Abstract
The relationship between N-acetylserotonin (NAS) in the central nervous system (CNS) and responses to pain was investigated. Using the rat tail-flick model, we initially replicated the work of others showing that intraventricular (IVC) injection of a dipeptide structurally similar to both NAS and serotonin was capable of inducing analgesia in the rat. We then showed that IVC-NAS, but not serotonin elicited analgesia in much the same manner as the dipeptide. This effect proved to be very specific as it required the presence of both an acetyl group on the terminal side chain amine as well as a hydroxyl group on the C-5 position of the indole ring. Substitution of the C-5 hydroxyl by a methoxyl group (melatonin) abolished the analgesic effect. Similarly, removing the N-acetyl substitution (serotonin) also eliminated the analgesia. IVC injection of highly specific antiserum to NAS induced hyperalgesia. Furthermore, an interaction was found between NAS and opiate systems. We demonstrated that while naloxone, the opiate antagonist, has no hyperalgesic properties of itself, it did counteract the analgesia induced by NAS. Similarly, NAS antiserum reversed the analgesia induced by the opiate morphine. This work provides evidence that NAS is an endogenously active substance within the CNS pain network.
Collapse