1
|
Sosic A, Sinigaglia L, Cappellini M, Carli I, Parolin C, Zagotto G, Sabatino G, Rovero P, Fabris D, Gatto B. Mechanisms of HIV-1 Nucleocapsid Protein Inhibition by Lysyl-Peptidyl-Anthraquinone Conjugates. Bioconjug Chem 2015; 27:247-56. [PMID: 26666402 DOI: 10.1021/acs.bioconjchem.5b00627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Nucleocapsid protein NCp7 (NC) is a nucleic acid chaperone responsible for essential steps of the HIV-1 life cycle and an attractive candidate for drug development. NC destabilizes nucleic acid structures and promotes the formation of annealed substrates for HIV-1 reverse transcription elongation. Short helical nucleic acid segments bordered by bulges and loops, such as the Trans-Activation Response element (TAR) of HIV-1 and its complementary sequence (cTAR), are nucleation elements for helix destabilization by NC and also preferred recognition sites for threading intercalators. Inspired by these observations, we have recently demonstrated that 2,6-disubstituted peptidyl-anthraquinone-conjugates inhibit the chaperone activities of recombinant NC in vitro, and that inhibition correlates with the stabilization of TAR and cTAR stem-loop structures. We describe here enhanced NC inhibitory activity by novel conjugates that exhibit longer peptidyl chains ending with a conserved N-terminal lysine. Their efficient inhibition of TAR/cTAR annealing mediated by NC originates from the combination of at least three different mechanisms, namely, their stabilizing effects on nucleic acids dynamics by threading intercalation, their ability to target TAR RNA substrate leading to a direct competition with the protein for the same binding sites on TAR, and, finally, their effective binding to the NC protein. Our results suggest that these molecules may represent the stepping-stone for the future development of NC-inhibitors capable of targeting the protein itself and its recognition site in RNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paolo Rovero
- Dipartimento NeuroFarBa, Sezione di Scienze Farmaceutiche e Nutraceutica, Università di Firenze , 50121 Firenze, Italy
| | - Dan Fabris
- Department of Chemistry, State University of New York , Albany, New York 12222, United States
| | | |
Collapse
|
2
|
Gopal V. Bioinspired peptides as versatile nucleic acid delivery platforms. J Control Release 2013; 167:323-32. [DOI: 10.1016/j.jconrel.2013.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/11/2013] [Accepted: 02/21/2013] [Indexed: 01/28/2023]
|
3
|
Sosic A, Frecentese F, Perissutti E, Sinigaglia L, Santagada V, Caliendo G, Magli E, Ciano A, Zagotto G, Parolin C, Gatto B. Design, synthesis and biological evaluation of TAR and cTAR binders as HIV-1 nucleocapsid inhibitors. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00212h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
He M, Yuan D, Lin W, Pang R, Yu X, Yang M. Synthesis and assay of isoquinoline derivatives as HIV-1 Tat-TAR interaction inhibitors. Bioorg Med Chem Lett 2005; 15:3978-81. [PMID: 16039124 DOI: 10.1016/j.bmcl.2005.01.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 01/25/2005] [Accepted: 01/27/2005] [Indexed: 11/25/2022]
Abstract
Four new isoquinoline derivatives bearing guanidinium group or amino group-terminated side chain were synthesized to target the HIV-1 TAR element. Their abilities to bind TAR RNA and inhibit Tat-TAR RNA interaction were determined by CE analysis, a Tat-dependent HIV-1 LTR-driven CAT assay and SIV-induced syncytium evaluation.
Collapse
Affiliation(s)
- Meizi He
- National Research Laboratory of Natural and Biomimertic Drugs, Peking University, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
5
|
Wang M, Xu Z, Tu P, Yu X, Xiao S, Yang M. Alpha,alpha-trehalose derivatives bearing guanidino groups as inhibitors to HIV-1 Tat-TAR RNA interaction in human cells. Bioorg Med Chem Lett 2004; 14:2585-8. [PMID: 15109657 DOI: 10.1016/j.bmcl.2004.02.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 02/21/2004] [Indexed: 10/26/2022]
Abstract
Replication of HIV-1 requires specific interactions of Tat protein with TAR RNA. Disruption of Tat-TAR RNA interaction could inhibit HIV-1 replication. Here four target compounds were designed and synthesized to bind to TAR RNA for blocking the interaction of Tat-TAR RNA. The core molecule 6,6'-diamino-6,6'-dideoxy-alpha,alpha-trehalose was obtained from selective bromination of, alpha,alpha-trehalose at C-6,6', followed by acetylation, azide displacement, deacetylation, and reduction. Coupling of the core molecule with the protected amino acid, then deprotection and guanidinylation generated the novel alpha,alpha-trehalose derivatives. Their abilities to inhibit Tat-TAR RNA interaction in human cells were determined by a Tat-dependent HIV-1 LTR-driven CAT assays.
Collapse
Affiliation(s)
- Min Wang
- National Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
6
|
Mühlberger R, Robelek R, Eisenreich W, Ettenhuber C, Sinner EK, Kessler H, Bacher A, Richter G. RNA DNA discrimination by the antitermination protein NusB. J Mol Biol 2003; 327:973-83. [PMID: 12662923 DOI: 10.1016/s0022-2836(03)00213-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The regulation of ribosomal RNA biosynthesis in Escherichia coli by antitermination requires binding of NusB protein to a dodecamer sequence designated boxA on the nascent RNA. The affinity of NusB protein for boxA RNA exceeds that for the homologous DNA segment by more than three orders of magnitude as shown by surface plasmon resonance measurements. DNA RNA discrimination by NusB protein was shown to involve methyl groups (i.e. discrimination of uracil versus thymine) and 2' hydroxyl groups (i.e. discrimination of ribose versus deoxyribose side-chains) in the RNA motif. Ligand perturbation experiments monitored by 1H15N correlation NMR experiments identified amide NH groups whose chemical shifts are affected selectively by ribose/deoxyribose exchange in the 5' and the central part of the dodecameric boxA motif respectively. The impact of structural modification of the boxA motif on the affinity for NusB protein as observed by 1H15N heterocorrelation was analysed by a generic algorithm.
Collapse
Affiliation(s)
- René Mühlberger
- Lehrstuhl für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lüttgen H, Robelek R, Mühlberger R, Diercks T, Schuster SC, Köhler P, Kessler H, Bacher A, Richter G. Transcriptional regulation by antitermination. Interaction of RNA with NusB protein and NusB/NusE protein complex of Escherichia coli. J Mol Biol 2002; 316:875-85. [PMID: 11884128 DOI: 10.1006/jmbi.2001.5388] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A recombinant heterodimeric NusB/NusE protein complex of Escherichia coli was expressed under the control of a synthetic mini operon. Surface plasmon resonance measurements showed that the heterodimer complex has substantially higher affinity for the boxA RNA sequence motif of the ribosomal RNA (rrn) operons of E.coli as compared to monomeric NusB protein. Single base exchanges in boxA RNA reduced the affinity of the protein complex up to 15-fold. The impact of base exchanges in the boxA RNA on the interaction with NusB protein was studied by (1)H,(15)N heterocorrelation NMR spectroscopy. Spectra obtained with modified RNA sequences were analysed by a novel generic algorithm. Replacement of bases in the terminal segments of the boxA RNA motif caused minor chemical shift changes as compared to base exchanges in the central part of the dodecameric boxA motif.
Collapse
Affiliation(s)
- Holger Lüttgen
- Lehrstuhl für Organische Chemie und Biochemie, Technische Universität München, Garching, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Maw HH, Hall LH. E-state modeling of HIV-1 protease inhibitor binding independent of 3D information. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 2002; 42:290-8. [PMID: 11911698 DOI: 10.1021/ci010091z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Data for HIV-1 protease inhibitors (in vitro enzyme binding) were used as a training set to develop a QSAR model based on topological descriptors, including two hydrogen E-state indices, along with a molecular connectivity chi and a kappa shape index. A statistically satisfactory four-variable model was obtained for the 32 compounds in the training set, r2 = 0.86, s = 0.60, and q2 = 0.79, without the use of information from 3D geometries or detailed interaction energy calculations. The model was validated through the prediction of 15 compounds in the external test set, yielding a mean absolute error, MAE, = 0.82. Structure interpretation is given for each variable to assist in the design of new compounds. Structure features emphasized in the model include hydrogen bond donating ability, nonpolar groups, skeletal branching, and molecular globularity. On the basis of these statistical criteria, this E-state model may be considered useful for prediction of pIC50 values for new HIV-1 protease inhibitors.
Collapse
Affiliation(s)
- Hlaing Hlaing Maw
- Department of Chemistry, Eastern Nazarene College, Quincy, Massachusetts 02170, USA
| | | |
Collapse
|
9
|
Van Lint C. Role of chromatin in HIV-1 transcriptional regulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:121-60. [PMID: 10987090 DOI: 10.1016/s1054-3589(00)48005-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C Van Lint
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
10
|
Peasley K. A nucleoside analogue of 2, 4-difluoropyridine has potential as an antiretroviral agent with multiple and unique mechanisms of action, and may be effective against the HIV organism. Med Hypotheses 2000; 55:408-14. [PMID: 11058420 DOI: 10.1054/mehy.2000.1077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The high rate of mutation which is inherent in reverse transcription of the HIV genome is a result of the lack of proof-reading function of the reverse transcriptase enzyme. This has allowed the HIV virus to develop resistance to multiple antiviral agents. It may be possible to use this viral property to advantage by treatment with an antiviral nucleoside analogue which is a close structural isostere of uridine and deoxyuridine. The drug is unable to form hydrogen bonds with adenine and will be excluded from host cell DNA by its 3' to 5' proof-reading exonuclease activity. However, reverse transcriptase, which has no such mechanism, will allow incorporation of the drug into proviral DNA. The drug will have an inhibitory effect on RNase H function. It will also be expected to cause delay in elongation at those sites in the template strand that contain two or more adjacent adenine bases, because two drug molecules will, for practical purposes, never be inserted in the same strand next to each other. The length of the delay in strand elongation will therefore be a function of the availability of the natural NTP or dNTP. Both the rate and fidelity of protein synthesis will be affected by the drug. There will be decreased stability of the proviral double stranded DNA and if the proviral DNA is able to integrate into the host cell chromosome, double stranded breaks may be produced by the host cells' DNA repair mechanisms. Finally there will be a specific 'strand trade' mutation that the drug will induce specifically into viral but not into cellular genetic material.
Collapse
|
11
|
Bourdeau V, Ferbeyre G, Pageau M, Paquin B, Cedergren R. The distribution of RNA motifs in natural sequences. Nucleic Acids Res 1999; 27:4457-67. [PMID: 10536156 PMCID: PMC148730 DOI: 10.1093/nar/27.22.4457] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Functional analysis of genome sequences has largely ignored RNA genes and their structures. We introduce here the notion of 'ribonomics' to describe the search for the distribution of and eventually the determination of the physiological roles of these RNA structures found in the sequence databases. The utility of this approach is illustrated here by the identification in the GenBank database of RNA motifs having known binding or chemical activity. The frequency of these motifs indicates that most have originated from evolutionary drift and are selectively neutral. On the other hand, their distribution among species and their location within genes suggest that the destiny of these motifs may be more elaborate. For example, the hammerhead motif has a skewed organismal presence, is phylogenetically stable and recent work on a schistosome version confirms its in vivo biological activity. The under-representation of the valine-binding motif and the Rev-binding element in GenBank hints at a detrimental effect on cell growth or viability. Data on the presence and the location of these motifs may provide critical guidance in the design of experiments directed towards the understanding and the manipulation of RNA complexes and activities in vivo.
Collapse
Affiliation(s)
- V Bourdeau
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
12
|
Terreux R, Cabrol-Bass D, Peytou V, Condom R, Guedj R. Modeling of the interaction between new ethidium derivatives and TAR RNA of HIV-1. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 1999; 39:413-9. [PMID: 10192951 DOI: 10.1021/ci980094k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the HIV-1 replication process, interactions between the first sequence of RNA synthesized named TAR RNA and a viral protein named Tat permit a fast and efficient transcription of viral DNA in RNA. Based on the NMR structure of TAR RNA found on the PDB, new derivatives of ethidium were designed by molecular modeling to inhibit this interaction. The studied molecules are composed of three domains: an arginine, a linker, and an ethidium. Three linkers of different lengths were considered in the first step, with the TAR RNA-arginine interaction and the intercalation of the ethidium simulated by docking methods. In a second step, the structure of the TAR RNA was completed to obtain a whole ethidium interaction site and docking of the whole studied molecules was investigated. Molecules were synthesized and tested on infected cells. The predicted models and activity are in good agreement with the reported experimental results.
Collapse
Affiliation(s)
- R Terreux
- GRECFO-Equipe LARTIC, Université de Nice Sophia Antipolis, France
| | | | | | | | | |
Collapse
|
13
|
Pinaud S, Mirkovitch J. Regulation of c-fos expression by RNA polymerase elongation competence. J Mol Biol 1998; 280:785-98. [PMID: 9671550 DOI: 10.1006/jmbi.1998.1905] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular mechanisms underlying transcription elongation and their role in gene regulation are poorly characterized in eukaryotes. A number of genes, however, have been proposed to be regulated at the level of transcription elongation, including c-myc, c-fos and c-myb. Here, we analyze the control of transcription elongation at the mouse c-fos gene at the nucleotide level in intact cells. We find that RNA polymerases are engaged in the promoter-proximal part of the gene in the absence of gene activation signals and mRNA synthesis. Importantly, we determine that the engaged RNA polymerases originate from a continuous initiation of transcription which, in the absence of gene activation signals, terminate close to the promoter. We also observe that the c-fos gene presents an active chromatin conformation, with the promoter and upstream regulatory sequences constitutively occupied by proteins, accounting for the continuous initiation of RNA polymerase complexes. We propose that activation of c-fos gene expression results primarily from the assembly of elongation-competent RNA polymerases that can transcribe the complete gene. Our results suggest that the engaged RNA polymerases found downstream of a number of other eukaryotic promoters may be associated with transcription termination of elongation-incompetent polymerases in the absence of activating signals.
Collapse
Affiliation(s)
- S Pinaud
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, Epalinges, CH-1066, Switzerland
| | | |
Collapse
|
14
|
Huenges M, Rölz C, Gschwind R, Peteranderl R, Berglechner F, Richter G, Bacher A, Kessler H, Gemmecker G. Solution structure of the antitermination protein NusB of Escherichia coli: a novel all-helical fold for an RNA-binding protein. EMBO J 1998; 17:4092-100. [PMID: 9670024 PMCID: PMC1170742 DOI: 10.1093/emboj/17.14.4092] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The NusB protein of Escherichia coli is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. In cooperation with several other proteins, it binds to a dodecamer motif designated rrn boxA on the nascent rRNA. The antitermination proteins of E.coli are recruited in the replication cycle of bacteriophage lambda, where they play an important role in switching from the lysogenic to the lytic cycle. Multidimensional heteronuclear NMR experiments were performed with recombinant NusB protein labelled with 13C, 15N and 2H. The three-dimensional structure of the protein was solved from 1926 NMR-derived distances and 80 torsion angle restraints. The protein folds into an alpha/alpha-helical topology consisting of six helices; the arginine-rich N-terminus appears to be disordered. Complexation of the protein with an RNA dodecamer equivalent to the rrn boxA site results in chemical shift changes of numerous amide signals. The overall packing of the protein appears to be conserved, but the flexible N-terminus adopts a more rigid structure upon RNA binding, indicating that the N-terminus functions as an arginine-rich RNA-binding motif (ARM).
Collapse
Affiliation(s)
- M Huenges
- Lehrstuhl für Organische Chemie II, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Berglechner F, Richter G, Fischer M, Bacher A, Gschwind RM, Huenges M, Gemmecker G, Kessler H. Studies on the NusB protein of Escherichia coli--expression and determination of secondary-structure elements by multinuclear NMR spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:338-46. [PMID: 9346286 DOI: 10.1111/j.1432-1033.1997.00338.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The product of the nusB gene of Escherichia coli modulates the efficiency of transcription termination at nut (N utilization) sites of various bacterial and bacteriophage lambda genes. Similar control mechanisms operate in eukaryotic viruses (e.g. human immunodeficiency virus). A recombinant strain of E. coli producing relatively large amounts of NusB protein (about 10% of cell protein) was constructed. The protein could be purified with high yield by anion-exchange chromatography followed by gel-permeation chromatography. The protein is a monomer of 15.6 kDa as shown by analytical ultracentrifugation. Structural studies were performed using protein samples labelled with 15N, 13C and 2H in various combinations. Heteronuclear three-dimensional triple-resonance NMR experiments combined with a semi-automatic assignment procedure yielded the sequential assignment of the 1H, 13C and 15N backbone resonances. Based on experimentally derived scalar couplings, chemical-shift values, amide-exchange data, and a semiquantitative interpretation of NOE data, the secondary structure of NusB has classified as alpha helical, comprising seven alpha helices.
Collapse
Affiliation(s)
- F Berglechner
- Lehrstuhl für Organische Chemie und Biochemie, Technische Universität München, Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mei HY, Mack DP, Galan AA, Halim NS, Heldsinger A, Loo JA, Moreland DW, Sannes-Lowery KA, Sharmeen L, Truong HN, Czarnik AW. Discovery of selective, small-molecule inhibitors of RNA complexes--I. The Tat protein/TAR RNA complexes required for HIV-1 transcription. Bioorg Med Chem 1997; 5:1173-84. [PMID: 9222511 DOI: 10.1016/s0968-0896(97)00064-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have developed a therapeutic program focusing on the inhibition of a human immunodeficiency virus-1 specific protein-RNA interaction. This program begins with a search for small organic molecules that would interfere with the binding of Tat protein to TAR RNA. The methodologies chosen to study the HIV-1 Tat-TAR interaction and inhibition include gel mobility shift assays, scintillation proximity assays, filtration assays, and mass spectrometry. These methods helped establish in vitro high-throughput screening assays which rapidly identified Tat-TAR inhibitors from our corporate compound library. Tat-activated reporter gene assays were then used to investigate the cellular activities of the Tat-TAR inhibitors. The cellular activity, selectivity, and toxicity data for select Tat-TAR inhibitors were determined. Evaluation of both the cellular data and the Tat-TAR inhibition results led to further testing in anti-HIV-1 infection assays.
Collapse
Affiliation(s)
- H Y Mei
- BioOrganic Chemistry Section, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI 48106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ferbeyre G, Bourdeau V, Cedergren R. Does HIV tat protein also regulate genes of other viruses present in HIV infection? Trends Biochem Sci 1997; 22:115-6. [PMID: 9149528 DOI: 10.1016/s0968-0004(97)01011-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Chen G, Rothnie HM, He X, Hohn T, Fütterer J. Efficient transcription from the rice tungro bacilliform virus promoter requires elements downstream of the transcription start site. J Virol 1996; 70:8411-21. [PMID: 8970962 PMCID: PMC190930 DOI: 10.1128/jvi.70.12.8411-8421.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Elements downstream of the transcription start site enhance the activity of the rice tungro bacilliform virus (RTBV) promoter in protoplasts derived from cultured rice cells. This enhancer region was located to the first 90 nucleotides of the RTBV leader sequence. Within this region, at least two components which act together to enhance expression from the RTBV promoter could be identified. One is a position- and orientation-independent DNA element within a CT-rich region, and the other is a position-dependent element. Either element was found to be capable of acting independently on a heterologous promoter. The enhancer activity of the DNA element correlates with specific binding of nuclear proteins. Nuclear proteins also recognize an RNA transcript covering the first 90 nucleotides of the RTBV leader.
Collapse
Affiliation(s)
- G Chen
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Abstract
Tat may stimulate transcriptional elongation by recruitment of a complex containing Tat-SF1 and a kinase to the human immunodeficiency virus-type 1 (HIV-1) promoter through a Tat-TAR interaction. A complementary DNA for the cellular activity, Tat-SF1, has been isolated. This factor is required for Tat trans-activation and is a substrate of an associated cellular kinase. Cotransfection with the complementary DNA for Tat-SF1 specifically modulates Tat activation. Tat-SF1 contains two RNA recognition motifs and a highly acidic carboxyl-terminal half. It is distantly related to EWS and FUS/TLS, members of a family of putative transcription factors with RNA recognition motifs that are associated with sarcomas.
Collapse
Affiliation(s)
- Q Zhou
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
20
|
Abstract
Depending on the stage of their intervention with the viral replicative cycle, human immunodeficiency virus inhibitors could be divided into the following groups: (i) adsorption inhibitors (i.e., CD4 constructs, polysulfates, polysulfonates, polycarboxylates, and polyoxometalates), (ii) fusion inhibitors (i.e., plant lectins, succinylated or aconitylated albumins, and betulinic acid derivatives), (iii) uncoating inhibitors (i.e., bicyclams), (iv) reverse transcription inhibitors acting either competitively with the substrate binding site (i.e., dideoxynucleoside analogs and acyclic nucleoside phosphonates) or allosterically with a nonsubstrate binding site (i.e., non-nucleoside reverse transcriptase inhibitors), (v) integration inhibitors, (vi) DNA replication inhibitors, (vii) transcription inhibitors (i.e., antisense oligodeoxynucleotides and Tat antagonists), (viii) translation inhibitors (i.e., antisense oligodeoxynucleotides and ribozymes), (ix) maturation inhibitors (i.e., protease inhibitors, myristoylation inhibitors, and glycosylation inhibitors), and finally, (x) budding (assembly/release) inhibitors. Current knowledge, including the therapeutic potential, of these various inhibitors is discussed. In view of their potential clinical the utility, the problem of virus-drug resistance and possible strategies to circumvent this problem are also addressed.
Collapse
Affiliation(s)
- E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
21
|
|
22
|
Churcher MJ, Lowe AD, Gait MJ, Karn J. The RNA element encoded by the trans-activation-responsive region of human immunodeficiency virus type 1 is functional when displaced downstream of the start of transcription. Proc Natl Acad Sci U S A 1995; 92:2408-12. [PMID: 7892280 PMCID: PMC42493 DOI: 10.1073/pnas.92.6.2408] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) trans-activator protein, Tat, specifically stimulates transcription from the viral long terminal repeat. Tat binds to an RNA stem-loop structure encoded by the trans-activation response region (TAR). To test whether TAR is functional when displaced downstream of the start of transcription, we assayed a series of templates carrying duplicated TAR elements in cell-free transcription systems. When the normally positioned TAR element (TAR-1) is inactivated by mutations in either the Tat binding site or the apical loop sequence, which acts as the binding site for a cellular factor, transactivation can be rescued by a wild-type TAR element placed downstream (TAR-2). The TAR-2 element is functional even when placed > 200 nt downstream of TAR-1. TAR complementation experiments have also shown that a functional TAR element requires both an intact Tat binding site and an intact apical loop sequence. For example, if TAR-1 carries a mutation in the loop element it cannot be rescued by a TAR-2 element carrying a mutation in the Tat binding site. Substitution mutations in TAR-1 show that the 5' half of TAR also encodes an essential DNA element which is required for efficient transcription initiation. These results strongly suggest that Tat and cellular cofactors which bind TAR RNA associate with the transcription complex during its transit through TAR.
Collapse
Affiliation(s)
- M J Churcher
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
23
|
Wright S, Lu X, Peterlin BM. Human immunodeficiency virus type 1 tat directs transcription through attenuation sites within the mouse c-myc gene. J Mol Biol 1994; 243:568-73. [PMID: 7525969 DOI: 10.1016/0022-2836(94)90031-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The regulation of transcriptional elongation plays a central role in the expression of a number of cellular and viral genes. For example, levels of c-myc RNA change during cellular proliferation and differentiation via alterations in transcriptional attenuation near the 5' end of the c-myc gene. The protein that regulates transcription through attenuation sites in c-myc has not been identified. However, a candidate protein of equivalent function exists in the human immunodeficiency virus (HIV) genome, where the transactivator Tat increases transcriptional elongation through the HIV LTR and coding sequences by interacting with the trans-acting-response (TAR) RNA stem-loop that is found at the 5' end of all viral transcripts. By placing TAR 3' to the P2 promoter of the mouse c-myc gene, we demonstrate that Tat can also direct read-through transcription in mouse c-myc in transfected HeLa cells. Thus we identified a viral transactivator whose cellular counterpart regulates transcriptional attenuation within c-myc and other proto-oncogenes.
Collapse
Affiliation(s)
- S Wright
- Wellcome/CRC Institute of Cancer and Developmental Biology, Cambridge, England
| | | | | |
Collapse
|
24
|
Abstract
In eukaryotic cells, a multitude of RNA-binding proteins play key roles in the posttranscriptional regulation of gene expression. Characterization of these proteins has led to the identification of several RNA-binding motifs, and recent experiments have begun to illustrate how several of them bind RNA. The significance of these interactions is reflected in the recent discoveries that several human and other vertebrate genetic disorders are caused by aberrant expression of RNA-binding proteins. The major RNA-binding motifs are described and examples of how they may function are given.
Collapse
Affiliation(s)
- C G Burd
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148
| | | |
Collapse
|
25
|
Pearson L, Chen CB, Gaynor RP, Sigman DS. Footprinting RNA-protein complexes following gel retardation assays: application to the R-17-procoat-RNA and tat--TAR interactions. Nucleic Acids Res 1994; 22:2255-63. [PMID: 8036153 PMCID: PMC523682 DOI: 10.1093/nar/22.12.2255] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA-protein complexes isolated following a gel retardation assay can be footprinted within the gel matrix using the chemical nuclease activities of 4,7-dimethyl-, 5,6-dimethyl-, and 3,4,7,8-tetramethyl-1,10-phenanthroline-copper. These complexes are more reactive than 1,10-phenanthroline-copper but share its reaction preference for bulges and loops. The interaction of the coat protein of R-17 with its viral RNA target and tat- and tat-derived peptides with HIV TAR RNA have been studied. In both cases, the RNA sequence opposite a 2-3 nucleotide bulge are protected. Tat-derived peptides inhibit cleavage at sites which intact tat does not protect. These results are consistent with transcription studies which have suggested that truncation of tat increases nonspecific binding.
Collapse
Affiliation(s)
- L Pearson
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles 90024-1570
| | | | | | | |
Collapse
|
26
|
Van Lint C, Ghysdael J, Paras P, Burny A, Verdin E. A transcriptional regulatory element is associated with a nuclease-hypersensitive site in the pol gene of human immunodeficiency virus type 1. J Virol 1994; 68:2632-48. [PMID: 8139041 PMCID: PMC236741 DOI: 10.1128/jvi.68.4.2632-2648.1994] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Analysis of the chromatin organization of the integrated human immunodeficiency virus type 1 (HIV-1) genome has previously revealed a major constitutive DNase I-hypersensitive site associated with the pol gene (E. Verdin, J. Virol. 65:6790-6799, 1991). In the present report, high-resolution mapping of this site with DNase I and micrococcal nuclease identified a nucleosome-free region centered around nucleotides (nt) 4490 to 4766. A 500-bp fragment encompassing this hypersensitive site (nt 4481 to 4982) exhibited transcription-enhancing activity (two- to threefold) when it was cloned in its natural position with respect to the HIV-1 promoter after transient transfection in U937 and CEM cells. Using in vitro footprinting and gel shift assays, we have identified four distinct binding sites for nuclear proteins within this positive regulatory element. Site B (nt 4519 to 4545) specifically bound four distinct nuclear protein complexes: a ubiquitous factor, a T-cell-specific factor, a B-cell-specific factor, and the monocyte/macrophage- and B-cell-specific transcription factor PU.1/Spi-1. In most HIV-1 isolates in which this PU box was not conserved, it was replaced by a binding site for the related factor Ets1. Factors binding to site C (nt 4681 to 4701) had a DNA-binding specificity similar to that of factors binding to site B, except for PU.1/Spi-1. A GC box containing a binding site for Sp1 was identified (nt 4623 to 4631). Site D (nt 4816 to 4851) specifically bound a ubiquitously expressed factor. These results identify a transcriptional regulatory element associated with a nuclease-hypersensitive site in the pol gene of HIV-1 and suggest that its activity may be controlled by a complex interplay of cis-regulatory elements.
Collapse
Affiliation(s)
- C Van Lint
- Laboratory of Viral and Molecular Pathogenesis, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
27
|
Li C, Wang C, Pardee A. Camptothecin inhibits Tat-mediated transactivation of type 1 human immunodeficiency virus. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37242-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Oelze I, Rittner K, Sczakiel G. Adeno-associated virus type 2 rep gene-mediated inhibition of basal gene expression of human immunodeficiency virus type 1 involves its negative regulatory functions. J Virol 1994; 68:1229-33. [PMID: 8289357 PMCID: PMC236567 DOI: 10.1128/jvi.68.2.1229-1233.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Adeno-associated virus type 2 (AAV-2), a human parvovirus which is apathogenic in adults, inhibits replication and gene expression of human immunodeficiency virus type 1 (HIV-1) in human cells. The rep gene of AAV-2, which was shown earlier to be sufficient for this negative interference, also down-regulated the expression of heterologous sequences driven by the long terminal repeat (LTR) of HIV-1. This effect was observed in the absence of the HIV-1 transactivator Tat, i.e., at basal levels of LTR-driven transcription. In this work, we studied the involvement of functional subsequences of the HIV-1 LTR in rep-mediated inhibition in the absence of Tat. Mutated LTRs driving an indicator gene (cat) were cointroduced into human SW480 cells together with rep alone or with double-stranded DNA fragments or RNA containing sequences of the HIV-1 LTR. The results indicate that rep strongly enhances the function of negative regulatory elements of the LTR. In addition, the experiments revealed a transcribed sequence element located within the TAR-coding sequence termed AHHH (AAV-HIV homology element derived from HIV-1) which is involved in rep-mediated inhibition. The AHHH element is also involved in down-regulation of basal expression levels in the absence of rep, suggesting that AHHH also contributes to negative regulatory functions of the LTR of HIV-1. In contrast, positive regulatory elements of the HIV-1 LTR such as the NF kappa B and SP1 binding sites have no significant influence on the rep-mediated inhibition.
Collapse
Affiliation(s)
- I Oelze
- Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | |
Collapse
|
29
|
Sloan SB, Weisberg RA. Use of a gene encoding a suppressor tRNA as a reporter of transcription: analyzing the action of the Nun protein of bacteriophage HK022. Proc Natl Acad Sci U S A 1993; 90:9842-6. [PMID: 8234323 PMCID: PMC47668 DOI: 10.1073/pnas.90.21.9842] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Nun protein of phage HK022 blocks the expression of genes that lie downstream of the nut sites of phage lambda. Nun is believed to act by promoting premature termination of transcription at or near these sites. To test this hypothesis and to facilitate mapping the sites of termination, we inserted a gene encoding a suppressor tRNA immediately downstream of the lambda nutL site and determined the effect of Nun on tRNA level. We found that Nun severely reduced the accumulation of mature, biologically active tRNA and promoted the accumulation of short, promoter-proximal transcripts whose 3' ends were dispersed over a 100-nucleotide region downstream of nutL. These results are consistent with the hypothesis that Nun terminates transcription within the region immediately downstream of nutL and are inconsistent with the hypothesis that the only action of Nun is to prevent translation of genes located downstream of the nut site. The stability, small size, and easily assayable biological function of suppressor tRNA recommend it as a reporter of transcription in other systems.
Collapse
MESH Headings
- Bacteriophage lambda/genetics
- Bacteriophage lambda/metabolism
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Coliphages/genetics
- Coliphages/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genes, Suppressor
- Genes, Viral
- Genotype
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids
- RNA, Transfer, Gly/biosynthesis
- RNA, Transfer, Gly/genetics
- Restriction Mapping
- Suppression, Genetic
- Transcription Factors/metabolism
- Transcription, Genetic
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- S B Sloan
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
30
|
Watson ME, Moore M. A quantitative assay for trans-activation by HIV-1 Tat, using liposome-mediated DNA uptake and a parallel ELISA system. AIDS Res Hum Retroviruses 1993; 9:861-7. [PMID: 8257635 DOI: 10.1089/aid.1993.9.861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A cellular assay is described in which transient high-level expression of a heterologous reporter gene (chloramphenicol acetyltransferase, CAT) driven by the HIV LTR is used to determine trans-activation in a cell line constitutively expressing Tat. The use of a parallel ELISA system to determine effects on expression of CAT and of the neomycin phosphotransferase (NPT) marker gene effectively eliminated sample variability caused by cumulative processing errors or cell culture conditions. In addition the use of cationic liposome-mediated transfection minimized delay between DNA treatment that initiates trans-activation and addition of inhibitors, thereby eliminating background expression levels in treated samples. The assay has the potential to discriminate between inhibition of trans-activation and nonspecific effects such as inhibition of transfection and cytotoxicity. It has been adapted to a 96-well format suitable for high-throughput screening of natural products and synthetic chemicals.
Collapse
Affiliation(s)
- M E Watson
- Xenova Limited, Slough, Berkshire, England
| | | |
Collapse
|
31
|
Affiliation(s)
- S Wright
- Wellcome/CRC Institute of Cancer and Developmental Biology, Cambridge, England
| |
Collapse
|
32
|
X Ma MY, McCallum K, Climie SC, Kuperman R, Lin WC, Sumner-Smith M, Barnett RW. Design and synthesis of RNA miniduplexes via a synthetic linker approach. 2. Generation of covalently closed, double-stranded cyclic HIV-1 TAR RNA analogs with high Tat-binding affinity. Nucleic Acids Res 1993; 21:2585-9. [PMID: 8332456 PMCID: PMC309585 DOI: 10.1093/nar/21.11.2585] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We recently developed an approach which allows rapid generation of short, double-stranded oligonucleotides whereby one end of the duplex was joined and stabilized by a synthetic linker of specific design (miniduplexes)(6). Model miniduplexes based on the HIV-1 TAR RNA hairpin were shown to be thermodynamically stable and good substrates for binding by the HIV-1 Tat protein which normally bind to natural TAR (6). In this study, we have extended our studies to the design, synthesis and analysis of the binding properties of covalently closed, double-stranded, cyclic RNA miniduplexes. A strategy using automated chemical synthesis and T4 RNA ligase-catalyzed cyclization was employed to generate cyclic oligoribonucleotides. When both ends of a shortened, wild-type TAR RNA stem (9 bp) were covalently linked through either nucleotidic loops (4-6 nt) or synthetic linkers (derivatized from hexaethylene glycol), the resulting cyclic TAR RNA analogs were good substrates for binding by both Tat-derived peptide or full-length Tat protein. Interestingly, the cyclic TAR analogs failed to show any binding if the synthetic linker was reduced in length (e.g. derivatized from triethylene glycol), although such linkers are acceptable in the hairpin-shaped miniduplexes series (6). This implies that RNA conformational changes are required for Tat binding and that these changes are restricted in certain cyclic variants. Our findings suggest that covalently-closed nucleic acid miniduplexes may be useful both to study nucleic acid-protein interactions as well as to provide a basis for therapeutic intervention as transcription decoys.
Collapse
Affiliation(s)
- M Y X Ma
- Allelix Biopharmaceuticals Inc., Mississauga, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Luo Y, Peterlin BM. Juxtaposition between activation and basic domains of human immunodeficiency virus type 1 Tat is required for optimal interactions between Tat and TAR. J Virol 1993; 67:3441-5. [PMID: 8497060 PMCID: PMC237689 DOI: 10.1128/jvi.67.6.3441-3445.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
trans activation of the human immunodeficiency virus type 1 long terminal repeat requires that the viral trans activator Tat interact with the trans-acting responsive region (TAR) RNA. Although the N-terminal 47 amino acids represent an independent activation domain that functions via heterologous nucleic acid-binding proteins, sequences of Tat that are required for interactions between Tat and TAR in cells have not been defined. Although in vitro binding studies suggested that the nine basic amino acids from positions 48 to 57 in Tat bind efficiently to the 5' bulge in the TAR RNA stem-loop, by creating several mutants of Tat and new hybrid proteins between Tat and the coat protein of bacteriophage R17, we determined that this arginine-rich domain is not sufficient for interactions between Tat and TAR in vivo. Rather, the activation domain is also required and must be juxtaposed to the basic domain. Thus, in vitro TAR RNA binding does not translate to function in vivo, which suggests that other proteins are important for specific and productive interactions between Tat and TAR.
Collapse
Affiliation(s)
- Y Luo
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco 94143
| | | |
Collapse
|