorded single-trial electroencephalography (EEG) responses evoked by four vibrotactile stimulators placed on the buttocks and thighs while the human subject was sitting in a chair with a cushion. METHODS Briefly, 14 human subjects were instructed to sit in a chair for a duration of 1 h or 1 h and 45 min. Two types of cushions were tested with each subject: a foam cushion and an air-cell-based cushion dedicated for wheelchair users to alleviate tissue stress. Vibrotactile stimulations were applied to the sitting interface at the beginning and end of the sitting period. Somatosensory-evoked potentials were obtained using a 32-channel EEG. An artificial neural net was used to predict the tactile locations based on the evoked EEG power. RESULTS We found that single-trial beta (13-30 Hz) and gamma (30-50 Hz) waves can best predict the tactor locations with an accuracy of up to 65%. Female subjects showed the highest performances, while males' sensitivity tended to degrade after the sitting period. A three-way ANOVA analysis indicated that the air-cell cushion maintained location sensitivity better than the foam cushion. CONCLUSION Our finding shows that tactile location information is encoded in EEG responses and provides insights on the fundamental mechanisms of the tactile system, as well as applications in brain-computer interfaces that rely on tactile stimulation.
Collapse
Affiliation(s)
| | | | - Yan Gai
- Biomedical Engineering, School of Science and Engineering, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA; (Q.C.); (Y.D.)
| |
Collapse
|
2
|
Fang Y, Li S, Wang J, Zhang Z, Jiang W, Wang C, Jiang Y, Guo H, Han X, Tian W. Diagnostic efficacy of tract-specific diffusion tensor imaging in cervical spondylotic myelopathy with electrophysiological examination validation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1230-1244. [PMID: 38286908 DOI: 10.1007/s00586-023-08111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/02/2023] [Accepted: 12/17/2023] [Indexed: 01/31/2024]
Abstract
PURPOSE This study aimed to investigate the effectiveness of tract-specific diffusion tensor imaging (DTI) metrics in identifying the responsible segments for neurological dysfunction in cervical spondylotic myelopathy (CSM). METHODS The study encompassed nineteen participants diagnosed with CSM, including 10 males and 9 females. Additionally, a control group consisting of ten healthy caregivers (5 males and 5 females) were recruited with no symptoms and no compressions on magnetic resonance imaging (MRI). All participants underwent a comprehensive physical examination, MRI assessment, and DTI examination conducted by a senior chief physician. Several parameters were collected from the MR images, including the aspect ratio (defined as the anteroposterior diameter / the transverse diameter of the corresponding segment's spinal cord), transverse ratio (defined as the transverse diameter of the corresponding segment's spinal cord / the transverse diameter of the spinal cord at C2/3), and T2 high signal of the spinal cord. Furthermore, quantitative DTI metrics, such as axial diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD), and fractional anisotropy (FA), were calculated using automatic region-of-interest (ROI) analysis for both whole spinal cord column and dorsal column. Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic efficacy of the aspect ratio, transverse ratio, and DTI parameters. The area under the curve (AUC), sensitivity, and specificity were calculated. Intraoperative spinal cord electrophysiological examination was performed as the objective measure of spinal cord function during surgery. RESULTS As determined by electrophysiological examination, neurological dysfunction was found in 2 patients due to C3/4 compression, in 10 patients due to C4/5 compression, in 6 patients due to C5/6 compression, and in 1 patient due to C6/7 compression. The modified Japanese Orthopedic Association scale (mJOA) was 12.71 ± 1.55 in the CSM group, with 4.87 ± 0.72 for sensory nerve function and 5.05 ± 1.35 for motor nerve function. For the control group, none of the volunteers had neurological dysfunction. T2 high signal was found at the most stenotic segment in 13 patients of the CSM group. Considering all the cervical segments, the aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) was more capable of determining the responsible segment than transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). AD, MD, and RD were significantly higher while FA was significantly lower in the responsible segment than in the irresponsible segment (P < 0.05). The AUC of DTI-Dorsal column parameters (AD, MD, RD, FA) was larger than the corresponding parameters of the DTI (Whole spinal cord). AD of DTI-Dorsal Column possessed the greatest efficacy (AUC = 0.823, sensitivity = 84.21%, specificity = 77.32%) to determine the responsible segment, larger than AD of DTI-Whole spinal cord (AUC = 0.822, P = 0.001, Sensitivity = 89.47%, Specificity = 77.32%), aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) and transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). Subgroup analysis revealed that the diagnostic efficacy of DTI and MRI parameters was influenced by cervical spine segment. CONCLUSIONS When considering all cervical segments, AD from the DTI-Dorsal Column exhibited the most significant potential in identifying responsible segments. This potential was found to be superior to that of DTI-Whole spinal cord, aspect ratio, the most stenotic segment, T2 high signals, transverse ratio, motor nerve dysfunction, and sensory nerve dysfunction. The diagnostic effectiveness of both DTI and MRI parameters was notably influenced by the specific cervical spine segment.
Collapse
Affiliation(s)
- Yanming Fang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Sisi Li
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Jinchao Wang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhenzhen Zhang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Neurological Electrophysiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Wen Jiang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Radiology Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Chao Wang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China
| | - Yuancheng Jiang
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Xiao Han
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China.
| | - Wei Tian
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Fujii Y, Murata Y, Hokkoku K, Chiba T, Hamada Y, Uchibori A, Chiba A, Kobayashi S, Sonoo M. Anti-amphiphysin-positive Progressive Encephalomyelitis with Rigidity and Myoclonus. Can J Neurol Sci 2023; 50:781-783. [PMID: 36059101 DOI: 10.1017/cjn.2022.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuki Fujii
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuki Murata
- Department of General Medicine, Itabashi Chuo Medical Center, Japan
| | - Keiichi Hokkoku
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Chiba
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuichi Hamada
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
- Department of Neurology, Sumitomo Hospital, Osaka, Japan
| | - Ayumi Uchibori
- Department of Neurology, Kyorin University School of Medicine, Tokyo, Japan
| | - Atsuro Chiba
- Department of Neurology, Kyorin University School of Medicine, Tokyo, Japan
| | - Shunsuke Kobayashi
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | - Masahiro Sonoo
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Cui HY, Wu YX, Li R, Li GS, Hu Y. A translational study of somatosensory evoked potential time-frequency components in rats, goats, and humans. Neural Regen Res 2021; 16:2269-2275. [PMID: 33818512 PMCID: PMC8354111 DOI: 10.4103/1673-5374.310693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Somatosensory evoked potentials (SEPs) have been widely used to assess neurological function in clinical practice. A good understanding of the association between SEP signals and neurological function is helpful for precise diagnosis of impairment location. Previous studies on SEPs have been reported in animal models. However, few studies have reported the relationships between SEP waveforms in animals and those in humans. In this study, we collected normal SEP waveforms and decomposed them into specific time-frequency components (TFCs). Our results showed three stable TFC distribution regions in intact goats and rats and in humans. After we induced spinal cord injury in the animal models, a greater number of small TFC distribution regions were observed in the injured goat and rat groups than in the normal group. Moreover, there were significant correlations (P < 0.05) and linear relationships between the main SEP TFCs of the human group and those of the goat and rat groups. A stable TFC distribution of SEP components was observed in the human, goat and rat groups, and the TFC distribution modes were similar between the three groups. Results in various animal models in this study could be translated to future clinical studies based on SEP TFC analysis. Human studies were approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster (approval No. UM 05-312 T/975) on December 5, 2005. Rat experiments were approved by the Committee on the Use of Live Animals in Teaching and Research of Li Ka Shing Faculty of Medicine of the University of Hong Kong (approval No. CULART 2912-12) on January 28, 2013. Goat experiments were approved by the Animal Ethics Committee of Affiliated Hospital of Guangdong Medical University (approval No. GDY2002132) on March 5, 2018.
Collapse
Affiliation(s)
- Hong-Yan Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yi-Xin Wu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rong Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guang-Sheng Li
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region; Spinal Division, Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Guangdong Province, China
| | - Yong Hu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin; Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Orthopaedics and Traumatology, The University of Hong Kong -Shenzhen Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Predel C, Kaminski E, Hoff M, Carius D, Villringer A, Ragert P. Motor Skill Learning-Induced Functional Plasticity in the Primary Somatosensory Cortex: A Comparison Between Young and Older Adults. Front Aging Neurosci 2020; 12:596438. [PMID: 33324196 PMCID: PMC7723828 DOI: 10.3389/fnagi.2020.596438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
While in young adults (YAs) the underlying neural mechanisms of motor learning are well-studied, studies on the involvement of the somatosensory system during motor skill learning in older adults (OAs) remain sparse. Therefore, the aim of the present study was to investigate motor learning-induced neuroplasticity in the primary somatosensory cortex (S1) in YAs and OAs. Somatosensory evoked potentials (SEPs) were used to quantify somatosensory activation prior and immediately after motor skill learning in 20 right-handed healthy YAs (age range: 19–35 years) and OAs (age range: 57–76 years). Participants underwent a single session of a 30-min co-contraction task of the abductor pollicis brevis (APB) and deltoid muscle. To assess the effect of motor learning, muscle onset asynchrony (MOA) between the onsets of the contractions of both muscles was measured using electromyography monitoring. In both groups, MOA shortened significantly during motor learning, with YAs showing bigger reductions. No changes were found in SEP amplitudes after motor learning in both groups. However, a correlation analysis revealed an association between baseline SEP amplitudes of the N20/P25 and N30 SEP component and the motor learning slope in YAs such that higher amplitudes are related to higher learning. Hence, the present findings suggest that SEP amplitudes might serve as a predictor of individual motor learning success, at least in YAs. Additionally, our results suggest that OAs are still capable of learning complex motor tasks, showing the importance of motor training in higher age to remain an active part of our society as a prevention for care dependency.
Collapse
Affiliation(s)
- Claudia Predel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elisabeth Kaminski
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Maike Hoff
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniel Carius
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Berlin School of Mind and Brain, Mind Brain Body Institute, Humboldt University of Berlin, Berlin, Germany
| | - Patrick Ragert
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Egawa K, Saitoh S, Asahina N, Shiraishi H. Short-latency somatosensory-evoked potentials demonstrate cortical dysfunction in patients with Angelman syndrome. eNeurologicalSci 2020; 22:100298. [PMID: 33313428 PMCID: PMC7721653 DOI: 10.1016/j.ensci.2020.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/06/2022] Open
Abstract
Background Angelman syndrome (AS) is neurodevelopmental disorder, causal gene of which is maternally expressed UBE3A. A majority of patients results from the large deletion of relevant chromosome which includes GABAA receptor subunit genes (GABARs) as well as UBE3A (AS Del). We previously reported aberrantly desynchronized primary somatosensory response in AS Del by using magnetoencephalography. The purpose of this study is to estimate cortical and subcortical involvement in the deficit of primary somatosensory processing in AS. Methods We analyzed short-latency somatosensory-evoked potentials (SSEPs) in 8 patients with AS Del. SSEPs were recorded on a 4-channel system comprising of two cortical electrodes which were placed on the frontal and centro-parietal areas. The peak and onset latency of each component were measured to compare latency and interval times. Results The first-cortical peak latency (N20, P20), and N13-N20 peak interval times were significantly prolonged in AS Del compared to healthy controls. In contrast, there was no difference in latencies between subcortical components up to N20 onset or for N11-N20 onset interval times. Conclusion Highly desynchronized first-cortical SSEP components and normal latencies of subcortical components indicated cortical dysfunction rather than impairment of afferent pathways in AS Del patients, which might be attributed to GABAergic dysfunction due to loss of UBE3A function and heterozygosity of GABARs Somatosensory-evoked potentials (SEPs) were evaluated in Angelman syndrome (AS). All subjects had a 15q11-13 deletion, which includes the GABAA receptor subunit genes. The duration of the first-cortical SEP components was significantly prolonged. Latencies between subcortical components were comparable to controls. Desynchronized cortical response suggests GABAergic dysfunction in AS with deletion.
Collapse
Affiliation(s)
- Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho -ku, Nagoya 467-8601, Japan
| | - Naoko Asahina
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
7
|
Yu Z, Lin K, Chen J, Chen KH, Guo W, Dai Y, Chen Y, Zou X, Peng X. Magnetic resonance imaging and dynamic X-ray's correlations with dynamic electrophysiological findings in cervical spondylotic myelopathy: a retrospective cohort study. BMC Neurol 2020; 20:367. [PMID: 33023483 PMCID: PMC7541238 DOI: 10.1186/s12883-020-01945-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
Background Dynamic somatosensory evoked potentials (DSSEP) can be used to disclose abnormalities of ascending sensory pathways at dynamic positions and diagnose cervical spondylotic myelopathy (CSM). However, radiographic tests including magnetic resonance imaging (MRI) and dynamic X-ray are used much more widely in the management of CSM. Our study aims to clarify the correlations between several radiographic parameters and the DSSEP results, and further determine their reliability with clinical data. Methods We retrospectively enrolled 38 CSM patients with surgical intervention. DSSEP tests were performed before surgery. Amplitude ratios of DSSEP N13 and N20 waves at extension and flexion were calculated and recorded as N13_E, N20_E, N13_F, N20_F, respectively. Baseline severity was evaluated with the modified Japanese Orthopedic Association (mJOA) score and the Nurick grades. Prognosis was evaluated based on the 2-year recovery rate. Sagittal diameter and transverse areas of the cord and canal were measured and the the compressive ratios at the compressed site (Compression_Ratio), central (Central_Ratio), and 1/4-lateral points (1/4-Lateral_Compression_Ratio), and spinal cord/Canal Area Ratio were calculated. The intramedullary T2 hyperintensity patterns (Ax-CCM types) were also collected from MRI axial images. Dynamic X-rays were used to test for segmental instability of the cervical spine. The correlations between radiologic findings, DSSEP data, and clinical assessments were investigated. Results We found that DSSEP N13_E and N13_F correlated with the Compression_Ratio, Central_Ratio, 1/4-Lateral_Compression_Ratio (Pearson, p < 0.05) and Ax-CCM types (ANOVA, p < 0.05) in MRI axial images and cervical segmental instability in dynamic X-ray (t-test, p < 0.05). Apart from the 1/4-Lateral_Compression_Ratio, these radiographic parameters above also correlated with the baseline clinical assessments (Spearman or ANOVA or t-test, p < 0.05) and postoperative recovery rate (Pearson or ANOVA or t-test, p < 0.05). Conclusions We found that the preoperative Compression_Ratio, Central_Ratio and 1/4-Lateral_Compression_Ratio in MRI and cervical segmental instability in dynamic X-ray could reflect the dynamic neural dysfunction of the spinal cord. Different Ax-CCM types corresponded to different DSSEP results at extension and flexion, suggesting divergent pathophysiology. These radiographic parameters could help evaluate disease severity and predict postoperative prognosis.
Collapse
Affiliation(s)
- Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Kaiyuan Lin
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Jiacheng Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Kuan-Hung Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Wei Guo
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Yuhu Dai
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Yuguang Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| |
Collapse
|
8
|
Liu H, Andoh J, Lyu Y, Milde C, Desch S, Zidda F, Schmelz M, Curio G, Flor H. Peripheral input and phantom limb pain: A somatosensory event-related potential study. Eur J Pain 2020; 24:1314-1329. [PMID: 32335979 DOI: 10.1002/ejp.1579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Following amputation, nearly all amputees report nonpainful phantom phenomena and many of them suffer from chronic phantom limb pain (PLP) and residual limb pain (RLP). The aetiology of PLP remains elusive and there is an ongoing debate on the role of peripheral and central mechanisms. Few studies have examined the entire somatosensory pathway from the truncated nerves to the cortex in amputees with PLP compared to those without PLP. The relationship among afferent input, somatosensory responses and the change in PLP remains unclear. METHODS Transcutaneous electrical nerve stimulation was applied on the truncated median nerve, the skin of the residual limb and the contralateral homologous nerve in 22 traumatic upper-limb amputees (12 with and 10 without PLP). Using somatosensory event-related potentials, the ascending volley was monitored from the brachial plexus, the spinal cord, the brainstem and the thalamus to the primary somatosensory cortex. RESULTS Peripheral input could evoke PLP in amputees with chronic PLP (7/12), but not in amputees without a history of PLP (0/10). The amplitudes of the somatosensory components were comparable between amputees with and without PLP. In addition, evoked potentials from the periphery through the spinal, subcortical and cortical segments were not significantly associated with PLP. CONCLUSIONS Peripheral input can modulate PLP but seems insufficient to cause PLP. These findings suggest the multifactorial complexity of PLP and different mechanisms for PLP and RLP. SIGNIFICANCE Peripheral afferent input plays a role in PLP and has been assumed to be sufficient to generate PLP. In this study we found no significant differences in the electrical potentials generated by peripheral stimulation from the truncated nerve and the skin of the residual limb in amputees with and without PLP. Peripheral input could enhance existing PLP but could not cause it. These findings indicate the multifactorial complexity of PLP and an important role of central processes in PLP.
Collapse
Affiliation(s)
- Hongcai Liu
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yuanyuan Lyu
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Christopher Milde
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Biopsychology, Clinical Psychology and Psychotherapy, University of Koblenz-Landau, Landau, Germany
| | - Simon Desch
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesca Zidda
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gabriel Curio
- Neurophysics Group, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Sasaki R, Tsuiki S, Miyaguchi S, Kojima S, Saito K, Inukai Y, Otsuru N, Onishi H. Repetitive Passive Finger Movement Modulates Primary Somatosensory Cortex Excitability. Front Hum Neurosci 2018; 12:332. [PMID: 30177877 PMCID: PMC6109762 DOI: 10.3389/fnhum.2018.00332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Somatosensory inputs induced by repetitive passive movement (RPM) modulate primary motor cortex (M1) excitability; however, it is unclear whether RPM affects primary somatosensory cortex (S1) excitability. In this study, we investigated whether RPM affects somatosensory evoked potentials (SEPs) and resting state brain oscillation, including alpha and beta bands, depend on RPM frequency. Nineteen healthy subjects participated in this study, and SEPs elicited by peripheral nerve electrical stimulation were recorded from the C3’ area in order to assess S1 excitability (Exp. 1: n = 15). We focused on prominent SEP components such as N20, P25 and P45-reflecting S1 activities. In addition, resting electroencephalograms (EEGs) were recorded from C3’ area to assess the internal state of the brain network at rest (Exp. 2: n = 15). Passive abduction/adduction of the right index finger was applied for 10 min at frequencies of 0.5, 1.0, 3.0, and 5.0 Hz in Exp. 1, and 1.0, 3.0, and 5.0 Hz in Exp. 2. No changes in N20 or P25 components were observed following RPM. The 3.0 Hz-RPM decreased the P45 component for 20 min (p < 0.05), but otherwise did not affect the P45 component. There was no difference in the alpha and beta bands before and after any RPM; however, a negative correlation was observed between the rate of change of beta power and P45 component at 3.0 Hz-RPM. Our findings indicated that the P45 component changes depending on the RPM frequency, suggesting that somatosensory inputs induced by RPM influences S1 excitability. Additionally, beta power enhancement appears to contribute to the P45 component depression in 3.0 Hz-RPM.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Tsuiki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
10
|
Haavik H, Niazi IK, Holt K, Murphy B. Effects of 12 Weeks of Chiropractic Care on Central Integration of Dual Somatosensory Input in Chronic Pain Patients: A Preliminary Study. J Manipulative Physiol Ther 2017; 40:127-138. [PMID: 28196631 DOI: 10.1016/j.jmpt.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The purpose of this preliminary study was to assess whether the dual somatosensory evoked potential (SEP) technique is sensitive enough to measure changes in cortical intrinsic inhibitory interactions in patients with chronic neck or upper extremity pain and, if so, whether changes are associated with changes in pain scores. METHODS The dual peripheral nerve stimulation SEP ratio technique was used for 6 subjects with a history of chronic neck or upper limb pain. SEPs were recorded after left or right median and ulnar nerve stimulation at the wrist. SEP ratios were calculated for the N9, N13, P14-18, N20-P25, and P22-N30 peak complexes from SEP amplitudes obtained from simultaneous median and ulnar stimulation divided by the arithmetic sum of SEPs obtained from individual stimulation of the median and ulnar nerves. Outcome measures of SEP ratios and subjects' visual analog scale rating of pains were recorded at baseline, after a 2-week usual care control period, and after 12 weeks of multimodal chiropractic care (chiropractic spinal manipulation and 1 or more of the following: exercises, peripheral joint adjustments/manipulation, soft tissue therapy, and pain education). RESULTS A significant decrease in the median and ulnar to median plus ulnar ratio and the median and ulnar amplitude for the cortical P22-N30 SEP component was observed after 12 weeks of chiropractic care, with no changes after the control period. There was a significant decrease in visual analog scale scores (both for current pain and for pain last week). CONCLUSION The dual SEP ratio technique appears to be sensitive enough to measure changes in cortical intrinsic inhibitory interactions in patients with chronic neck pain. The observations in 6 subjects revealed that 12 weeks of chiropractic care improved suppression of SEPs evoked by dual upper limb nerve stimulation at the level of the motor cortex, premotor areas, and/or subcortical areas such as basal ganglia and/or thalamus. It is possible that these findings explain one of the mechanisms by which chiropractic care improves function and reduces pain for chronic pain patients.
Collapse
Affiliation(s)
- Heidi Haavik
- Centre for Chiropractic, New Zealand College of Chiropractic, Mount Wellington, Auckland, New Zealand..
| | - Imran Khan Niazi
- Centre for Chiropractic, New Zealand College of Chiropractic, Mount Wellington, Auckland, New Zealand
| | - Kelly Holt
- Centre for Chiropractic, New Zealand College of Chiropractic, Mount Wellington, Auckland, New Zealand
| | - Bernadette Murphy
- Department of Health Sciences, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| |
Collapse
|
11
|
Usefulness of Time-Frequency Patterns of Somatosensory Evoked Potentials in Identification of the Location of Spinal Cord Injury. J Clin Neurophysiol 2016; 32:341-5. [PMID: 25626775 DOI: 10.1097/wnp.0000000000000167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Somatosensory evoked potentials (SEPs) have been widely used to monitor the neurological integrity of the spinal cord during spinal surgery. However, the location of neurologic impairment cannot be determined from SEPs. Previous studies imply that the time-frequency characteristics of SEPs may reflect the location of the spinal cord injury. To validate the hypothesis that time-frequency patterns of SEPs are associated with the location of neurologic deficits in the spinal cord, we studied the time-frequency distributions of SEPs at different injury levels. Twenty-four rats were equally divided into one normal group and three injury groups, in which weight-drop contusions were delivered to the spinal cord of the rats at C4, C5, or C6 level, respectively. By comparing the time-frequency patterns of SEPs across groups, we found significant differences in several time-frequency regions of interest in the time-frequency distributions of the normal group and the injury groups. Importantly, the regions of interest were different across injury groups, suggesting that these regions of interest could be specific to injury locations. The results imply that changes of the time-frequency patterns of SEPs may be related to the location of the spinal cord injury.
Collapse
|
12
|
Mochizuki H, Yagi K, Tsuruta K, Taniguchi A, Ishii N, Shiomi K, Nakazato M. Prolonged central sensory conduction time in patients with chronic arsenic exposure. J Neurol Sci 2015; 361:39-42. [PMID: 26810514 DOI: 10.1016/j.jns.2015.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Many patients from Toroku, Japan, who have chronic arsenic exposure demonstrate whole-body sensory disturbance that is slightly more pronounced in the extremities. Although previous research in this population showed a mild peripheral neuropathy, it is unknown whether these patients have central nervous system impairment. To investigate the lesion sites underlying sensory disturbance related to chronic arsenic poisoning, we analyzed somatosensory evoked potentials (SEP). METHODS Clinical features, nerve conduction study results, and median and/or tibial SEP were analyzed in patients with chronic arsenic exposure (total, 13 patients; median & tibial, 4; median, 5; tibial, 4) retrospectively. The SEP findings in patients were compared with those in normal controls. RESULTS The median SEP results indicated a conduction delay between the proximal brachial plexus and the primary sensory cortex, and tibial SEP findings indicated a delay between the dorsal gray matter of the lumbosacral cord and the primary sensory cortex. CONCLUSION This is the first study to identify an impairment of the central somatosensory pathway in patients with chronic arsenic exposure. Sensory disturbance in these patients is related not only to peripheral neuropathy but also to impairment of the central nervous system.
Collapse
Affiliation(s)
- Hitoshi Mochizuki
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan.
| | - Kazuhiro Yagi
- Brain and Nerve Center, Junwakai Memorial Hospital, Japan
| | | | - Akitoshi Taniguchi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| | - Nobuyuki Ishii
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| | - Kazutaka Shiomi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| |
Collapse
|
13
|
Two distinct interneuron circuits in human motor cortex are linked to different subsets of physiological and behavioral plasticity. J Neurosci 2014; 34:12837-49. [PMID: 25232119 DOI: 10.1523/jneurosci.1960-14.2014] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
How does a single brain region participate in multiple behaviors? Here we argue that two separate interneuron circuits in the primary motor cortex (M1) contribute differently to two varieties of physiological and behavioral plasticity. To test this in human brain noninvasively, we used transcranial magnetic stimulation (TMS) of M1 hand area to activate two independent sets of synaptic inputs to corticospinal neurons by changing the direction of current induced in the brain: posterior-to-anterior current (PA inputs) and anterior-to-posterior current (AP inputs). We demonstrate that excitability changes produced by repetitive activation of AP inputs depend on cerebellar activity and selectively alter model-based motor learning. In contrast, the changes observed with repetitive stimulation of PA inputs are independent of cerebellar activity and specifically modulate model-free motor learning. The findings are highly suggestive that separate circuits in M1 subserve different forms of motor learning.
Collapse
|
14
|
Andrew D, Haavik H, Dancey E, Yielder P, Murphy B. Somatosensory evoked potentials show plastic changes following a novel motor training task with the thumb. Clin Neurophysiol 2014; 126:575-80. [PMID: 24957977 DOI: 10.1016/j.clinph.2014.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/24/2014] [Accepted: 05/21/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Accumulating evidence indicates that plastic changes can be maladaptive in nature, resulting in movement and neurological disorders. The aim of this study was to further the understanding of these neurophysiological changes in sensorimotor integration (SMI) using somatosensory evoked potentials (SEPs) and concurrent performance changes following a repetitive typing task. METHODS SEPs were recorded following median nerve stimulation at the wrist and performed pre and post intervention. 24 participants were randomly assigned to either an intervention group which performed a 20min repetitive typing task or a control group which participated in a 20min period of mental recitation. RESULTS The P22-N24 amplitude increased by 59.6%, compared to only 0.96% increase following the control. The P22-N30 SEP peak amplitude increased on average 13.4% following the motor training, compared to only 0.92% following the control. Significant improvement in reaction time when comparing performance of the motor task for the intervention group was observed. CONCLUSIONS The N24 increase supports the involvement of cerebellar connections and the N30 increase provides further support for changes in SMI following motor learning. SIGNIFICANCE Combining motor training tasks with electrophysiological techniques gives insight into the mechanisms of disordered SMI and whether the changes are adaptive or maladaptive.
Collapse
Affiliation(s)
- D Andrew
- University of Ontario Institute of Technology, Faculty of Health Sciences, 2000 Simcoe Street North, Oshawa, Ont. L1H 7K4, Canada
| | - H Haavik
- New Zealand College of Chiropractic, Centre for Chiropractic Research, 6 Harrison Road Mt Wellington, P.O. Box 112-044 Newmarket, Auckland 1149, New Zealand
| | - E Dancey
- University of Ontario Institute of Technology, Faculty of Health Sciences, 2000 Simcoe Street North, Oshawa, Ont. L1H 7K4, Canada
| | - P Yielder
- University of Ontario Institute of Technology, Faculty of Health Sciences, 2000 Simcoe Street North, Oshawa, Ont. L1H 7K4, Canada
| | - B Murphy
- University of Ontario Institute of Technology, Faculty of Health Sciences, 2000 Simcoe Street North, Oshawa, Ont. L1H 7K4, Canada.
| |
Collapse
|
15
|
Selective changes in cerebellar-cortical processing following motor training. Exp Brain Res 2013; 231:397-403. [DOI: 10.1007/s00221-013-3704-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
|
16
|
Poornima S, Ali SS, Balaji PA, Shankar V, Kutty K. Median nerve somatosensory evoked potentials in medical students: Normative data. Adv Biomed Res 2013; 2:56. [PMID: 24223371 PMCID: PMC3814810 DOI: 10.4103/2277-9175.115797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/06/2012] [Indexed: 12/05/2022] Open
Abstract
Background: The median nerve N20 component constitutes the initial response of the primary somatosensory cortex to somatosensory stimulation of the upper extremity. Knowledge of the underlying generators is important for basic understanding of the initial sequence of cortical activation. Materials and Methods: In the present study, normative data of cortical evoked potentials in particular of N20 wave onset and peak latencies by median nerve stimulation in a group of 100 medical students aged between 18 and 30 years were documented and the effect of physiological variables were studied. Descriptive statistics and Student t-test were used to analyze the healthy subjects and to compare N20 latencies for handedness, respectively. Regression analysis was used to show association between average N20 latencies and physiological variables from which regression formulae were calculated to predict normative values of these parameters. Results: The results of the study indicated that N20 onset and peak latency values are significantly affected by limb length at 95% confidence level. Height is showing as a significant factor affecting N20 onset latencies but it is probably because of high correlation of height with limb length. Age though on linear regression showed some significant correlation with N20 onset and peak latency, multiple regressions showed that it does not affect N20 onset and peak latencies in the presence of other variables. Handedness did not affect both N20 onset and peak latency values. Conclusion: Physiological variables do affect the N20 latencies and these should be standardized before usage for research in basic sciences at all age groups.
Collapse
Affiliation(s)
- Siddaraju Poornima
- Department of Physiology, Dr. BR Ambedkar Medical College, KG Halli, Bangalore, India
| | | | | | | | | |
Collapse
|
17
|
Hokkoku K, Sonoo M, Murashima H, Iwanami T, Nishiyama K, Kawamura Y, Arai Y, Tsukamoto H, Hatanaka Y, Shimizu T. [Clinical features of predominantly sensory stroke due to brainstem infarction]. Rinsho Shinkeigaku 2011; 51:248-54. [PMID: 21595293 DOI: 10.5692/clinicalneurol.51.248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report 13 patients presenting with predominantly sensory strokes due to brainstem infarction, without any other brainstem symptoms such as hemiparesis, dysarthria or vertigo. All of them had lacunar infarctions localized at the medial lemniscus and/or spinothalamic tract, at the pontine (12 patients) or midbrain (1 patient) tegmentum. The presenting symptom was dysesthesia with a variety of distributions for all cases, and a thalamic-pain-like unpleasant dysesthesia persisted in 4 patients. The lesion on brain MRI was usually very small, and was sometimes overlooked by radiological evaluation, which led to a long delay in the correct diagnosis of a stroke in two cases. Median nerve somatosensory evoked potentials showed a depressed N20 amplitude or a loss of the P15 potential unilaterally with preserved P13/14 potential in 7 out of 10 cases examined, and was useful in localizing the lesion intracranially. During the 4-year study period, 10 patients with brainstem infarctions were admitted to our department as acute sensory stroke cases (2.1% of all acute strokes), whereas 11 patients with thalamic infarctions (2.3%) were admitted due to similar symptoms. Cases with brainstem infarctions had sensory symptoms localized below the neck more frequently (5/10) than cases with thalamic infarctions (1/11), thus would be more likely to be confused with cervical or peripheral nerve disorders. The relative frequency of brainstem infarction as compared to thalamic infarction was higher than that in previous reports, implying that some cases with brainstem infarction might have been overlooked due to difficulty in obtaining the correct diagnosis. One should always keep this syndrome in mind when assessing patients with acute-onset sensory symptoms.
Collapse
Affiliation(s)
- Keiichi Hokkoku
- Department of Neurology, Teikyo University School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ragert P, Nierhaus T, Cohen LG, Villringer A. Interhemispheric interactions between the human primary somatosensory cortices. PLoS One 2011; 6:e16150. [PMID: 21347308 PMCID: PMC3037378 DOI: 10.1371/journal.pone.0016150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/13/2010] [Indexed: 11/26/2022] Open
Abstract
In the somatosensory domain it is still unclear at which processing stage information reaches the opposite hemispheres. Due to dense transcallosal connections, the secondary somatosensory cortex (S2) has been proposed to be the key candidate for interhemispheric information transfer. However, recent animal studies showed that the primary somatosensory cortex (S1) might as well account for interhemispheric information transfer. Using paired median nerve somatosensory evoked potential recordings in humans we tested the hypothesis that interhemispheric inhibitory interactions in the somatosensory system occur already in an early cortical processing stage such as S1. Conditioning right S1 by electrical median nerve (MN) stimulation of the left MN (CS) resulted in a significant reduction of the N20 response in the target (left) S1 relative to a test stimulus (TS) to the right MN alone when the interstimulus interval between CS and TS was between 20 and 25 ms. No such changes were observed for later cortical components such as the N20/P25, N30, P40 and N60 amplitude. Additionally, the subcortically generated P14 response in left S1 was also not affected. These results document the existence of interhemispheric inhibitory interactions between S1 in human subjects in the critical time interval of 20–25 ms after median nerve stimulation.
Collapse
Affiliation(s)
- Patrick Ragert
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | | | | |
Collapse
|
19
|
Taylor HH, Murphy B. Altered central integration of dual somatosensory input after cervical spine manipulation. J Manipulative Physiol Ther 2010; 33:178-88. [PMID: 20350670 DOI: 10.1016/j.jmpt.2010.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 05/09/2009] [Accepted: 05/10/2009] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of the current study was to investigate changes in the intrinsic inhibitory interactions within the somatosensory system subsequent to a session of spinal manipulation of dysfunctional cervical joints. METHOD Dual peripheral nerve stimulation somatosensory evoked potential (SEP) ratio technique was used in 13 subjects with a history of reoccurring neck stiffness and/or neck pain but no acute symptoms at the time of the study. Somatosensory evoked potentials were recorded after median and ulnar nerve stimulation at the wrist (1 millisecond square wave pulse, 2.47 Hz, 1 x motor threshold). The SEP ratios were calculated for the N9, N11, N13, P14-18, N20-P25, and P22-N30 peak complexes from SEP amplitudes obtained from simultaneous median and ulnar (MU) stimulation divided by the arithmetic sum of SEPs obtained from individual stimulation of the median (M) and ulnar (U) nerves. RESULTS There was a significant decrease in the MU/M + U ratio for the cortical P22-N30 SEP component after chiropractic manipulation of the cervical spine. The P22-N30 cortical ratio change appears to be due to an increased ability to suppress the dual input as there was also a significant decrease in the amplitude of the MU recordings for the same cortical SEP peak (P22-N30) after the manipulations. No changes were observed after a control intervention. CONCLUSION This study suggests that cervical spine manipulation may alter cortical integration of dual somatosensory input. These findings may help to elucidate the mechanisms responsible for the effective relief of pain and restoration of functional ability documented after spinal manipulation treatment.
Collapse
Affiliation(s)
- Heidi Haavik Taylor
- Director of Research, New Zealand College of Chiropractic, Auckland, New Zealand.
| | | |
Collapse
|
20
|
Zhang Z, Luk KDK, Hu Y. Identification of detailed time-frequency components in somatosensory evoked potentials. IEEE Trans Neural Syst Rehabil Eng 2010; 18:245-54. [PMID: 20215086 DOI: 10.1109/tnsre.2010.2043856] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Somatosensory evoked potential (SEP) usually contains a set of detailed temporal components measured and identified in time domain, providing meaningful information on physiological mechanisms of the nervous system. The purpose of this study is to reveal complex and fine time-frequency features of SEP in time-frequency domain using advanced time-frequency analysis (TFA) and pattern classification methods. A high-resolution TFA algorithm, matching pursuit (MP), was proposed to decompose a SEP signal into a string of elementary waves and to provide a time-frequency feature description of the waves. After a dimension reduction by principle component analysis (PCA), a density-guided K-means clustering was followed to identify typical waves existed in SEP. Experimental results on posterior tibial nerve SEP signals of 50 normal adults showed that a series of typical waves were discovered in SEP using the proposed MP decomposition and clustering methods. The statistical properties of these SEP waves were examined and their representative waveforms were synthesized. The identified SEP waves provided a comprehensive and detailed description of time-frequency features of SEP.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Department of Orthopaedic and Traumatology, the University of Hong Kong, Duchess of Kent Children's Hospital, Hong Kong, China.
| | | | | |
Collapse
|
21
|
Brain volume analyses and somatosensory evoked potentials in multiple system atrophy. J Neurol 2009; 257:419-25. [PMID: 19789939 DOI: 10.1007/s00415-009-5338-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/19/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
We investigated a progression of brain atrophy and somatosensory system dysfunction in multiple system atrophy (MSA). Subjects were 21 MSA patients [12 MSA-C (cerebellar type) and 9 MSA-P (parkinsonism type)]. The relative volumes of cerebrum, brainstem and cerebellum to the intracranial volume were obtained from three-dimensional computed tomography (3D-CT) of the brain. The median nerve somatosensory evoked potentials (SEPs) were recorded, and the latencies and amplitudes of N9, N11, P13/14, N20 and P25 components were measured. We studied correlations between brain volumes, SEP and clinical features. The brainstem and cerebellar atrophies were aggravated with progression of the disease. The central sensory conduction time (CSCT) was progressively prolonged in parallel with the disease duration irrespective of the actual age of the patients. In MSA patients, the volume reductions of cerebellum and brainstem could be one of structural markers of disease progression, and the sensory pathway is progressively involved with the progression of disease processes.
Collapse
|
22
|
Zhang ZG, Yang JL, Chan SC, Luk KDK, Hu Y. Time-frequency component analysis of somatosensory evoked potentials in rats. Biomed Eng Online 2009; 8:4. [PMID: 19203394 PMCID: PMC2669798 DOI: 10.1186/1475-925x-8-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 02/09/2009] [Indexed: 12/04/2022] Open
Abstract
Background Somatosensory evoked potential (SEP) signal usually contains a set of detailed temporal components measured and identified in a time domain, giving meaningful information on physiological mechanisms of the nervous system. The purpose of this study is to measure and identify detailed time-frequency components in normal SEP using time-frequency analysis (TFA) methods and to obtain their distribution pattern in the time-frequency domain. Methods This paper proposes to apply a high-resolution time-frequency analysis algorithm, the matching pursuit (MP), to extract detailed time-frequency components of SEP signals. The MP algorithm decomposes a SEP signal into a number of elementary time-frequency components and provides a time-frequency parameter description of the components. A clustering by estimation of the probability density function in parameter space is followed to identify stable SEP time-frequency components. Results Experimental results on cortical SEP signals of 28 mature rats show that a series of stable SEP time-frequency components can be identified using the MP decomposition algorithm. Based on the statistical properties of the component parameters, an approximated distribution of these components in time-frequency domain is suggested to describe the complex SEP response. Conclusion This study shows that there is a set of stable and minute time-frequency components in SEP signals, which are revealed by the MP decomposition and clustering. These stable SEP components have specific localizations in the time-frequency domain.
Collapse
Affiliation(s)
- Zhi-Guo Zhang
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, PR China.
| | | | | | | | | |
Collapse
|
23
|
Nakai SI, Sonoo M, Shimizu T. Somatosensory evoked potentials (SEPs) for the evaluation of cervical spondylotic myelopathy: Utility of the onset-latency parameters. Clin Neurophysiol 2008; 119:2396-404. [DOI: 10.1016/j.clinph.2008.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/14/2008] [Accepted: 07/20/2008] [Indexed: 11/15/2022]
|
24
|
Katayama T, Rothwell JC. Modulation of somatosensory evoked potentials using transcranial magnetic intermittent theta burst stimulation. Clin Neurophysiol 2007; 118:2506-11. [PMID: 17892970 DOI: 10.1016/j.clinph.2007.08.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/09/2007] [Accepted: 08/23/2007] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To study the modulation of somatosensory evoked potentials (SEP) using transcranial magnetic intermittent theta burst stimulation (iTBS) over human primary motor (M1) and sensory (S1) cortices. METHODS Eleven healthy subjects participated in the study. Median nerve SEP were elicited by electrical stimulation at the right wrist before and after 600-pulse iTBS over M1 or S1 of the left hemispheres at the intensity of 80% active motor threshold. RESULTS iTBS over S1 facilitated the N20o-N20p, N20p-P25 and P25-N33 amplitudes significantly and the maximal effect appeared 15 min after the stimulation. The facilitating effect was observed when the initial phase of the current in the brain was directed antero-medially, whereas the facilitation did not appear when the inverted coil direction was applied. On the other hand, no changes were observed after iTBS over M1. The latencies of the measured onsets and peaks were not affected through the experiments. CONCLUSIONS iTBS over S1 has the facilitating effect on the central somatosensory pathway, and the position and direction of the coil are the determinant factors of the effects. SIGNIFICANCE iTBS can be useful technique to induce synaptic plasticity in human central somatosensory pathway.
Collapse
Affiliation(s)
- Takayuki Katayama
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, 8-11 Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
25
|
Hamada M, Hanajima R, Terao Y, Sato F, Okano T, Yuasa K, Furubayashi T, Okabe S, Arai N, Ugawa Y. Median nerve somatosensory evoked potentials and their high-frequency oscillations in amyotrophic lateral sclerosis. Clin Neurophysiol 2007; 118:877-86. [PMID: 17307389 DOI: 10.1016/j.clinph.2006.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/26/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate sensory cortical changes in amyotrophic lateral sclerosis (ALS), we studied somatosensory evoked potentials (SEPs) and their high-frequency oscillation potentials. METHODS Subjects were 15 healthy volunteers and 26 ALS patients. Median nerve SEPs were recorded and several peaks of oscillations were obtained by digitally filtering raw SEPs. The patients were sorted into three groups according to the level of weakness of abductor pollicis brevis muscle (APB): mild, moderate and severe. The latencies and amplitudes of main and oscillation components of SEP were compared among normal subjects and the three patient groups. RESULTS The early cortical response was enlarged in the moderate weakness group, while it was attenuated in the severe weakness group. No differences were noted in the size ratios of oscillations to the main SEP component between the patients and normal subjects. The central sensory conduction time (CCT) and N20 duration were prolonged in spite of normal other latencies. CONCLUSIONS The median nerve SEP amplitude changes are associated with motor disturbances in ALS. The cortical potential enhancement of SEPs with moderate weakness in ALS may reflect some compensatory function of the sensory cortex for motor disturbances. SIGNIFICANCE The sensory cortical compensation for motor disturbances is shown in ALS, which must be important information for rehabilitation.
Collapse
Affiliation(s)
- Masashi Hamada
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Haavik Taylor H, Murphy BA. Altered cortical integration of dual somatosensory input following the cessation of a 20 min period of repetitive muscle activity. Exp Brain Res 2006; 178:488-98. [PMID: 17136532 DOI: 10.1007/s00221-006-0755-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Accepted: 10/08/2006] [Indexed: 11/30/2022]
Abstract
The adult human central nervous system (CNS) retains its ability to reorganize itself in response to altered afferent input. Intracortical inhibition is thought to play an important role in central motor reorganization. However, the mechanisms responsible for altered cortical sensory maps remain more elusive. The aim of the current study was to investigate changes in the intrinsic inhibitory interactions within the somatosensory system subsequent to a period of repetitive contractions. To achieve this, the dual peripheral nerve stimulation somatosensory evoked potential (SEP) ratio technique was utilized in 14 subjects. SEPs were recorded following median and ulnar nerve stimulation at the wrist (1 ms square wave pulse, 2.47 Hz, 1x motor threshold). SEP ratios were calculated for the N9, N11, N13, P14-18, N20-P25 and P22-N30 peak complexes from SEP amplitudes obtained from simultaneous median and ulnar (MU) stimulation divided by the arithmetic sum of SEPs obtained from individual stimulation of the median (M) and ulnar (U) nerves. There was a significant increase in the MU/M + U ratio for both cortical SEP components following the 20 min repetitive contraction task, i.e. the N20-P25 complex, and the P22-N30 SEP complex. These cortical ratio changes appear to be due to a reduced ability to suppress the dual input, as there was also a significant increase in the amplitude of the MU recordings for the same two cortical SEP peaks (N20-P25 and P22-N30) following the typing task. No changes were observed following a control intervention. The N20 (S1) changes may reflect the mechanism responsible for altering the boundaries of cortical sensory maps, changing the way the CNS perceives and processes information from adjacent body parts. The N30 changes may be related to the intracortical inhibitory changes shown previously with both single and paired pulse TMS. These findings may have implications for understanding the role of the cortex in the initiation of overuse injuries.
Collapse
Affiliation(s)
- Heidi Haavik Taylor
- Human Neurophysiology and Rehabilitation Laboratory, Department of Sport and Exercise Science, Tamaki Campus, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
27
|
Sonoo M, Hatanaka Y, Tsukamoto H, Tsai-Shozawa Y, Shimizu T. N10 component in median nerve somatosensory evoked potentials (SEPs) is not an antidromic motor potential. Clin Neurophysiol 2004; 115:2645-9. [PMID: 15465454 DOI: 10.1016/j.clinph.2004.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2004] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To test the hypothesis that the N10 far-field potential in median nerve somatosensory evoked potentials is generated by the motor axons by examining patients with amyotrophic lateral sclerosis (ALS). METHODS Subjects were 5 ALS patients showing pronounced or complete denervation of median-innervated small hand muscles. We evaluated N10 over scalp, and proximal plexus volleys (PPVs) at lateral or anterior cervical electrode. RESULTS N10 and PPVs were definitely preserved for every ALS subject. N10 amplitudes of ALS subjects were even significantly larger than control subjects. In one ALS patient completely lacking motor axons, N10 was larger than the largest one among control subjects. CONCLUSIONS Present results clearly indicate that N10 is not predominantly generated by motor axons but by the whole median nerve dominated by sensory axons. We propose a theory that N10 is a junctional potential generated by the entrance of the median nerve into bone at the intervertebral foramen, producing a positive pole at the non-cephalic reference electrode. Significantly larger N10 in ALS subjects may be due to the lack of cancellation by slower motor axons. SIGNIFICANCE The hypothesis that N10 is generated by motor axons is refuted, and a new theory of its generation is presented.
Collapse
Affiliation(s)
- M Sonoo
- Department of Neurology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 1738605, Japan.
| | | | | | | | | |
Collapse
|
28
|
Tataroglu C, Genc A, Idiman E, Cakmur R, Idiman F. Cortical relay time for long latency reflexes in patients with definite multiple sclerosis. Can J Neurol Sci 2004; 31:229-34. [PMID: 15198449 DOI: 10.1017/s0317167100120578] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Long latency reflexes (LLR) include afferent sensory, efferent motor and central transcortical pathways. It is supposed that the cortical relay time (CRT) reflects the conduction of central transcortical loop of LLR. Recently, evidence related to the cortical involvement in multiple sclerosis (MS) has been reported in some studies. Our aim was to investigate the CRT alterations in patients with MS. METHODS Upper extremity motor evoked potentials (MEP), somatosensory evoked potentials (SEP) and LLR were tested in 28 patients with MS and control subjects (n=22). The patients with MS were classified according to the clinical form (relapsing-remitting [R-R] and progressive groups). The MS patients with secondary progressive and primary progressive forms were considered as the "progressive" group. CRT for LLR was calculated by subtracting the peak latency of somatosensory evoked potentials (SEP) and that of motor evoked potentials (MEP) by transcranial magnetic stimulation from the onset latency of the second component of LLR (LLR2) (CRT = LLR2 - [MEP latency + N20 latency]) RESULTS Cortical relay time was calculated as 7.4 +/- 0.9 ms in control subjects. Cortical relay time was prolonged in patients with MS (11.2 +/- 2.9 ms) (p<0.0001). The latencies of LLR, MEP and SEP were also prolonged in patients with MS. Cortical relay time was not correlated with disease severity and clinical form in contrast to other tests. CONCLUSIONS Our findings suggested that CRT can be a valuable electrophysiological tool in patients with MS. Involvement of extracortical neural circuits between sensory and motor cortices or cortical involvement due to MS may cause these findings.
Collapse
Affiliation(s)
- Cengiz Tataroglu
- Department of Neurology, Mersin University, Faculty of Medicine, Mersin, Turkey
| | | | | | | | | |
Collapse
|
29
|
Miura T, Sonoo M, Shimizu T. Establishment of standard values for the latency, interval and amplitude parameters of tibial nerve somatosensory evoked potentials (SEPs). Clin Neurophysiol 2003; 114:1367-78. [PMID: 12842736 DOI: 10.1016/s1388-2457(03)00094-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To establish standard values for tibial nerve somatosensory evoked potentials (SEPs). METHODS We examined SEPs following left tibial nerve stimulation in 65 normal subjects of various ages, and performed multiple regression analysis using height, age, (age-20)(2) and gender as predictor variables. We objectively selected the latency or interval parameters with less intersubject variability as the standard parameters for evaluation. RESULTS Among 3 cortical bipolar derivations investigated, the Cz'-Cc lead gave a more constant and stable P38 component than the Cz'-Fz or Ci-Cc lead. The latencies of the N8o (N8 onset) of the popliteal potential, P15 (P15 peak) in the contralateral iliac crest-ipsilateral greater trochanter lead, N21, N30 and P38o/P38 in the Cz'-Cc lead, as well as the intervals between these components were selected as standard parameters. P15 was easily identified in all of the subjects and is expected to be a new parameter to evaluate the proximal segment of the tibial nerve. The amplitudes of P15 and the other components were also evaluated. We present nomograms for the normal limit values of each parameter. CONCLUSIONS We present a thorough set of standard values for tibial SEPs where the subject factors were fully considered, and which is easily applicable to clinical practice.
Collapse
Affiliation(s)
- Takaaki Miura
- Department of Neurology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku 1738605, Japan
| | | | | |
Collapse
|
30
|
Sonoo M, Mochizuki A, Fukuda H, Oosawa Y, Iwata M, Hatanaka Y, Tsai-Shozawa Y, Okano M, Shimizu T. Lower cervical origin of the P13-like potential in median SSEPS. J Clin Neurophysiol 2001; 18:185-90. [PMID: 11435811 DOI: 10.1097/00004691-200103000-00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The authors studied the origin of the scalp P13-like potential in median somatosensory evoked potentials, which have been reported to be preserved in patients with cervicomedullary lesions or in brain death. There were five patients with high to middle cervical lesions (C2/3 or C3/4 level). Small P13-like potentials after P11 were identified for all patients with a noncephalic reference but not with an ear reference. Their onset latencies were slightly earlier than the expected latency of the true P13/14 onset. In two patients, delayed true P13/14s followed by N18s were identified with both noncephalic and ear references. The authors argue that the P13-like potential observed in these patients is a different entity from scalp P13 in normal subjects. Because the C3/4 vertebral level corresponds to the C5 cord level, the origin of the P13-like potential must be below C5, contradicting the previous opinion that it is generated at the cervicomedullary junction or at the high cervical dorsal column. The authors named this potential lower cervical P13 (or lcP13), and present an opinion that it is generated by the beginning of the second spinal ascending volley, which has been described by direct-recording studies in humans.
Collapse
Affiliation(s)
- M Sonoo
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Saito Y, Adachi K, Nezu A, Deguchi K, Kimura S. Topographical features of the sensory-evoked responses in malformed brains. Pediatr Neurol 2000; 23:243-9. [PMID: 11033288 DOI: 10.1016/s0887-8994(00)00189-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To reveal the functional organization of the somatosensory area in the dysgenetic cortex, somatosensory-evoked potentials were examined in seven patients with congenital brain anomalies diagnosed by magnetic resonance imaging, including six patients in whom multichannel recordings over the scalp were used. In four patients with polymicrogyria/pachygyria and two with lissencephaly, the early cortical responses, frontal P20 and parietal N20, were absent in the cortex contralateral to the stimulated side. The first cortical response was a positive wave that appeared predominantly over the centroparietal area in five patients, and in the frontal area in the other patient with polymicrogyria/pachygyria. These findings suggest that the differentiated somatosensory function is distributed normally in the centroparietal cortex in most cases of widespread cortical dysplasia. However, the absence of P20/N20 may indicate a hypoplastic central sulcus or functionally undifferentiated subdivision of the somatosensory cortex in these patients. The absence of cortical responses in the patient with holoprosencephaly may correspond with growth failure of the thalamocortical afferent projections in this disorder.
Collapse
Affiliation(s)
- Y Saito
- Divisions of Pediatrics and Pediatric Neurology, Yokohama Ryo-iku En, Yokohama, Japan
| | | | | | | | | |
Collapse
|
32
|
Abstract
After median nerve stimulation, noncephalic or earlobe reference montages enable one to record over the scalp a well-defined, positive far-field response, which has been labeled the P14 or P13-P14 complex. It has been ascertained that this wave is generated in the caudal brainstem. Its use is reliable and sometimes mandatory in assessing a number of diseases that affect primarily the brainstem, such as multiple sclerosis or coma. Because of its complex shape as well as discrepant findings in the literature, it is still debated whether this potential is produced by a single or by multiple serial generators. The authors present these different views and summarize the different recording methods, while bearing in mind that some recording techniques are more suitable for routine purposes and others are preferred in selected cases, when more information regarding caudal brainstem function is required.
Collapse
Affiliation(s)
- D Restuccia
- Department of Neurology, Università Cattolica, Rome, Italy.
| |
Collapse
|
33
|
Matsunaga K, Uozumi T, Tsuji S, Murai Y. Sympathetic skin responses recorded from non-palmar and non-plantar skin sites: their role in the evaluation of thermal sweating. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1998; 108:482-9. [PMID: 9780018 DOI: 10.1016/s0168-5597(98)00025-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To characterize the sympathetic skin responses (SSRs) recorded from non-palmar and non-plantar (non-Pa/P1) skin sites and to evaluate their clinical usefulness. METHODS SSRs were recorded from 6 non-Pa/P1 sites as well as palmar and plantar (Pa/P1) sites using magnetic neck stimulation in 33 normal subjects, 17 neurological patients with dysautonomia and one patient with lumbar sympathectomy. A conventional thermoregulatory sweat test (TST) was also carried out in 3 patients. RESULTS Clear and reproducible SSRs were obtained from all recording sites in all of the normal subjects when the skin temperatures of the subjects were maintained above 34 degrees C and the subjects drank 100-200 ml of hot water. The distribution of absent SSRs was closely correlated with that of anhidrosis or a sweating delay shown by the TST in the patients. Nine of the 17 neurological patients (53%) showed normal responses at Pa/P1 sites, and abnormal responses at non-Pa/P1 sites. CONCLUSIONS Recording SSRs from multiple skin sites including non-Pa/P1 sites after magnetic stimulation is more sensitive in detecting sudomotor dysfunction than is the conventional method of recording SSRs from only Pa/P1 sites. In addition, this new method is very useful for the objective clinical evaluation of thermal sweating.
Collapse
Affiliation(s)
- K Matsunaga
- Department of Neurology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu City, Fukuoka, Japan
| | | | | | | |
Collapse
|
34
|
Sonoo M, Genba-Shimizu K, Mannen T, Shimizu T. Detailed analysis of the latencies of median nerve somatosensory evoked potential components, 2: Analysis of subcomponents of the P13/14 and N20 potentials. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 104:296-311. [PMID: 9246067 DOI: 10.1016/s0168-5597(97)00035-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Detailed analysis of P13/14 and N20 wavelets was performed for 62 normal subjects and patients with various lesions along the somatosensory pathway. A histogram of the latencies of all the identified P13/14 wavelets (measured from P13/14 onset) demonstrated three latency-groups, which were named P13, P14a and P14b subcomponents. The relationship between the three newly identified subcomponents and the conventional naming of P13 and P14 was inconstant, indicating the ambiguity of the latter. P14b was most prominent in the contralateral central region, and therefore a P15 positivity slightly after P14b was often recorded in the CPc-Fz and CPc-CPi leads (CPc and CPi are centroparietal electrodes contralateral and ipsilateral to the stimulation). P14b/P15 was lost even in patients with cortical lesions, and thalamocortical fibers were assumed for its origin. The CPc-Fz and CPi-Fz leads registered a low negativity named broad N13', suggesting frontal predominance of the overall P13/14 complex. Both P13 and P14a were identified in a patient with a pontine lesion, and a caudal brainstem origin for both was suspected due to the onset of two repetitive bursts of the ascending lemniscal volley. We refuted the presynaptic origin of the scalp P13 potential and pointed out that a prolonged and/or polyphasic P11 frequently observed in patients with high cervical lesions can be mistaken as scalp P13. A histogram of the latencies of all the identified negative wavelets of N20 in the CPc-Fz lead (measured from N20 onset) revealed five definite latency-groups, which were named N20a, N20b, N20c, N20d and N20e subcomponents. The highest peak of N20 actually corresponded to either N20b, N20c or N20d, and this uncertainty, which must be related to intracortical processes, resulted in a large instability of the N20 peak latency as well as the age and sex dependence of the N20 onset-peak interval, both of which were demonstrated by our preceding study (Sonoo, M., Kobayashi, M., Genba-Shimizu, K., Mannen, T. and Shimizu, T. Detailed analysis of the latencies of median nerve SEP components, 1: selection of the best standard parameters and the establishment of the normal values. Electroenceph. clin. Neurophysiol., 1996b, 100: 319-331). Negative subcomponents in the CPc-NC lead and positive subcomponents in the Fz-NC lead constituted mirror images of each other, which suggested that these subcomponents were generated within area 3b.
Collapse
Affiliation(s)
- M Sonoo
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
35
|
Sonoo M, Hagiwara H, Motoyoshi Y, Shimizu T. Preserved widespread N18 and progressive loss of P13/14 of median nerve SEPs in a patient with unilateral medial medullary syndrome. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1996; 100:488-92. [PMID: 8980412 DOI: 10.1016/s0168-5597(96)96023-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Median nerve somatosensory evoked potentials (SEPs) in a patient with unilateral medial medullary syndrome of recent onset having an MRI-confirmed lesion at upper medulla were investigated. Cortical N20 following stimulation of the affected limb was extremely depressed and delayed, whereas widespread N18, which was best manifested by the CPi-C2S lead (CPi is centroparietal electrode ipsilateral to the stimulation), showed no significant difference regarding amplitude and duration between affected and non-affected sides. The result supported our previous opinion that the principal part of N18, the broad negativity lasting around 20 ms, originates from the cuneate nucleus at the medullary level. Less steep onset of N18 on the affected side suggested that some structures rostral to the cuneate nucleus, possibly the termination of the overall ascending volley, may contribute to the earliest part of N18. P13/14 on the affected side normally preserved at the first examination progressively declined and finally disappeared after 4 months, which suggested that the major part of P13/14 is generated within caudalmost medial lemniscus, as well as the occurrence of retrograde degeneration of lemniscal fibers.
Collapse
Affiliation(s)
- M Sonoo
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|