1
|
Adipokinetic hormone signaling in the malaria vector Anopheles gambiae facilitates Plasmodium falciparum sporogony. Commun Biol 2023; 6:171. [PMID: 36782045 PMCID: PMC9924834 DOI: 10.1038/s42003-023-04518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
An obligatory step in the complex life cycle of the malaria parasite is sporogony, which occurs during the oocyst stage in adult female Anopheles mosquitoes. Sporogony is metabolically demanding, and successful oocyst maturation is dependent on host lipids. In insects, lipid energy reserves are mobilized by adipokinetic hormones (AKHs). We hypothesized that Plasmodium falciparum infection activates Anopheles gambiae AKH signaling and lipid mobilization. We profiled the expression patterns of AKH pathway genes and AgAkh1 peptide levels in An. gambiae during starvation, after blood feeding, and following infection and observed a significant time-dependent up-regulation of AKH pathway genes and peptide levels during infection. Depletion of AgAkh1 and AgAkhR by RNAi reduced salivary gland sporozoite production, while synthetic AgAkh1 peptide supplementation rescued sporozoite numbers. Inoculation of uninfected female mosquitoes with supernatant from P. falciparum-infected midguts activated AKH signaling. Clearly, identifying the parasite molecules mediating AKH signaling in P. falciparum sporogony is paramount.
Collapse
|
2
|
Zhou Y, Grieser AM, Do J, Itsara LS, Vaughan AM, Ghosh AK. Purification and production of Plasmodium falciparum zygotes from in vitro culture using magnetic column and Percoll density gradient. Malar J 2020; 19:192. [PMID: 32450861 PMCID: PMC7249376 DOI: 10.1186/s12936-020-03237-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/16/2020] [Indexed: 01/20/2023] Open
Abstract
Background Plasmodium falciparum zygotes develop in the mosquito midgut after an infectious blood meal containing mature male and female gametocytes. Studies of mosquito-produced P. falciparum zygotes to elucidate their biology and development have been hampered by high levels of contaminating mosquito proteins and macromolecules present in zygote preparations. Thus, no zygote-specific surface markers have been identified to date. Here, a methodology is developed to obtain large quantities of highly purified zygotes using in vitro culture, including purification methods that include magnetic column cell separation (MACS) followed by Percoll density gradient centrifugation. This straightforward and effective approach provides ample material for studies to enhance understanding of zygote biology and identify novel zygote surface marker candidates that can be tested as transmission blocking vaccine (TBV) candidates. Methods Plasmodium falciparum gametocyte cultures were established and maintained from asexual cultures. Gametocytes were matured for 14 days, then transferred into zygote media for 6 h at 27 ± 2 °C to promote gamete formation and fertilization. Zygotes were then purified using a combination of MACS column separation and Percoll density gradient centrifugation. Purity of the zygotes was determined through morphological studies: the parasite body and nuclear diameter were measured, and zygotes were further transformed into ookinetes. Immunofluorescence assays (IFA) were also performed using the ookinete surface marker, Pfs28. Results After stimulation, the culture consisted of transformed zygotes and a large number of uninfected red blood cells (RBCs), as well as infected RBCs with parasites at earlier developmental stages, including gametes, gametocytes, and asexual stages. The use of two MACS columns removed the vast majority of the RBCs and gametocytes. Subsequent use of two Percoll density gradients enabled isolation of a pure population of zygotes. These zygotes transformed into viable ookinetes that expressed Pfs28. Conclusion The combined approach of using two MACS columns and two Percoll density gradients yielded zygotes with very high purity (45-fold enrichment and a pure population of zygotes [approximately 100%]) that was devoid of contamination by other parasite stages and uninfected RBCs. These enriched zygotes, free from earlier parasites stages and mosquito-derived macromolecules, can be used to further elucidate the biology and developmental processes of Plasmodium.
Collapse
Affiliation(s)
- Yaxian Zhou
- MalarVx, Inc, 1616 Eastlake Ave, E. Suite 285, Seattle, WA, 98102, USA
| | - Alexis M Grieser
- MalarVx, Inc, 1616 Eastlake Ave, E. Suite 285, Seattle, WA, 98102, USA
| | - Julie Do
- MalarVx, Inc, 1616 Eastlake Ave, E. Suite 285, Seattle, WA, 98102, USA
| | - Leslie S Itsara
- MalarVx, Inc, 1616 Eastlake Ave, E. Suite 285, Seattle, WA, 98102, USA
| | - Ashley M Vaughan
- Seattle Children's Research Institute, 307 Westlake Ave, N., Suite 500, Seattle, WA, 98109, USA
| | - Anil K Ghosh
- MalarVx, Inc, 1616 Eastlake Ave, E. Suite 285, Seattle, WA, 98102, USA.
| |
Collapse
|
3
|
Warr E, Das S, Dong Y, Dimopoulos G. The Gram-negative bacteria-binding protein gene family: its role in the innate immune system of anopheles gambiae and in anti-Plasmodium defence. INSECT MOLECULAR BIOLOGY 2008; 17:39-51. [PMID: 18237283 DOI: 10.1111/j.1365-2583.2008.00778.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gram-negative bacteria-binding proteins (GNBPs) are pattern recognition receptors which contribute to the defensive response against Plasmodium infection in Anopheles. We have characterized the GNBP gene family in Anopheles gambiae at the molecular level, and show that they are functionally diverse components of the A. gambiae innate immune system. GNBPB4 is a major factor in the defence against a broad range of pathogens, while the other GNBPs have narrower defence specificities. GNBPB4 is associated with the regulation of immune signalling pathways and was found to interact with the Gram-negative Escherichia coli and weakly co-localized with Plasmodium berghei ookinetes in the mosquito midgut epithelium.
Collapse
Affiliation(s)
- E Warr
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | | | | | | |
Collapse
|
4
|
Okulate MA, Kalume DE, Reddy R, Kristiansen T, Bhattacharyya M, Chaerkady R, Pandey A, Kumar N. Identification and molecular characterization of a novel protein Saglin as a target of monoclonal antibodies affecting salivary gland infectivity of Plasmodium sporozoites. INSECT MOLECULAR BIOLOGY 2007; 16:711-22. [PMID: 18093000 DOI: 10.1111/j.1365-2583.2007.00765.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Molecular mechanisms underlying the interaction between malarial sporozoites and putative receptor(s) on the salivary glands of Anopheles gambiae remain largely unknown. In previous studies, a salivary gland protein of ~100 kDa was identified as a putative target based on recognition of the protein by a monoclonal antibody (mAb) 2A3 that caused a >/= 70% reduction in the average number of sporozoites per infected salivary gland when fed to mosquitoes. Using affinity purification we purified the target of this mAb from extracts of female A. gambiae salivary glands and it was found to be a novel protein by tandem mass spectrometric analysis. Biochemical and molecular characterization of the 100 kDa protein showed that this molecule, designated Saglin, exists as a disulphide-bonded homodimer of 50 kDa subunits. The ability to form homodimers was retained even in the recombinant Saglin expressed in mammalian cells (HEK293). The amino acid sequence of Saglin contains a signal peptide suggesting that Saglin is a secreted protein. If Saglin is indeed involved in the process of invasion of A. gambiae salivary glands by sporozoites of Plasmodium, it could provide a novel target for future investigations aimed at interruption of malaria transmission.
Collapse
Affiliation(s)
- M A Okulate
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gonzalez-Ceron L, Rodriguez MH, Chavez-Munguia B, Santillan F, Nettel JA, Hernandez-Avila JE. Plasmodium vivax: Impaired escape of Vk210 phenotype ookinetes from the midgut blood bolus of Anopheles pseudopunctipennis. Exp Parasitol 2007; 115:59-67. [PMID: 16875689 DOI: 10.1016/j.exppara.2006.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/04/2006] [Accepted: 06/08/2006] [Indexed: 11/21/2022]
Abstract
The site in the midguts of Anopheles pseudopunctipennis where the development of Plasmodium vivax circumsporozoite protein Vk210 phenotype is blocked was investigated, and compared to its development in An. albimanus. Ookinete development was similar in time and numbers within the blood meal bolus of both mosquito species. But, compared to An. pseudopunctipennis, a higher proportion of An. albimanus were infected (P=0.0001) with higher ookinete (P=0.0001) and oocyst numbers (P=0.0001) on their internal and external midgut surfaces, respectively. Ookinetes were located in the peritrophic matrix (PM), but neither inside epithelial cells nor on the haemocoelic midgut surface by transmission electron microscopy in 24h p.i.-An. pseudopunctipennis mosquito samples. In contrast, no parasites were detected in the PM of An. albimanus at this time point. These results suggest that P. vivax Vk210 ookinetes cannot escape from and are destroyed within the midgut lumen of An. pseudopunctipennis.
Collapse
|
6
|
Kariu T, Yuda M, Yano K, Chinzei Y. MAEBL is essential for malarial sporozoite infection of the mosquito salivary gland. J Exp Med 2002; 195:1317-23. [PMID: 12021311 PMCID: PMC2193753 DOI: 10.1084/jem.20011876] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Malarial sporozoites mature in the oocysts formed in the mosquito midgut wall and then selectively invade the salivary glands, where they wait to be transmitted to the vertebrate host via mosquito bite. Invasion into the salivary gland has been thought to be mediated by specific ligand-receptor interactions, but the molecules involved in these interactions remain unknown. MAEBL is a single transmembrane-like protein that is structurally related to merozoite adhesive proteins. We found MAEBL of the rodent malaria parasite, Plasmodium berghei, to be specifically produced by the sporozoites in the oocyst and localized in their micronemes, which are secretory organelles involved in malarial parasite invasion into the host cell. A targeted disruption experiment of the P. berghei MAEBL gene revealed that it was essential for sporozoite infection of the salivary gland and was involved in the attachment to the salivary gland surface. In contrast, the disruption of the MAEBL gene did not affect sporozoite motility in vitro nor infectivity to the vertebrate host. These results suggest that P. berghei MAEBL is a sporozoite attachment protein that participates in specific binding to and infection of the mosquito salivary gland.
Collapse
Affiliation(s)
- Tohru Kariu
- Department of Medical Zoology, Mie University School of Medicine, Edobashi, Tsu, 514-0001, Japan
| | | | | | | |
Collapse
|
7
|
Gonzalez-Ceron L, Rodriguez MH, Santillan F, Chavez B, Nettel JA, Hernandez-Avila JE, Kain KC. Plasmodium vivax: ookinete destruction and oocyst development arrest are responsible for Anopheles albimanus resistance to circumsporozoite phenotype VK247 parasites. Exp Parasitol 2001; 98:152-61. [PMID: 11527438 DOI: 10.1006/expr.2001.4626] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anopheles albimanus and An. pseudopunctipennis differ in their susceptibilities to Plasmodium vivax circumsporozoite phenotypes. An. pseudopunctipennis is susceptible to phenotype VK247 but almost refractory to VK210. In contrast, An. albimanus is almost refractory to VK247 but susceptible to VK210. To investigate the site in the mosquito and the parasite stage at which resistance mechanisms affect VK247 development in An. albimanus, parasite development was followed in a series of experiments in which both mosquitoes species were simultaneously infected with blood from patients. Parasite phenotype was determined in mature oocysts and salivary gland sporozoites by use of immunofluorescence and Western blot assays and/or gene identification. Ookinete maturation and their densities within the bloodmeal bolus were similar in both mosquito species. Ookinete densities on the internal midgut surface of An. albimanus were 4.7 times higher than those in An. pseudopunctipennis; however, the densities of developing oocysts on the external midgut surface were 6.12 times higher in the latter species. Electron microscopy observation of ookinetes in An. albimanus midgut epithelium indicated severe parasite damage. These results indicate that P. vivax VK247 parasites are destroyed at different parasite stages during migration in An. albimanus midguts. A portion, accumulated on the internal midgut surface, is probably destroyed by the mosquito's digestive enzymes and another portion is most likely destroyed by mosquito defense molecules within the midgut epithelium. A third group, reaching the external midgut surface, initiates oocyst development, but over 90% of them interrupt their development and die. The identification of mechanisms that participate in parasite destruction could provide new elements to construct transgenic mosquitoes resistant to malaria parasites.
Collapse
Affiliation(s)
- L Gonzalez-Ceron
- Centro de Investigación de Paludismo, Instituto Nacional de Salud Pública, 4 Norte and 19 Poniente, 30700 Tapachula, Chiapas, Mexico
| | | | | | | | | | | | | |
Collapse
|
8
|
Shahabuddin M, Costero A. Spatial distribution of factors that determine sporogonic development of malaria parasites in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:231-240. [PMID: 11167092 DOI: 10.1016/s0965-1748(00)00142-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mosquitoes transmit malaria, but only a few species permit the complete development and transmission of the parasite. Also, only a fraction of the ingested parasites develop in the vector. The attrition occurs in different compartments during the parasite's complex developmental scheme in the insect. A number of factors, both physical and biochemical, that affect the development have been proposed or demonstrated. Each of these factors is located within a specific space in the insect. We have divided this space into six compartments, which are distinct in their biochemical and biophysical nature: Endoperitrophic space, Peritrophic matrix, Ectopretrophic space, Midgut epithelium, Haemocoel and Salivary gland. Because factors that influence a particular stage of parasite development share the same microenvironment within these compartments, they must be considered collectively to exploit them for designing effective transmission blocking strategies. In this article we discuss these factors according to their spatial location in the mosquito.
Collapse
Affiliation(s)
- M Shahabuddin
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA.
| | | |
Collapse
|
9
|
Yoshida S, Ioka D, Matsuoka H, Endo H, Ishii A. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol Biochem Parasitol 2001; 113:89-96. [PMID: 11254957 DOI: 10.1016/s0166-6851(00)00387-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Single-chain immunotoxins are ideal tools to selectively kill infectious agents. In applying this technology to block transmission of malaria parasites in the mosquito vector, we have constructed a single-chain immunotoxin composed of a single-chain antibody fragment (scFv) directed to Pbs2l on the surface of Plasmodium berghei ookinetes linked to a lytic peptide, Shiva-1. The single-chain immunotoxin was expressed in Escherichia coli, and the protein was purified by a Ni-NTA column. The single-chain immunotoxin was initially shown to exhibit greater killing properties for P. berghei ookinetes in vitro compared with the scFv or synthetic Shiva-1 peptide alone. In an attempt to block malaria transmission by genetically engineered bacteria, recombinant E. coli harboring the single-chain immunotoxin gene were introduced into the mosquito midgut by membrane feeding. The number of infected mosquitoes and their oocyst densities were significantly reduced when the mosquitoes were subsequently allowed to feed on P. berghei-infected mice. These results indicate not only that a single-chain immunotoxin with enhanced parasiticidal activity could form a basis for the development of more effective malaria therapeutic agents, but also that introduction of genetically engineered bacteria into anopheline mosquitoes may offer a practical approach to the regulation of malaria transmission.
Collapse
Affiliation(s)
- S Yoshida
- Department of Medical Zoology, Jichi Medical School, 3311-1 Yakushiji, Minamikawachimachi, Tochigi 329-0498, Japan.
| | | | | | | | | |
Collapse
|
10
|
Oduol F, Xu J, Niare O, Natarajan R, Vernick KD. Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc Natl Acad Sci U S A 2000; 97:11397-402. [PMID: 11005829 PMCID: PMC17211 DOI: 10.1073/pnas.180060997] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2000] [Indexed: 12/31/2022] Open
Abstract
We performed a gene expression screen of the entire transcriptome of the major African malaria vector Anopheles gambiae for immune response genes in adult female mosquitoes, which is the developmental stage infected by malaria parasites. Mosquitoes were immune-stimulated for subtractive cloning by treatment with bacterial lipopolysaccharide, a potent and general elicitor of the innate immune response, and by injury. The screen yielded a highly enriched cDNA library in which more than half of the clones were immune responsive. In this paper, we describe 23 immune-regulated genes, including putative protease inhibitors, serine proteases, regulatory molecules, and a number of genes without known relatives. A molecule related to the protease inhibitor alpha-2-macroglobulin responded strongly to malaria parasite infection, but displayed little or no response to bacteria, whereas other genes exhibited the inverse pattern. These results indicate that the insect immune system discriminates between molecular signals specific to infection with bacteria and malaria parasites.
Collapse
Affiliation(s)
- F Oduol
- Department of Medical and Molecular Parasitology, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | | | | | | | | |
Collapse
|
11
|
Lombardo F, Di Cristina M, Spanos L, Louis C, Coluzzi M, Arcá B. Promoter sequences of the putative Anopheles gambiae apyrase confer salivary gland expression in Drosophila melanogaster. J Biol Chem 2000; 275:23861-8. [PMID: 10801886 DOI: 10.1074/jbc.m909547199] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The saliva of blood-feeding arthropods contains an apyrase that facilitates hematophagy by inhibiting the ADP-induced aggregation of the host platelets. We report here the isolation of a salivary gland-specific cDNA encoding a secreted protein that likely represents the Anopheles gambiae apyrase. We describe also two additional members of the apyrase/5'-nucleotidase family. The cDNA corresponding to the AgApyL1 gene encodes a secreted protein that is closely related in sequence to the apyrase of the yellow fever mosquito, Aedes aegypti, and whose expression appears enriched in, but not restricted to, female salivary glands. The AgApyL2 gene was found searching an A. gambiae data base, and its expression is restricted to larval stages. We isolated the gene encoding the presumed A. gambiae apyrase (AgApy) and we tested its putative promoter for the tissue-specific expression of the LacZ gene from Escherichia coli in transgenic Drosophila melanogaster. All the transgenic lines analyzed showed a weak but unambiguous staining of the adult glands, indicating that some of the salivary gland-specific transcriptional regulatory elements are conserved between the malaria mosquito and the fruit fly. The availability of salivary gland-specific promoters may be useful both for studies on vector-parasite interactions and, potentially, for the targeted tissue-specific expression of anti-parasite genes in the mosquito.
Collapse
Affiliation(s)
- F Lombardo
- Istituto di Parassitologia, Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma "La Sapienza," 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Vizioli J, Bulet P, Charlet M, Lowenberger C, Blass C, Müller HM, Dimopoulos G, Hoffmann J, Kafatos FC, Richman A. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2000; 9:75-84. [PMID: 10672074 DOI: 10.1046/j.1365-2583.2000.00164.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Parasites of the genus Plasmodium are transmitted to mammalian hosts by anopheline mosquitoes. Within the insect vector, parasite growth and development are potentially limited by antimicrobial defence molecules. Here, we describe the isolation of cDNA and genomic clones encoding a cecropin antibacterial peptide from the malaria vector mosquito Anopheles gambiae. The locus was mapped to polytene division 1C of the X chromosome. Cecropin RNA was induced by infection with bacteria and Plasmodium. RNA levels varied in different body parts of the adult mosquito. During development, cecropin expression was limited to the early pupal stage. The peptide was purified from both adult mosquitoes and cell culture supernatants. Anopheles gambiae synthetic cecropins displayed activity against Gram-negative and Gram-positive bacteria, filamentous fungi and yeasts.
Collapse
Affiliation(s)
- J Vizioli
- UPR CNRS 9022, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Somboon P, Prapanthadara L, Suwonkerd W. Selection of Anopheles dirus for refractoriness and susceptibility to Plasmodium yoelii nigeriensis. MEDICAL AND VETERINARY ENTOMOLOGY 1999; 13:355-361. [PMID: 10608223 DOI: 10.1046/j.1365-2915.1999.00200.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two lines of the Oriental malaria vector mosquito Anopheles dirus species A (Diptera: Culicidae), one fully refractory and one fully susceptible to Plasmodium yoelii nigeriensis (an African rodent malaria parasite), were established after 17 generations of mass selection, followed by single female selection for one or two generations. Prior to selection, the stock colony of An. dirus was 17% refractory. Both lines of An. dirus produced abundant ookinetes that started to invade the midgut within 24h post-infection, as seen in histological sections. In most of the refractory mosquitoes, oocysts stopped development <12 h post-invasion, indicating a rapid defence mechanism. Dead P. y. nigeriensis parasites were apparently localized as small melanized spots (2-5 microm) seen in wet preparations of mosquito midguts dissected 5-7 days post infective bloodmeal. In some refractory An. dirus females, apart from the spots, a small number of totally encapsulated oocysts (c. 10 microm) were also present. These larger melanized parasites predominated in a few females: they appeared 2-3 days post-infection as a secondary delayed defence mechanism. The progeny of reciprocal matings between susceptible and refractory lines had approximately 50% susceptibility. Backcrosses of F1 hybrids with susceptible or refractory lines increased or decreased the susceptibility of backcross progeny accordingly. Overall, these results suggest polygenic control of susceptibility to P. y. nigeriensis infection. The refractory line of An. dirus showed normal susceptibility to natural infections of the human malarias P. falciparum and P. vivax from local patients.
Collapse
Affiliation(s)
- P Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Thailand.
| | | | | |
Collapse
|
14
|
Arcá B, Lombardo F, de Lara Capurro M, della Torre A, Dimopoulos G, James AA, Coluzzi M. Trapping cDNAs encoding secreted proteins from the salivary glands of the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 1999; 96:1516-21. [PMID: 9990055 PMCID: PMC15500 DOI: 10.1073/pnas.96.4.1516] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1998] [Accepted: 11/30/1998] [Indexed: 11/18/2022] Open
Abstract
The signal sequence trap method was used to isolate cDNAs corresponding to proteins containing secretory leader peptides and whose genes are expressed specifically in the salivary glands of the malaria vector Anopheles gambiae. Fifteen unique cDNA fragments, ranging in size from 150 to 550 bp, were isolated and sequenced in a first round of immunoscreening in COS-7 cells. All but one of the cDNAs contained putative signal sequences at their 5' ends, suggesting that they were likely to encode secreted or transmembrane proteins. Expression analysis by reverse transcription-PCR showed that at least six cDNA fragments were expressed specifically in the salivary glands. Fragments showing a high degree of similarity to D7 and apyrase, two salivary gland-specific genes previously found in Aedes aegypti, were identified. Of interest, three different D7-related cDNAs that are likely to represent a new gene family were found in An. gambiae. Moreover, three salivary gland-specific cDNA fragments that do not show similarity to known proteins in the databases were identified, and the corresponding full length cDNAs were cloned and sequenced. RNA in situ hybridization to whole female salivary glands showed patterns of expression that overlap only in part those observed in the culicine mosquito A. aegypti.
Collapse
Affiliation(s)
- B Arcá
- Istituto di Parassitologia, Fondazione "Istituto Pasteur-Cenci Bolognetti," Universitá di Roma "La Sapienza," 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Possani LD, Zurita M, Delepierre M, Hernández FH, Rodríguez MH. From noxiustoxin to Shiva-3, a peptide toxic to the sporogonic development of Plasmodium berghei. Toxicon 1998; 36:1683-92. [PMID: 9792185 DOI: 10.1016/s0041-0101(98)00161-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
This communication reviews shortly the main structural and functional characteristics of Noxiustoxin, a 39 amino acid residue peptide, maintained closely packed by three-disulfide bridges and its effects on excitable membranes. Shiva-3, a cecropin like-peptide composed of 38 amino acid residues is also briefly reviewed. Its design and synthesis was made possible by the expertise gained through the work previously performed with Noxiustoxin. One of the most prominent functional characteristics of Shiva-3 is the toxic effect upon the sporogonic development of Plasmodium berghei (responsible for a murine version of malaria). A synthetic Shiva-3 gene was constructed by recursive polymerase-chain reaction (PCR) methodology and expressed using the vector pGEX2T as a hybrid protein between the glutathione-S-transferase at the N-terminal and Shiva-3 in the C-terminal part of the hybrid. The recombinant protein kills bacteria and Plasmodium berghei. The future aim of this work is to produce a transgenic mosquito that carries the message for synthesis and excretion of Shiva-3 and similar peptides, in the midgut of mosquitoes, in an attempt to control the spreading of human malaria.
Collapse
Affiliation(s)
- L D Possani
- Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca
| | | | | | | | | |
Collapse
|
16
|
Mazzacano CA, Vargas JC, Mackay AJ, Beier JC. Plasmodium gallinaceum: effect of insect cells on ookinete development in vitro. Exp Parasitol 1998; 88:210-6. [PMID: 9562424 DOI: 10.1006/expr.1998.4250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro culture conditions affecting the transformation efficiency from zygote to ookinete for Plasmodium gallinaceum were examined, as a step toward improving the overall efficiency of in vitro culture systems for sporogonic stages. Gametocytes from infected chickens were allowed to fertilize in vitro and the resulting zygotes were purified and cultured. The time course for ookinete development in vitro was similar to that seen in Aedes aegypti mosquitoes. Supplementing a basal M-199 culture medium with heat-inactivated chicken serum and glucose did not affect transformation efficiency, but resulted in a four-fold increase in infectivity to mosquitoes when fed back to Ae. aegypti. Transformation from zygote to ookinete increased 5- to 10-fold when zygotes were cocultured with one of six different mosquito cell lines or a Drosophila cell line. Under optimal conditions, transformation efficiencies of up to 75% were observed. The presence of insect cells also increased the longevity of ookinetes in culture up to 42 h, while in acellular cultures ookinetes degenerated after about 24 h. The stimulatory effect was apparently not due to a factor secreted into the medium by the cells.
Collapse
Affiliation(s)
- C A Mazzacano
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Mosquitoes of the genus Anopheles transmit malaria parasites to humans. Anopheles mosquito species vary in their vector potential because of environmental conditions and factors affecting their abundance, blood-feeding behavior, survival, and ability to support malaria parasite development. In the complex life cycle of the parasite in female mosquitoes, a process termed sporogony, mosquitoes acquire gametocyte-stage parasites from blood-feeding on an infected host. The parasites carry out fertilization in the midgut, transform to ookinetes, then oocysts, which produce sporozoites. Sporozoites invade the salivary glands and are transmitted when the mosquito feeds on another host. Most individual mosquitoes that ingest gametocytes do not support development to the sporozoite stage. Bottle-necks occur at every stage of the cycle in the mosquito. Powerful new techniques and approaches exist for evaluating malaria parasite development and for identifying mechanisms regulating malaria parasite-vector interactions. This review focuses on those interactions that are important for the development of new approaches for evaluating and blocking transmission in nature.
Collapse
Affiliation(s)
- J C Beier
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
18
|
Richman AM, Dimopoulos G, Seeley D, Kafatos FC. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes. EMBO J 1997; 16:6114-9. [PMID: 9321391 PMCID: PMC1326295 DOI: 10.1093/emboj/16.20.6114] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Innate immune-related gene expression in the major disease vector mosquito Anopheles gambiae has been analyzed following infection by the malaria parasite, Plasmodium berghei. Substantially increased levels of mRNAs encoding the antibacterial peptide defensin and a putative Gram-negative bacteria-binding protein (GNBP) are observed 20-30 h after ingestion of an infected blood-meal, at a time which indicates that this induction is a response to parasite invasion of the midgut epithelium. The induction is dependent upon the ingestion of infective, sexual-stage parasites, and is not due to opportunistic co-penetration of resident gut micro-organisms into the hemocoel. The response is activated following infection both locally (in the midgut) and systemically (in remaining tissues, presumably fat body and/or hemocytes). The observation that Plasmodium can trigger a molecularly defined immune response in the vector constitutes an important advance in our understanding of parasite-vector interactions that are potentially involved in malaria transmission, and extends knowledge of the innate immune system of insects to encompass responses to protozoan parasites.
Collapse
Affiliation(s)
- A M Richman
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
19
|
Dimopoulos G, Richman A, Müller HM, Kafatos FC. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci U S A 1997; 94:11508-13. [PMID: 9326640 PMCID: PMC23521 DOI: 10.1073/pnas.94.21.11508] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Immune responses of the malaria vector mosquito Anopheles gambiae were monitored systematically by the induced expression of five RNA markers after infection challenge. One newly isolated marker encodes a homologue of the moth Gram-negative bacteria-binding protein (GNBP), and another corresponds to a serine protease-like molecule. Additional previously described markers that respond to immune challenge encode the antimicrobial peptide defensin, a putative galactose lectin, and a putative serine protease. Specificity of the immune responses was indicated by differing temporal patterns of induction of specific markers in bacteria-challenged larvae and adults, and by variations in the effectiveness of different microorganisms and their components for marker induction in an immune-responsive cell line. The markers exhibit spatially distinct patterns of expression in the adult female mosquito. Two of them are highly expressed in different regions of the midgut, one in the anterior and the other in the posterior midgut. Marker induction indicates a significant role of the midgut in insect innate immunity. Immune responses to the penetration of the midgut epithelium by a malaria parasite occur both within the midgut itself and elsewhere in the body, suggesting an immune-related signaling process.
Collapse
Affiliation(s)
- G Dimopoulos
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
20
|
Zheng L, Cornel AJ, Wang R, Erfle H, Voss H, Ansorge W, Kafatos FC, Collins FH. Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science 1997; 276:425-8. [PMID: 9103203 DOI: 10.1126/science.276.5311.425] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The severity of the malaria pandemic in the tropics is aggravated by the ongoing spread of parasite resistance to antimalarial drugs and mosquito resistance to insecticides. A strain of Anopheles gambiae, normally a major vector for human malaria in Africa, can encapsulate and kill the malaria parasites within a melanin-rich capsule in the mosquito midgut. Genetic mapping revealed one major and two minor quantitative trait loci (QTLs) for this encapsulation reaction. Understanding such antiparasite mechanisms in mosquitoes may lead to new strategies for malaria control.
Collapse
Affiliation(s)
- L Zheng
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Disease Control and Prevention, 4770 Buford Hi
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dimopoulos G, Richman A, della Torre A, Kafatos FC, Louis C. Identification and characterization of differentially expressed cDNAs of the vector mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A 1996; 93:13066-71. [PMID: 8917545 PMCID: PMC24047 DOI: 10.1073/pnas.93.23.13066] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The isolation and study of Anopheles gambiae genes that are differentially expressed in development, notably in tissues associated with the maturation and transmission of the malaria parasite, is important for the elucidation of basic molecular mechanisms underlying vector-parasite interactions. We have used the differential display technique to screen for mRNAs specifically expressed in adult males, females, and midgut tissues of blood-fed and unfed females. We also screened for mRNAs specifically induced upon bacterial infection of larval stage mosquitoes. We have characterized 19 distinct cDNAs, most of which show developmentally regulated expression specificity during the mosquito life cycle. The most interesting are six new sequences that are midgut-specific in the adult, three of which are also modulated by blood-feeding. The gut-specific sequences encode a maltase, a V-ATPase subunit, a GTP binding protein, two different lectins, and a nontrypsin serine protease. The latter sequence is also induced in larvae subjected to bacterial challenge. With the exception of a mitochondrial DNA fragment, the other 18 sequences constitute expressed genomic sequence tags, 4 of which have been mapped cytogenetically.
Collapse
Affiliation(s)
- G Dimopoulos
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
22
|
Ochanda H, Young AS, Wells C, Medley GF, Perry BD. Comparison of the transmission of Theileria parva between different instars of Rhipicephalus appendiculatus. Parasitology 1996; 113 ( Pt 3):243-53. [PMID: 8811849 DOI: 10.1017/s0031182000082019] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transmission of Theileria parva by nymphal and adult Rhipicephalus appendiculatus was compared by the assessment of salivary gland infections in tick batches fed on the same group of infected cattle at the same time. When larval and nymphal R. appendiculatus Muguga ticks were fed concurrently on cattle undergoing acute infection with T. parva Muguga, the resultant nymphae developed a slightly lower prevalence of infection than did the adult ticks. The abundance of infection was 5-20 times higher in the adult ticks than in the nymphae. When larval and nymphal R. appendiculatus Muguga and R. appendiculatus McIlwaine were fed to repletion on cattle infected with T. parva Boleni, a parasite causing subacute infection, resultant adult tick batches had a relatively high prevalence of infection, but infection was not detected in resultant nymphal batches. When cattle that were carriers of 2 stocks of T. parva, Marikebuni and Kiambu 5, were used as the source of infection, the infections developing in adult R. appendiculatus Muguga ticks were much higher than those developing in nymphae. The structure of salivary glands differed between nymphal ticks, adult males and adult females, and this is considered to be an important factor affecting the infection levels. The morphology of the type III acini, the target acini for sporogony, was similar, but the mean numbers of type III acini were different, with 87 in nymphae, 1346 in males and 1736 in females. This difference was correlated with the different tick instars and sexes was similar, the rate of sporogony was fastest in feeding nymphae, taking on average 2-3 days. compared to 3-4 days in females and an irregular period in the males. These results are discussed in relation to the epidemiology of T. parva.
Collapse
Affiliation(s)
- H Ochanda
- International Livestock Research Institute, Nairobi, Kenya.
| | | | | | | | | |
Collapse
|
23
|
Richman AM, Bulet P, Hetru C, Barillas-Mury C, Hoffmann JA, Kafalos FC. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA. INSECT MOLECULAR BIOLOGY 1996; 5:203-210. [PMID: 8799739 DOI: 10.1111/j.1365-2583.1996.tb00055.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Larvae of the mosquito vector of human malaria, Anopheles gambiae, were inoculated with bacteria and extracts were biochemically fractionated by reverse-phase HPLC. Multiple induced polypeptides and antibacterial activities were observed following bacterial infection, including a member of the insect defensin family of antibacterial proteins. A cDNA encoding An. gambiae preprodefensin was isolated using PCR primers based on phylogenetically conserved sequences. The mature peptide is highly conserved, but the signal and propeptide segments are not, relative to corresponding defensin sequences of other insects. Defensin expression is induced in response to bacterial infection, in both adult and larval stages. In contrast, pupae express defensin mRNA constitutively. Defensin expression may prove a valuable molecular marker to monitor the An. gambiae host response to infection by parasitic protozoa of medical importance.
Collapse
Affiliation(s)
- A M Richman
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Mosquitoes and blackflies have been the focus of recent efforts to elucidate factors influencing the susceptibility of vector insects to metazoan and protozoan parasites of medical significance. Vector species exhibit variation in cellular and humoral immune responses, as highlighted by studies of melanotic encapsulation and components of the phenoloxidase system. Significant progress has been made in the development of genetic maps based upon molecular markers, leading to the genetic analysis of loci influencing susceptibility. The identification of specific inducible antibacterial peptides, and the cloning of genes encoding immune effector proteins as well as potential regulatory factors, open the path to fruitful studies of vector insect innate immunity and its relationship to insect-parasite interactions.
Collapse
Affiliation(s)
- A Richman
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|
25
|
Sinden RE, Butcher GA, Billker O, Fleck SL. Regulation of infectivity of Plasmodium to the mosquito vector. ADVANCES IN PARASITOLOGY 1996; 38:53-117. [PMID: 8701799 DOI: 10.1016/s0065-308x(08)60033-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R E Sinden
- Department of Biology, Imperial College of Science, Technology and Medicine, South Kensington, London, UK
| | | | | | | |
Collapse
|
26
|
Abstract
The ingestion of blood by arthropod vectors of disease can be exploited in order to either kill the vector or render it incapable of disease transmission. This paper examines some approaches to identifying target molecules of vector origin, against which immunisation could result in blocking parasite transmission. Manipulation of the blood meal of vectors through such techniques as membrane feeding can help identify true target sites for attack, but just as useful, can identify structures or molecules that play no significant role in parasite development. Examples, mostly derived from the interactions between the malaria parasite, Plasmodium, and the mosquito midgut, illustrate the real need to understand the multiple aspects of vector-parasite interactions before they can be exploited for control purposes. The approaches outlined are however applicable directly to any vector-borne disease. Careful examination of the parasite life cycle in the vector, and comparisons with other parasites, vectors, non-vector insects and analogous vertebrate systems (the latter being often relatively well advanced) can result in the identification of specific and definable interactions which can then be further developed for vaccine purposes.
Collapse
Affiliation(s)
- P F Billingsley
- Department of Biology, Imperial College of Science, Technology and Medicine, London, U.K
| |
Collapse
|
27
|
Abstract
A basic fact in malariology is that human malaria infections result from the bite of an infective anopheline mosquito. Without sporozoite transmission there is no malaria. Here, John Beier highlights our understanding of sporozoite biology from the perspective of how sporozoites develop and survive in mosquitoes, how they are transmitted during bloodfeeding, and how key elements in sporozoite-vector relationships present new opportunities for tackling critical questions relevant for disease control.
Collapse
Affiliation(s)
- J C Beier
- Department of Immunology and Infectious Diseases, School of Hygiene and Public Health, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Warburg A, Touray M, Krettli AU, Miller LH. Plasmodium gallinaceum: antibodies to circumsporozoite protein prevent sporozoites from invading the salivary glands of Aedes aegypti. Exp Parasitol 1992; 75:303-7. [PMID: 1426132 DOI: 10.1016/0014-4894(92)90215-v] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A circumsporozoite protein-specific monoclonal antibody (N2H6D5) was injected into malaria-infected mosquitoes to determine its effect on the sporogonic cycle. After injection of antibody into mosquitoes (100 ng each), positive immunofluorescence (measured on air-dried sporozoites) reactions in hemolymph extracts were observed at a dilution of 1:1000. At 72 hr postinjection the levels dropped to 1:10. Sporozoites coinjected with antibody did not invade the salivary glands. In naturally infected mosquitoes, sporozoites were released over a period of 3 to 4 days. Therefore, mosquitoes were injected twice. The first injection was a day before the beginning of sporozoite release and the second, 2 days later. Sporozoite invasion of the salivary glands was assessed 3 days after the second injection, by microscopic examination of dissected glands. At this stage, all oocysts had completed maturation and released the sporozoites. Salivary gland infections were totally prevented in mosquitoes given two injections of 100 ng N2H6D5. Hence, sustained presence of anti-circumsporozoite antibodies in the hemolymph can render female Aedes aegypti refractory to Plasmodium gallinaceum.
Collapse
Affiliation(s)
- A Warburg
- Laboratory of Malaria Research, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- L H Miller
- Laboratory of Malaria Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
30
|
Abstract
The sporogonic cycle of the avian malaria parasite Plasmodium gallinaceum was completed in vitro. Ookinetes (motile zygotes) were seeded onto a murine basement membrane-like gel (Matrigel) in coculture with Drosophila melanogaster cells (Schneider's L2). Transformation into oocysts as well as subsequent growth and differentiation were observed in parasites attached to Matrigel and depended on the presence of L2 cells. Sporozoites were first observed on day 10 in culture. Specific circumsporozoite protein antigenicity was identified in mature oocysts and in sporozoites. It is now possible to follow the entire life cycle of Plasmodium in vitro.
Collapse
Affiliation(s)
- A Warburg
- Malaria Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
31
|
Besansky NJ, Finnerty V, Collins FH. Molecular Perspectives on the Genetics of Mosquitoes. ADVANCES IN GENETICS 1992; 30:123-84. [PMID: 1360745 DOI: 10.1016/s0065-2660(08)60320-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- N J Besansky
- Malaria Branch, Centers for Disease Control, Atlanta, Georgia 30333
| | | | | |
Collapse
|
32
|
|