1
|
Galanti N, Galindo M, Sabaj V, Espinoza I, Toro GC. Histone genes in trypanosomatids. ACTA ACUST UNITED AC 2011; 14:64-70. [PMID: 17040700 DOI: 10.1016/s0169-4758(97)01162-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Histone genes in Trypanosomatids are of considerable interest because these flagellates do not condense their chromatin during mitosis. In contrast to higher eukaryotes, histone genes in Trypanosomatids are found on separate chromosomes, and their transcripts are polyadenylated. Sequence similarity of Trypanosomatid core histones with those of higher eukaryotes is found predominantly in the globular region; the N-terminal is highly divergent. Finally, in general, Trypanosomatid histones H1 are of low molecular weight, bearing closest homology to the C-terminal region of the higher eukaryote histones H1. These features constitute interesting targets for a rational approach to the study of these protozoa, as discussed here by Norbel Galanti and colleagues.
Collapse
|
2
|
Abstract
The histones are responsible for packaging and regulating access to eukaryotic genomes. Trypanosomatids are flagellated protists that diverged early from the eukaryotic lineage and include parasites that cause disease in humans and other mammals. Here, we review the properties of histones in parasitic trypanosomatids, from gene organization and sequence to expression, post-translational modification and function within chromatin. Phylogenetic and experimental analysis indicates that certain specifically conserved histone sequence motifs, particularly within the N-terminal 'tail' domains, possibly represent functionally important modification substrates conserved throughout the eukaryotic lineage. For example, histone H3 contains a highly conserved methylation substrate. Trypanosomatids also possess at least three variant histones. Among these is an orthologue of H2A.Z, a histone involved in protecting 'active' chromatin from silencing in yeast. Histones provide docking platforms for a variety of regulatory factors. The presence of histone modification and variant histones in trypanosomatids therefore represents evidence for a network that provides the discrimination required to regulate transcription, recombination, repair and chromosome replication and segregation.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | |
Collapse
|
3
|
Wickstead B, Ersfeld K, Gull K. The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res 2004; 14:1014-24. [PMID: 15173109 PMCID: PMC419779 DOI: 10.1101/gr.2227704] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 02/12/2004] [Indexed: 01/09/2023]
Abstract
Most eukaryotic genomes contain large regions of satellite DNA. These arrays are often associated with essential chromosomal functions, but remain largely absent from genome projects because of difficulties in cloning and sequence assembly. The numerous small chromosomes of the parasite Trypanosoma brucei fall into this category, yet are critical to understanding the genome because of their role in antigenic variation. Their relatively small size, however, makes them particularly amenable to physical mapping. We have produced fine-resolution maps of 17 complete minichromosomes and partial maps of two larger intermediate-sized chromosomes. This revealed a canonical structure shared by both chromosomal classes based around a large central core of 177-bp repeats. Around the core are variable-length genic regions, the lengths of which define chromosomal class. We show the core region to be a repetitive palindrome with a single inversion point common to all the chromosomes of both classes, suggesting a mechanism of genesis for these chromosomes. Moreover, palindromy appears to be a feature of (peri)centromeres in other species that can be easily overlooked. We propose that sequence inversion is one of the higher-order sequence motifs that confer chromosomal stability.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | | | | |
Collapse
|
4
|
Lorenzi HA, Vazquez MP, Levin MJ. Integration of expression vectors into the ribosomal locus of Trypanosoma cruzi. Gene 2003; 310:91-9. [PMID: 12801636 DOI: 10.1016/s0378-1119(03)00502-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The expression vectors of the protozoan parasite Trypanosoma cruzi pRIBOTEX and pTREX harbor a ribosomal promoter that improves gene expression and clone selection. Interestingly, the solely presence of this 810 bp long sequence leads to the integration of these vectors into the ribosomal locus, even though circular plasmids are poorly recombinogenic. Initially, it was suggested that a 174 bp long ribosomal-specific repeat element present in the ribosomal promoter region could be responsible for the genetic exchange. On the contrary, we demonstrate that recombination of pTREX occurs within a 86 bp long region located 120 bp downstream the transcription start point (tsp1) of the ribosomal promoter, and it does not depend on the presence of the ribosomal repeat. We also determined that a 291 bp segment encompassing the tsp1 and the 86 bp long recombination region contains all necessary signals to drive transcription and complete recombination into the rRNA locus. Finally, we demonstrate that the integration of pTREX derived plasmids into the nuclear genome occurs within the first 5 h post-transfection, and that non-integrated copies are rapidly degraded.
Collapse
Affiliation(s)
- Hernán Alejandro Lorenzi
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI - CONICET, University of Buenos Aires, Vuelta de Obligado 2490 2P, 1428, Buenos Aires, Argentina
| | | | | |
Collapse
|
5
|
Spadiliero B, Sánchez F, Slezynger TC, Henríquez DA. Differences in the nuclear chromatin among various stages of the life cycle of Trypanosoma cruzi. J Cell Biochem 2002; 84:832-9. [PMID: 11835407 DOI: 10.1002/jcb.10088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Trypanosoma cruzi is the etiological agent of Chagas. Although the nuclear chromatin of this parasite is organized in the form of nucleosome filaments, its chromatin is physically and enzymatically fragile, and no condensation into chromosomes occurs during mitosis. All previous investigations have been carried out with epimastigote form in its proliferate stage. It is not known whether these differences in chromatin structure are also found in the non-proliferate stationary epimastigote forms and in tissue derived trypomastigotes. Our results confirm that chromatin of logarithmic epimastigotes presents limited compaction when increasing salt concentrations from 1 to 100 mM NaCl, and no 30-nm fibers were formed. Contrary to these results, non-proliferative forms of the parasites showed a pattern of compactation similar to that observed in rat liver chromatin, where solenoids of 30-nm fibers are formed at 100-mM NaCl. In accordance with these results, digestion of the nuclear chromatin with DNase I revealed that the chromatin of logarithmic phase epimastigotes was more accessible to the enzyme. We conclude from these results that structural differences in the chromatin exist not only between T. cruzi and higher eukaryotes but also among various forms of the parasite. The functional significance of these differences are currently under investigation.
Collapse
Affiliation(s)
- Barbara Spadiliero
- Department of Cell Biology, Universidad Simón Bolívar, Caracas, Venezuela
| | | | | | | |
Collapse
|
6
|
Triana O, Galanti N, Olea N, Hellman U, Wernstedt C, Lujan H, Medina C, Toro GC. Chromatin and histones from Giardia lamblia: a new puzzle in primitive eukaryotes. J Cell Biochem 2001; 82:573-82. [PMID: 11500935 DOI: 10.1002/jcb.1159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three deepest eukaryote lineages in small subunit ribosomal RNA phylogenies are the amitochondriate Microsporidia, Metamonada, and Parabasalia. They are followed by either the Euglenozoa (e.g., Euglena and Trypanosoma) or the Percolozoa as the first mitochondria-containing eukaryotes. Considering the great divergence of histone proteins in protozoa we have extended our studies of histones from Trypanosomes (Trypanosoma cruzi, Crithidia fasciculata and Leishmania mexicana) to the Metamonada Giardia lamblia, since Giardia is thought to be one of the most primitive eukaryotes. In the present work, the structure of G. lamblia chromatin and the histone content of the soluble chromatin were investigated and compared with that of higher eukaryotes, represented by calf thymus. The chromatin is present as nucleosome filaments which resemble the calf thymus array in that they show a more regular arrangement than those described for Trypanosoma. SDS-polyacrylamide gel electrophoresis and protein characterization revealed that the four core histones described in Giardia are in the same range of divergence with the histones from other lower eukaryotes. In addition, G. lamblia presented an H1 histone with electrophoretic mobility resembling the H1 of higher eukaryotes, in spite of the fact that H1 has a different molecular mass in calf thymus. Giardia also presents a basic protein which was identified as an HU-like DNA-binding protein usually present in eubacteria, indicating a chimaeric composition for the DNA-binding protein set in this species. Finally, the phylogenetic analysis of selected core histone protein sequences place Giardia divergence before Trypanosoma, despite the fact that Trypanosoma branch shows an acceleration in the evolutionary rate pointing to an unusual evolutionary behavior in this lineage.
Collapse
Affiliation(s)
- O Triana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7, Chile
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
As in other eucaryotes, the nuclear genome in Trypanosoma brucei is organised into silent domains and active domains transcribed by distinct RNA polymerases. The basic mechanisms underlying eucaryotic gene transcription are conserved between humans and yeast, and understood in some detail in these cells. Meanwhile, relatively little is known about the transcription machinery, the chromatin templates or their interactions in trypanosomatids. Here, I discuss and compare nuclear gene transcription in T. brucei with transcription in other eucaryotes focusing in particular on mono-allelic transcription of genes that encode the variant surface glycoproteins.
Collapse
Affiliation(s)
- D Horn
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
8
|
Ersfeld K, Melville SE, Gull K. Nuclear and genome organization of Trypanosoma brucei. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:58-63. [PMID: 10234187 DOI: 10.1016/s0169-4758(98)01378-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this article, Klaus Ersfeld, Sara Melville and Keith Gull review current understanding of the structural organization of the nucleus of Trypanosoma brucei, and summarize recent data pertinent to the organization of its genome. Until recently, the cell biology of the trypanosome nucleus and issues of DNA organization and gene expression have often been treated as separate themes. However, recent work emphasizes the need for a more holistic approach to understanding these aspects of the biology of this parasite.
Collapse
Affiliation(s)
- K Ersfeld
- University of Manchester, School of Biological Sciences, 2.205 Stopford Building, Oxford Road, Manchester, UK M13 9PT.
| | | | | |
Collapse
|
9
|
Wirtz E, Hoek M, Cross GA. Regulated processive transcription of chromatin by T7 RNA polymerase in Trypanosoma brucei. Nucleic Acids Res 1998; 26:4626-34. [PMID: 9753730 PMCID: PMC147901 DOI: 10.1093/nar/26.20.4626] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inability of T7 RNA polymerase to processively transcribe higher eukaryotic chromatin is interpreted as a correlate of its reported inhibition by nucleosomes on reconstituted templates in vitro . We used chromosomally integrated reporter cassettes to examine features of T7 transcription in a lower eukaryotic system. Luciferase reporters were targeted to rDNA in transgenic Trypanosoma brucei stably expressing the phage polymerase. Because trypanosome mRNAs are capped by RNA splicing in trans , T7 transcription could be gauged by luciferase activity. In contrast to findings from higher eukaryotes, T7 transcription is vigorous and processive on chromatin templates in T.brucei , surpassing levels achieved with endogenous promoters, including those recruiting RNA polymerase I. This may be a reflection of intrinsic differences in chromatin structure between differently evolved eukaryotes or of an integration site that is exceptionally permissive for T7 transcription due to a local accessible chromatin conformation. T7 transcription could be manipulated to achieve different levels of constitutive expression, through the use of promoter mutations. Moreover, T7 initiation could be regulated by the prokaryotic Tet repressor and elongation halted by T7 terminator sequences. We have exploited these features to construct a robust inducible expression system, whose utility potentially extends to other trans -splicing organisms.
Collapse
Affiliation(s)
- E Wirtz
- Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | | | | |
Collapse
|
10
|
Yu MC, Sturm NR, Saito RM, Roberts TG, Campbell DA. Single nucleotide resolution of promoter activity and protein binding for the Leishmania tarentolae spliced leader RNA gene. Mol Biochem Parasitol 1998; 94:265-81. [PMID: 9747976 DOI: 10.1016/s0166-6851(98)00083-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In Kinetoplastid protozoa, trans-splicing is a central step in the maturation of nuclear mRNAs. In Leishmania, a common 39 nt spliced-leader (SL) is transferred via trans-splicing from the precursor 96 nt SL RNA to the 5' terminus of all known protein-encoding RNAs. In this study, promoter elements of the L. tarentolae SL RNA gene have been identified with respect to transcriptional activity and putative transcription factor binding. We have mapped the essential regions in the SL RNA gene promoter at single nucleotide resolution using both in vivo transcription and in vitro protein/DNA binding approaches. Two regions located upstream of the SL RNA gene were identified: a GN3CCC element at -39 to -33 and a GACN5G element at -66 to -58 were essential for SL RNA gene transcription in stably transfected cells. Consistent with other known bipartite promoter elements, the spacing between the GN3CCC and GACN5G elements was found to be critical for proper promoter function and correct transcription start point selection, as was the distance between the two elements and the wild-type transcription start point. The GACN5G element interacts specifically and in a double-stranded form with a protein(s) in Leishmania nuclear extracts. The degree of this protein DNA interaction in vitro correlated with SL RNA gene transcription efficiency in vivo, consistent with a role of the protein as a transcription factor. The core nucleotides GACN5G fit the consensus PSE promoter structure of pol II-transcribed snRNA genes in metazoa.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- Exons/genetics
- Genes, Protozoan
- Leishmania/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/genetics
- RNA, Spliced Leader/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- M C Yu
- Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, CA 90095-1747, USA
| | | | | | | | | |
Collapse
|
11
|
Soto M, Quijada L, Alonso C, Requena JM. Molecular cloning and analysis of expression of the Leishmania infantum histone H4 genes. Mol Biochem Parasitol 1997; 90:439-47. [PMID: 9476792 DOI: 10.1016/s0166-6851(97)00178-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present work, we describe the sequence, organization and expression of histone H4 genes in the protozoan parasite Leishmania infantum. The predicted L. infantum histone H4 is a polypeptide of 100 amino acids with a molecular mass of 11.5 kDa. Comparison of the amino acid sequence of Leishmania histone H4 with the rest of histone H4 sequences indicates that this is the most divergent sequence reported to date. The genomic distribution analysis of histone H4 genes indicates that there must be up to seven gene copies. A single size-class histone H4 mRNA of 0.6 kb was detected, whose level dramatically decreases from logarithmic to stationary phase. However, the Leishmania histone H4 mRNAs do not decrease in abundance following treatment with inhibitors of DNA synthesis, suggesting a regulation by a replication-independent mechanism.
Collapse
Affiliation(s)
- M Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Abstract
Trypanosoma cruzi is an ancient, parasitic eukaryote which does not undergo chromatin condensation during cell division. This behavior may be explained if one considers the strong amino acid sequence divergence of Trypanosoma histones compared to higher eukaryotes. In the latter organisms histone synthesis is coupled to DNA replication. Considering the nonconserved amino acid sequence of T. cruzi histones, as well as the absence of chromatin condensation in this organism, we have studied histone synthesis in relation to DNA replication in this parasite. We have found that core histones and a fraction of histone H1 are synthesized concomitantly to DNA replication. However, another fraction of histone H1 is constitutively synthesized.
Collapse
Affiliation(s)
- V Sabaj
- Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
13
|
Noll TM, Desponds C, Belli SI, Glaser TA, Fasel NJ. Histone H1 expression varies during the Leishmania major life cycle. Mol Biochem Parasitol 1997; 84:215-27. [PMID: 9084041 DOI: 10.1016/s0166-6851(96)02801-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The deduced amino acid sequence of Leishmania major sw3 cDNA reveals the presence of characteristic histone H1 amino acid motifs. However, the open reading frame is of an unusually small size for histone H1 (105 amino acids) because it lacks the coding potential for the central hydrophobic globular domain of linker histones present in other eukaryotes. Here, we provide biochemical evidence that the SW3 protein is indeed a L. major nuclear histone H1, and that it is differentially expressed during the life cycle of the parasite. Due to its high lysine content, the SW3 protein can be purified to a high degree from L. major nuclear lysates with 5% perchloric acid, a histone H1 preparative method. Using an anti-SW3 antibody, this protein is detected as a 17 kDa or as a 17/19 kDa doublet in the nuclear subfraction in different L. major strains. The nuclear localization of the SW3 protein is further supported by immunofluorescence studies. During in vitro promastigote growth, both the sw3 cytoplasmic mRNA and its protein progressively accumulate within parasites from early log phase to stationary phase. Within amastigotes, the high level of H1 expression is maintained but decreases when amastigotes differentiate into promastigotes. Together, these observations suggest that the different levels of this histone H1 protein could influence the varying degrees of chromatin condensation during the life-cycle of the parasite, and provide us with tools to study this mechanism.
Collapse
Affiliation(s)
- T M Noll
- Biochemistry Institute, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Marinets A, Müller M, Johnson PJ, Kulda J, Scheiner O, Wiedermann G, Duchêne M. The sequence and organization of the core histone H3 and H4 genes in the early branching amitochondriate protist Trichomonas vaginalis. J Mol Evol 1996; 43:563-71. [PMID: 8995053 DOI: 10.1007/bf02202104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Among the unicellular protists, several of which are parasitic, some of the most divergent eukaryotic species are found. The evolutionary distances between protists are so large that even slowly evolving proteins like histones are strongly divergent. In this study we isolated cDNA and genomic histone H3 and H4 clones from Trichomonas vaginalis. Two histone H3 and three histone H4 genes were detected on three genomic clones with one complete H3 and two complete H4 sequences. H3 and H4 genes were divergently transcribed with very short intergenic regions of only 194 bp, which contained T. vaginalis-specific as well as histone-specific putative promoter elements. Southern blot analysis showed that there may be several more histone gene pairs. The two complete histone H4 genes were different on the nucleotide level but encoded the same amino acid sequence. Comparison of the amino acid sequences of the T. vaginalis H3 and H4 histones with sequences from animals, fungi, and plants as well as other protists revealed a significant divergence not only from the sequences in multicellular organisms but especially from the sequences in other protists like Entamoeba histolytica, Trypanosoma cruzi, and Leishmania infantum.
Collapse
Affiliation(s)
- A Marinets
- Institute for Specific Prophylaxis and Tropical Medicine, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|