1
|
Thimet Oligopeptidase Biochemical and Biological Significances: Past, Present, and Future Directions. Biomolecules 2020; 10:biom10091229. [PMID: 32847123 PMCID: PMC7565970 DOI: 10.3390/biom10091229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15, THOP1) is a metallopeptidase ubiquitously distributed in mammalian tissues. Beyond its previously well characterized role in major histocompatibility class I (MHC-I) antigen presentation, the recent characterization of the THOP1 C57BL6/N null mice (THOP1−/−) phenotype suggests new key functions for THOP1 in hyperlipidic diet-induced obesity, insulin resistance and non-alcoholic liver steatosis. Distinctive levels of specific intracellular peptides (InPeps), genes and microRNAs were observed when comparing wild type C57BL6/N to THOP1−/− fed either standard or hyperlipidic diets. A possible novel mechanism of action was suggested for InPeps processed by THOP1, which could be modulating protein-protein interactions and microRNA processing, thus affecting the phenotype. Together, research into the biochemical and biomedical significance of THOP1 suggests that degradation by the proteasome is a step in the processing of various proteins, not merely for ending their existence. This allows many functional peptides to be generated by proteasomal degradation in order to, for example, control mRNA translation and the formation of protein complexes.
Collapse
|
2
|
Dalio FM, Machado MFM, Marcondes MF, Juliano MA, Chagas JR, Cunha RLOR, Oliveira V. CPP-Ala-Ala-Tyr-PABA inhibitor analogs with improved selectivity for neurolysin or thimet oligopeptidase. Biochem Biophys Res Commun 2020; 522:368-373. [PMID: 31761323 DOI: 10.1016/j.bbrc.2019.11.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 11/15/2022]
Abstract
Thimet oligopeptidase (TOP, EC 3.4.24.15) and neurolysin (NEL, EC 3.4.24.16) are closely related zinc-dependent metalo-oligopeptidases, which take part in the metabolism of oligopeptides (from 5 to 17 amino acid residues) inside and outside cells. Both peptidases are ubiquitously distributed in tissues. TOP is one of the main intracellular peptide-processing enzymes being important for the antigen selection in the MHC Class I presentation route, while NEL function has been more associated with the extracellular degradation of neurotensin. Despite efforts being made to develop specific inhibitors for these peptidases, the most used are: CPP-Ala-Ala-Tyr-PABA, described by Orlowski et al. in 1988, and CPP-Ala-Aib-Tyr-PABA (JA-2) that is an analog more resistant to proteolysis, which development was made by Shrimpton et al. in 2000. In the present work, we describe other analogs of these compounds but, with better discriminatory capacity to inhibit specifically NEL or TOP. The modifications introduced in these new analogs were based on a key difference existent in the extended binding sites of NEL and TOP: the negatively charged Glu469 residue of TOP corresponds to the positively charged Arg470 residue of NEL. These residues are in position to interact with the residue at the P1' and/or P2' of their substrates (mimicked by the Ala-Ala/P1'-P2' residues of the CPP-Ala-Ala-Tyr-PABA). Therefore, exploring this single difference, the following compounds were synthesized: CPP-Asp-Ala-Tyr-PABA, CPP-Arg-Ala-Tyr-PABA, CPP-Ala-Asp-Tyr-PABA, CPP-Ala-Arg-Tyr-PABA. Confirming the predictions, the replacement of each non-charged residue of the internal portion Ala-Ala by a charged residue Asp or Arg resulted in compounds with higher selectivity for NEL or TOP, especially due to the electrostatic attraction or repulsion by the NEL Arg470 or TOP Glu469 residue. The CPP-Asp-Ala-Tyr-PABA and CPP-Ala-Asp-Tyr-PABA presented higher affinities for NEL, and, the CFP-Ala-Arg-Tyr-PABA showed higher affinity for TOP.
Collapse
Affiliation(s)
- Fernanda M Dalio
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Maurício F M Machado
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes, 08780-911, Mogi das Cruzes, SP, Brazil
| | - Marcelo F Marcondes
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Maria A Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Jair R Chagas
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Laboratório de Biologia Química, Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, 09210-170, Santo André, SP, Brazil
| | - Vitor Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Thimet Oligopeptidase (EC 3.4.24.15) Key Functions Suggested by Knockout Mice Phenotype Characterization. Biomolecules 2019; 9:biom9080382. [PMID: 31431000 PMCID: PMC6722639 DOI: 10.3390/biom9080382] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1−/−) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.
Collapse
|
4
|
Russo LC, Goñi CN, Castro LM, Asega AF, Camargo ACM, Trujillo CA, Ulrich H, Glucksman MJ, Scavone C, Ferro ES. Interaction with calmodulin is important for the secretion of thimet oligopeptidase following stimulation. FEBS J 2009; 276:4358-71. [PMID: 19614740 DOI: 10.1111/j.1742-4658.2009.07144.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) was originally described as a neuropeptide-metabolizing enzyme, highly expressed in the brain, kidneys and neuroendocrine tissue. EP24.15 lacks a typical signal peptide sequence for entry into the secretory pathway and is secreted by cells via an unconventional and unknown mechanism. In this study, we identified a novel calcium-dependent interaction between EP24.15 and calmodulin, which is important for the stimulated, but not constitutive, secretion of EP24.15. We demonstrated that, in vitro, EP24.15 and calmodulin physically interact only in the presence of Ca2+, with an estimated Kd value of 0.52 mum. Confocal microscopy confirmed that EP24.15 colocalizes with calmodulin in the cytosol of resting HEK293 cells. This colocalization markedly increases when cells are treated with either the calcium ionophore A23187 or the protein kinase A activator forskolin. Overexpression of calmodulin in HEK293 cells is sufficient to greatly increase the A23187-stimulated secretion of EP24.15, which can be inhibited by the calmodulin inhibitor calmidazolium. The specific inhibition of protein kinase A with KT5720 reduces the A23187-stimulated secretion of EP24.15 and inhibits the synergistic effects of forskolin with A23187. Treatment with calmidazolium and KT5720 nearly abolishes the stimulatory effects of A23187 on EP24.15 secretion. Together, these data suggest that the interaction between EP24.15 and calmodulin is regulated within cells and is important for the stimulated secretion of EP24.15 from HEK293 cells.
Collapse
Affiliation(s)
- Lilian C Russo
- Department of Cell Biology and Development, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Norman MU, Lew RA, Smith AI, Hickey MJ. Metalloendopeptidases EC 3.4.24.15/16 regulate bradykinin activity in the cerebral microvasculature. Am J Physiol Heart Circ Physiol 2003; 284:H1942-8. [PMID: 12586639 DOI: 10.1152/ajpheart.00948.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bradykinin is a vasoactive peptide that has been shown to increase the permeability of the cerebral microvasculature to blood-borne macromolecules. The two zinc metalloendopeptidases EC (EP 24.15) and EC (EP 24.16) degrade bradykinin in vitro and are highly expressed in the brain. However, the role that these enzymes play in bradykinin metabolism in vivo remains unclear. In the present study, we investigated the role of EP 24.15 and EP 24.16 in the regulation of bradykinin-induced alterations in microvascular permeability. Permeability of the cerebral microvasculature was assessed in anesthetized Sprague-Dawley rats by measuring the clearance of 70-kDa FITC dextran from the brain. Inhibition of EP 24.15 and EP 24.16 by the specific inhibitor N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Aib-Tyr-p-aminobenzoate (JA-2) resulted in the potentiation of bradykinin-induced increases in cerebral microvessel permeability. The level of potentiation was comparable to that achieved by the inhibition of angiotensin-converting enzyme. These findings provide the first evidence of an in vivo role for EP 24.15/EP 24.16 in brain function, specifically in regulating alterations in microvessel permeability induced by exogenous bradykinin.
Collapse
Affiliation(s)
- M Ursula Norman
- Baker Heart Research Institute, Melbourne, Victoria 8008, Australia
| | | | | | | |
Collapse
|
6
|
Abstract
Peptidases play a vital and often highly specific role in the physiological and pathological generation and termination of peptide hormone signals. The thermolysin-like family of metalloendopeptidases involved in the extracellular processing of neuroendocrine and cardiovascular peptides are of particular significance, reflecting both their specificity for particular peptide substrates and their utility as therapeutic targets. Although the functions of the membrane-bound members of this family, such as angiotensin-converting enzyme and neutral endopeptidase, are well established, a role for the predominantly soluble family members in peptide metabolism is only just emerging. This review will focus on the biochemistry, cell biology, and physiology of the soluble metalloendopeptidases EC 3.4.24.15 (thimet oligopeptidase) and EC 3.4.24.16 (neurolysin), as well as presenting evidence that both peptidases play an important role in such diverse functions as reproduction, nociception, and cardiovascular homeostasis.
Collapse
|
7
|
Norman MU, Lew RA, Smith AI, Denton KM, Evans RG. Metalloendopeptidases EC 3.4.24.15 and EC 3.4.24.16 and bradykinin B2 receptors do not play important roles in renal wrap hypertension in rabbits. Clin Exp Pharmacol Physiol 2001; 28:836-41. [PMID: 11553025 DOI: 10.1046/j.1440-1681.2001.03532.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The aim of the present study was to determine the effects of the metalloendopeptidase (EP) 24.15 and 24.16 inhibitor N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Aib-Tyr-p-aminobenzoate (JA-2) on haemodynamics and renal function in conscious rabbits with two-kidney, two-wrapped hypertension. We have also examined the role of endogenous bradykinin in the maintenance phase of this form of renovascular hypertension and whether inhibition of bradykinin degradation contributes to any potential effects of JA-2. 2. In two preliminary operations, rabbits were equipped with transit-time ultrasound flow probes for measuring cardiac output (CO) and renal blood flow (RBF) and had both kidneys wrapped in cellophane. Starting 4 weeks after the last operation, rabbits underwent four studies (3-5 days apart), during which they were treated with combinations of the bradykinin B2 receptor antagonist icatibant or its vehicle (1 mL/kg bodyweight 0.9% w/v NaCl) and JA-2 or its vehicle (1 mL/kg of a 5% w/v 2-hydroxypropyl-beta-cyclodextrin, 2.5% v/v dimethylsulphoxide solution). Renal function was monitored using standard renal clearance methods. 3. Icatibant (10 microg/kg) had no significant effects on systemic haemodynamic variables (mean arterial pressure, heart rate or CO), renal haemodynamic variables (RBF or glomerular filtration rate), urine flow or sodium excretion. At 5 mg/kg plus 3 mg/kg per h, JA-2 also did not affect any of these variables, either after icatibant vehicle treatment or after icatibant treatment. 4. Our data do not support major roles for endogenous bradykinin or bradykinin degradation by EP 24.15/24.16 in the control of systemic and renal haemodynamics or renal excretory function in two-kidney, two-wrapped hypertension in rabbits.
Collapse
Affiliation(s)
- M U Norman
- Baker Medical Research Institute, Prahran, Victoria, Australia.
| | | | | | | | | |
Collapse
|
8
|
Hayashi MA, Portaro FC, Tambourgi DV, Sucupira M, Yamane T, Fernandes BL, Ferro ES, Rebouças NA, de Camargo AC. Molecular and immunochemical evidences demonstrate that endooligopeptidase A is the predominant cytosolic oligopeptidase of rabbit brain. Biochem Biophys Res Commun 2000; 269:7-13. [PMID: 10694468 DOI: 10.1006/bbrc.2000.2243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oligopeptidases are tissue endopeptidases that do not attack proteins and are likely to be involved in the maturation and degradation of peptide hormones and neuropeptides. The rabbit brain endooligopeptidase A and the rat testes soluble metallopeptidase (EC 3.4.24.15) are thiol-activated oligopeptidases which are able to generate enkephalin from a number of opioid peptides and to inactivate bradykinin and neurotensin by hydrolyzing the same peptide bonds. A monospecific antibody raised against the purified rabbit brain endooligopeptidase A allowed the identification of a 2. 3 kb cDNA coding for a truncated enzyme of 512 amino acids, displaying the same enzymatic features as endooligopeptidase A. In spite of all efforts, employing several strategies, the full-length cDNA could not be cloned until now. The analysis of the deduced amino acid sequence showed no similarity to the rat testes metalloendopeptidase sequence, except for the presence of the typical metalloprotease consensus sequence [HEXXH]. The antibody raised against recombinant endooligopeptidase A specifically inhibited its own activity and reduced the thiol-activated oligopeptidase activity of rabbit brain cytosol to less than 30%. Analysis of the endooligopeptidase A tissue distribution indicated that this enzyme is mainly expressed in the CNS, whereas the soluble metallo EC 3.4.24.15 is mainly expressed in peripheral tissues.
Collapse
Affiliation(s)
- M A Hayashi
- Department of Biophysics and Biochemistry, Butantan Institute, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Silva CL, Portaro FC, Bonato VL, de Camargo AC, Ferro ES. Thimet oligopeptidase (EC 3.4.24.15), a novel protein on the route of MHC class I antigen presentation. Biochem Biophys Res Commun 1999; 255:591-5. [PMID: 10049755 DOI: 10.1006/bbrc.1999.0250] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The initial processing of antigens leading to major histocompatibility complex (MHC) class I antigenic peptides is carried out by the proteasome. However, how the final epitopes are generated and protected from degradation by cytosolic peptidases remains unknown. Coincidentally, peptides associated with the MHC class I molecules range from 8 to 13 amino acid residues, similarly to the optimum substrate size required for the cytosolic thimet oligopeptidase. Here we have investigated the putative intracellular function of thimet oligopeptidase related to antigen presentation. Using a well-characterized antigen-presenting cell system, we were able to demonstrate either inhibition or stimulation of CD8 T cell proliferation and cytotoxicity, manipulating intracellular thimet oligopeptidase levels with its specific inhibitor cFP-Ala-Ala-Tyr-pAb or loading the enzyme itself into the antigen-presenting cells. Our results suggest that thimet oligopeptidase should take an important function in the pathway of antigen presentation via MHC class I through a mechanism yet unknown.
Collapse
Affiliation(s)
- C L Silva
- Department of Parasitology, Microbiology, and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | | | | | | | | |
Collapse
|
10
|
Vincent B, Jiracek J, Noble F, Loog M, Roques B, Dive V, Vincent JP, Checler F. Contribution of endopeptidase 3.4.24.15 to central neurotensin inactivation. Eur J Pharmacol 1997; 334:49-53. [PMID: 9346327 DOI: 10.1016/s0014-2999(97)01209-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The tridecapeptide, neurotensin elicits naloxone-insensitive analgesia after its intracebroventricular administration in mice. We used this central pharmacological effect to assess the putative contribution of the endopeptidase 3.4.24.15 to central inactivation of the peptide. By means of combinatorial chemistry, we previously designed the first potent endopeptidase 3.4.24.15 inhibitor. This agent, Z-(L,D)Phe psi(PO2CH2)(L,D)Ala-Lys-Met (phosphodiepryl 21), is shown here to behave as a fully specific endopeptidase 3.4.24.15 inhibitor, as demonstrated by the absence of effect on a series of other exo- and endopeptidases belonging to various classes of proteolytic activities present in murine brain membranes. Furthermore, central administration of phosphodiepryl 21 drastically prolongs the forepaw licking latency of mice tested on the hot plate and injected with sub-maximally active doses of neurotensin. Altogether, our results demonstrated that, in addition to endopeptidase 3.4.24.16, endopeptidase 3.4.24.15 likely contributes to the physiological termination of the neurotensinergic message in murine brain.
Collapse
Affiliation(s)
- B Vincent
- Institut de pharmacologie moléculaire et Cellulaire du CNRS, UPR411, Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Metabolism of Bradykinin by Peptidases in Health and Disease. THE KININ SYSTEM 1997. [PMCID: PMC7155640 DOI: 10.1016/b978-012249340-9/50009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
This chapter provides an overview of the metabolism of bradykinin (BK) by peptidases in health and disease. The enzymatic breakdown of kinins affects the duration of their biological actions as the plasma half-life of intravenously injected BK is in the range of seconds. Kinins are cleaved in vitro and in vivo by enzymes that belong to families, such as zinc-metallopeptidases, astacin-like metallopeptidases, and catheptic enzymes. Vane noted the importance of the pulmonary circulation in the metabolism of vasoactive substances, such as BK as well as angiotensin 1 and 5- hydroxytryptamine. It is clear after decades of research that angiotensin 1-converting enzyme (ACE) on the vascular endothelial cell surface is the most important inactivator of blood-borne BK. BK may act primarily in an autocrine and paracrine fashion, establishing the importance of local regulation of its activity by enzymes on cell surfaces. Thus, the assortment of other enzymes that can inactivate BK is important in a variety of physiological and pathological situations. Most physiological systems have redundant pathways of metabolism so that the abolishment of one pathway is compensated for by the presence of others. This is demonstrated by the pharmacological inhibition of ACE in hypertension.
Collapse
|
12
|
Tomoda F, Lew RA, Smith AI, Madden AC, Evans RG. Role of bradykinin receptors in the renal effects of inhibition of angiotensin converting enzyme and endopeptidases 24.11 and 24.15 in conscious rabbits. Br J Pharmacol 1996; 119:365-73. [PMID: 8886422 PMCID: PMC1915843 DOI: 10.1111/j.1476-5381.1996.tb15995.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. We tested the effects on systemic haemodynamics and renal function, of inhibition of endopeptidase (EP) 24.15 (E.C. 3.4.24.15), in conscious uninephrectomized rabbits in which the activities of angiotensin converting enzyme (ACE, E.C. 3.4.15.1) and neutral endopeptidase (EP 24.11, E.C. 3.4.24.11) were already inhibited. To test the role of bradykinin B2-receptors in mediating the effects following inhibition of these enzymes, the antagonist Hoe 140 was used. 2. Hoe 140 (0.1 mg kg-1, i.v.) did not affect resting mean arterial pressure or heart rate, but antagonized the depressor effect of right atrial administration of bradykinin. The dose-response curve for bradykinin was shifted more than 1000 fold to the right for more than 4 h. Hoe 140 approximately doubled resting urine flow and increased fractional Na+ excretion from 4.2 to 6.0%; consistent with the hypothesis that it exerts a partial agonist effect on the kidney. 3. Combined inhibition of ACE (captopril; 0.25 mg kg-1 plus 0.2 mg kg-1h-1) and EP 24.11 (SCH 39370; 3 mg kg-1 plus 3 mg kg-1h-1) was followed by a sustained reduction in arterial pressure (-6 +/- 2 mmHg) and increase in heart rate (35 +/- 7 beats min-1). There was a small increase in renal blood flow (by 6.5 +/- 3.2% relative to vehicle-treatment) without a change in glomerular filtration rate, and about a 150% increase in Na+ excretion. Hoe 140 (0.1 mg kg-1, i.v.) pretreatment did not influence the renal effects of captopril and SCH 39370, although it did appear to blunt their hypotensive and tachycardic effects. 4. When EP 24.15 was inhibited with N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP-AAY-pAB; 5 mg kg-1 plus 3 mg kg-1h-1, i.v.) in rabbits pretreated with captopril and SCH 39370, no changes in systemic haemodynamics or renal function were observed. 5. We concluded that in conscious uninephrectomized rabbits, EP 24.15 does not play a major role in modulating renal function, at least under conditions where ACE and EP 24.11 are already inhibited. In contrast, ACE and/or EP 24.11 do modulate renal function in this model, but their influences are mediated chiefly through metabolism of peptides other than bradykinin.
Collapse
Affiliation(s)
- F Tomoda
- Baker Medical Research Institute, Prahran, Victoria, Australia
| | | | | | | | | |
Collapse
|
13
|
Lew RA, Tomoda F, Evans RG, Lakat L, Boublik JH, Pipolo LA, Smith AI. Synthetic inhibitors of endopeptidase EC 3.4.24.15: potency and stability in vitro and in vivo. Br J Pharmacol 1996; 118:1269-77. [PMID: 8818353 PMCID: PMC1909604 DOI: 10.1111/j.1476-5381.1996.tb15533.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The role of the metalloendopeptidase EC 3.4.24.15 (EP 24.15) in peptide metabolism in vivo is unknown, in part reflecting the lack of a stable enzyme inhibitor. The most commonly used inhibitor, N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP-AAY-pAB, Ki = 16 nM), although selective in vitro, is rapidly degraded in the circulation to cFP-Ala-Ala, an angiotensin converting enzyme (ACE) inhibitor. This metabolite is thought to be generated by neutral endopeptidase (NEP; EC 3.4.24.11), as the Ala-Tyr bond of cFP-AAY-pAB is cleaved by NEP in vitro. In the present study, we have examined the role of NEP in the metabolism of cFP-AAY-pAB in vivo, and have tested a series of inhibitor analogues, substituted at the second alanine, for both potency and stability relative to the parent compound. 2. Analogues were screened for inhibition of fluorescent substrate cleavage by recombinant rat testes EP 24.15. D-Ala or Asp substitution abolished inhibitory activity, while Val-, Ser- and Leu-substituted analogues retained activity, albeit at a reduced potency. A relative potency order of Ala (1) > Val (0.3) > Ser (0.16) > Leu (0.06) was observed. Resistance to cleavage by NEP was assessed by incubation of the analogues with rabbit kidney membranes. The parent compound was readily degraded, but the analogues were twice (Ser) and greater than 10 fold (Leu and Val) more resistant to cleavage. 3. Metabolism of cFP-AAY-pAB and the Val-substituted analogue was also examined in conscious rabbits. A bolus injection of cFP-AAY-pAB (5 mg kg-1, i.v.) significantly reduced the blood pressure response to angiotensin I, indicating ACE inhibition. Pretreatment with NEP inhibitors, SCH 39370 or phosphoramidon, slowed the loss of cFP-AAY-pAB from the plasma, but did not prevent inhibition of ACE. Injection of 1 mg kg-1 inhibitor resulted in plasma concentrations at 10 s of 23.5 microM (cFP-AAY-pAB) and 18.0 microM (cFP-AVY-pAB), which fell 100 fold over 5 min. Co-injection of 125I-labelled inhibitor revealed that 80-85% of the radioactivity had disappeared from the circulation within 5 min, and h.p.l.c. analysis demonstrated that only 25-30% of the radiolabel remained as intact inhibitor at this time. Both analogues were cleared from the circulation at the same rate, and both inhibitors blunted the pressor response to angiotensin I, indicative of ACE inhibition. 4. These results suggest that both NEP and other clearance/degradation mechanisms severely limit the usefulness of peptide-based inhibitors such as cFP-AAY-pAB. To examine further EP 24.15 function in vivo, more stable inhibitors, preferably non-peptide, must be developed, for which these peptide-based inhibitors may serve as useful molecular templates.
Collapse
Affiliation(s)
- R A Lew
- Baker Medical Research Institute, Prahran, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Jirácek J, Yiotakis A, Vincent B, Lecoq A, Nicolaou A, Checler F, Dive V. Development of highly potent and selective phosphinic peptide inhibitors of zinc endopeptidase 24-15 using combinatorial chemistry. J Biol Chem 1995; 270:21701-6. [PMID: 7665587 DOI: 10.1074/jbc.270.37.21701] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several hundred phosphinic peptides having the general formula Z-(L,D)Phe psi (PO2CH2)(L,D)Xaa'-Yaa'-Zaa', where Xaa' = Gly or Ala and Yaa' and Zaa' represent 20 different amino acids, have been synthesized by the combinatorial chemistry approach. Peptide mixtures or individual peptides were evaluated for their ability to inhibit the rat brain zinc endopeptidases 24-15 and 24-16. Numerous phosphinic peptides of this series act as potent (Ki in the nanomolar range) mixed inhibitors of these two peptidases. However, our systematic and comparative strategy led us to delineate the residues located in P2' and P3' positions of the inhibitors that are preferred by these two peptidases. Thus, endopeptidase 24-15 exhibits a marked preference for inhibitors containing a basic residue (Arg or Lys) in the P2' position, while 24-16 prefers a proline in this position. The P3' position has less influence on the inhibitory potency and selectivity, both peptidases preferring a hydrophobic residue at this position. On the basis of these observations, we have prepared highly potent and selective inhibitors of endopeptidase 24-15. The Z-(L,D)Phe psi-(PO2CH2)(L,D)Ala-Arg-Met compound (mixture of the four diastereoisomers) displays a Ki value of 70 pM for endopeptidase 24-15. The most selective inhibitor of endopeptidase 24-15 in this series, Z-(L,D)Phe psi (PO2-CH2)(L,D)Ala-Arg-Phe, exhibits a Ki value of 0.160 nM and is more than 3 orders of magnitude less potent toward endopeptidase 24-16 (Ki = 530 nM). Furthermore, at 1 microM this selective inhibitor is unable to affect the activity of several other zinc peptidases, namely endopeptidase 24-11, angiotensin-converting enzyme, aminopeptidase M, leucine aminopeptidase, and carboxypeptidases A and B. Therefore, Z-(L,D)Phe psi (PO2CH2)(L,D)Ala-Arg-Phe can be considered as the most potent and specific inhibitor of endopeptidase 24-15 developed to date. This new inhibitor should be useful in assessing the contribution of this proteolytic activity in the physiological inactivation of neuropeptides known to be hydrolyzed, at least in vitro, by endopeptidase 24-15. Our study also demonstrates that the combinatorial chemistry approach leading to the development of phosphinic peptide libraries is a powerful strategy for discovering highly potent and selective inhibitors of zinc metalloproteases and should find a broader application in studies of this important class of enzymes.
Collapse
Affiliation(s)
- J Jirácek
- Département d'Ingénierie et d'Etudes des Protéines, DSV, CE-Saclay, Gif/Yvette, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Telford SE, Smith AI, Lew RA, Perich RB, Madden AC, Evans RG. Role of angiotensin converting enzyme in the vascular effects of an endopeptidase 24.15 inhibitor. Br J Pharmacol 1995; 114:1185-92. [PMID: 7620708 PMCID: PMC1510338 DOI: 10.1111/j.1476-5381.1995.tb13332.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. We investigated the role of angiotensin converting enzyme (ACE) in the cardiovascular effects of N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP), a peptidase inhibitor selective for metalloendopeptidase (EP) E.C. 3.4.24.15. 2. In conscious rabbits, cFP (5 mg kg-1, i.v.) markedly slowed the degradation of [3H]-bradykinin, potentiated the depressor response to right atrial administration of bradykinin (10-1000 ng kg-1), and inhibited the pressor response to right atrial angiotensin I (10-100 ng kg-1). In each of these respects, the effects of cFP were indistinguishable from those of the ACE inhibitor, captopril (0.5 mg plus 10 mg kg-1h-1 i.v.). Furthermore, the effects of combined administration of cFP and captopril were indistinguishable from those of captopril alone. 3. In experimentally naive anaesthetized rats, cFP administration (9.3 mg kg-1, i.v.) was followed by a moderate but sustained fall in arterial pressure of 13 mmHg. However, in rats pretreated with bradykinin (50 micrograms kg-1) a more pronounced fall of 30 mmHg was observed. Captopril (5 mg kg-1) had similar hypotensive effects to those of cFP, and cFP had no effect when it was administered after captopril. 4. CFP displaced the binding of [125I]-351A (the p-hydroxybenzamidine derivative of lisinopril) from preparations of rat plasma ACE and solubilized lung membrane ACE (KD = 1.2 and 0.14 microM respectively), and inhibited rat plasma ACE activity (KI = 2.4 microM). Addition of phosphoramidon (10 microM), an inhibitor of a range of metalloendopeptidases, including neutral endopeptidase (E.C.3.4.24.11), markedly reduced the potency of cFP in these systems. 5. Taken together these findings suggest that the actions of cFP in vivo are attributable to inhibition of ACE rather than EP 24.15. Given that cFP is a poor inhibitor of ACE in the presence of phosphoramidon in vitro, it is likely that cFP is cleaved by a phosphoramidon-sensitive metallopeptidase in vivo to liberate N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala, a potent ACE inhibitor.
Collapse
Affiliation(s)
- S E Telford
- Baker Medical Research Institute, Prahran, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Lysylbradykinin (LBK), a potent bioactive peptide with pleiotropic actions, is the major kinin generated in the extravascular space. To explore possible mechanisms of inactivation of this peptide in tissues, we evaluated its degradation by endopeptidase 24.11 (EP 24.11) and endopeptidase 24.15 (EP 24.15), two zinc metalloenzymes widely distributed in tissues. EP 24.11 cleaved LBK at the Gly5-Phe6 and Pro8-Phe9 bonds, whereas EP 24.15 cleaved the Phe6-Ser7 bond. Determination of kinetic constants for degradation of LBK by the two enzymes yielded kcat/Km ratios of 5.2 x 10(5) and 8.4 x 10(5) for EP 24.15 and EP 24.11, respectively, indicating that LBK is a good substrate for both enzymes. The findings demonstrate that both EP 24.11 and EP 24.15 efficiently degrade LBK and thus may contribute to the inactivation of this peptide in tissues.
Collapse
Affiliation(s)
- C Rosenbaum
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
17
|
Barrett AJ, Brown MA, Dando PM, Knight CG, McKie N, Rawlings ND, Serizawa A. Thimet oligopeptidase and oligopeptidase M or neurolysin. Methods Enzymol 1995; 248:529-56. [PMID: 7674943 DOI: 10.1016/0076-6879(95)48034-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A J Barrett
- Department of Biochemistry, Strangeways Research Laboratory, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|