1
|
Hoffmann M, Haselberger D, Hofmann T, Müller L, Janson K, Meister A, Das M, Vargas C, Keller S, Kastritis PL, Schmidt C, Hinderberger D. Nanoscale Model System for the Human Myelin Sheath. Biomacromolecules 2021; 22:3901-3912. [PMID: 34324309 DOI: 10.1021/acs.biomac.1c00714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurodegenerative disorders are among the most common diseases in modern society. However, the molecular bases of diseases such as multiple sclerosis or Charcot-Marie-Tooth disease remain far from being fully understood. Research in this field is limited by the complex nature of native myelin and by difficulties in obtaining good in vitro model systems of myelin. Here, we introduce an easy-to-use model system of the myelin sheath that can be used to study myelin proteins in a native-like yet well-controlled environment. To this end, we present myelin-mimicking nanodiscs prepared through one of the amphiphilic copolymers styrene/maleic acid (SMA), diisobutylene/maleic acid (DIBMA), and styrene/maleimide sulfobetaine (SMA-SB). These nanodiscs were tested for their lipid composition using chromatographic (HPLC) and mass spectrometric (MS) methods and, utilizing spin probes within the nanodisc, their comparability with liposomes was studied. In addition, their binding behavior with bovine myelin basic protein (MBP) was scrutinized to ensure that the nanodiscs represent a suitable model system of myelin. Our results suggest that both SMA and SMA-SB are able to solubilize the myelin-like (cytoplasmic) liposomes without preferences for specific lipid headgroups or fatty acyl chains. In nanodiscs of both SMA and SMA-SB (called SMA(-SB)-lipid particles, short SMALPs or SMA-SBLPs, respectively), the polymers restrict the lipids' motion in the hydrophobic center of the bilayer. The headgroups of the lipids, however, are sterically less hindered in nanodiscs when compared with liposomes. Myelin-like SMALPs are able to bind bovine MBP, which can stack the lipid bilayers like in native myelin, showing the usability of these simple, well-controlled systems in further studies of protein-lipid interactions of native myelin.
Collapse
Affiliation(s)
- Matthias Hoffmann
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - David Haselberger
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Tommy Hofmann
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Lisa Müller
- Institute of Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Kevin Janson
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Carolyn Vargas
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.,Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstraße 50/III, 8010 Graz, Austria.,Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.,BioTechMed-Graz, 8010 Graz, Austria
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.,Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstraße 50/III, 8010 Graz, Austria.,Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.,BioTechMed-Graz, 8010 Graz, Austria
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
5
|
Ishiyama N, Hill CM, Bates IR, Harauz G. The formation of helical tubular vesicles by binary monolayers containing a nickel-chelating lipid and phosphoinositides in the presence of basic polypeptides. Chem Phys Lipids 2002; 114:103-11. [PMID: 11841829 DOI: 10.1016/s0009-3084(02)00002-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Binary lipid monolayers consisting of equimolar proportions of a phosphoinositide and a nickel-chelating lipid formed helical tubular vesicular structures, which appeared to be induced and/or stabilized by myelin basic protein (MBP). Another basic polypeptide, poly-L-lysine, had a similar effect but not to as great a degree as MBP; the proteins thus appeared to act as polycations. Although, the nickel-chelating lipid is a synthetic product, other endogenous divalent cations such as Zn(2+), as well as phosphoinositides, are integral and dynamic components of the myelin sheath in vivo. There, comparable helical tubular structures might represent a means for sequestration of these lipids into domains of high local concentration, perhaps in regions where the membrane is greatly curved.
Collapse
Affiliation(s)
- Noboru Ishiyama
- Biophysics Interdepartmental Group, Department of Molecular Biology and Genetics, University of Guelph, 50 Stone Road East, Ont., N1G 2W1, Guelph, Canada
| | | | | | | |
Collapse
|
6
|
Mac Millan SV, Ishiyama N, White GF, Palaniyar N, Hallett FR, Harauz G. Myelin basic protein component C1 in increasing concentrations can elicit fusion, aggregation, and fragmentation of myelin-like membranes. Eur J Cell Biol 2000; 79:327-35. [PMID: 10887963 DOI: 10.1078/s0171-9335(04)70036-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myelin basic protein (MBP) is considered to have a primary role in the formation and maintenance of the myelin sheath. Many studies using artificial vesicle systems of simple lipid composition, and generally small size, have shown that MBP can elicit vesicle fusion, aggregation, or even fragmentation under different conditions. Here, we have studied the effects of increasing concentrations of bovine MBP charge isomer C1 (MBP/C1) on large unilamellar vesicles (LUVs) composed of phosphatidylcholine and phosphatidylserine (92:8 molar ratio), or with a lipid composition similar to that of the myelin membrane in vivo (Cyt-LUVs). Using absorbance spectrophotometry, fluorescence resonance energy transfer, dynamic light scattering and transmission electron microscopy, we have shown that vesicle aggregation and some vesicle fusion occurred upon addition of MBP/C1, and as the molar protein-lipid ratio increased. Fragmentation of Cyt-LUVs was observed at very high protein concentrations. These results showed that the phenomena of vesicle fusion, aggregation, and fragmentation can all be observed in one in vitro system, but were dependent on lipid composition and on the relative proportions of protein and lipid.
Collapse
Affiliation(s)
- S V Mac Millan
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Consideration of the evidence presented in this review leads to the following conclusions: (a) Isolated MBP in aqueous solution has little ordered secondary or tertiary structure. (b) In this state, the protein can associate with a wide range of hydrophobic and amphiphilic compounds, these interactions involving limited sections of the protein. (c) The strength of binding to bilayers and the accompanying conformational changes in the protein are greatest for systems containing acidic lipids, presumably because of the involvement of ionic interactions. (d) When bound to bilayers of acidic lipids, MBP will have substantially more ordered secondary structure than it manifests in aqueous solution, and it is likely to be oligomeric (possibly hexameric). (e) MBP does affect the organization of lipid aggregates. It influences strongly the separation of bilayers in multilayers of purified lipids, and at present this must be viewed as its prime role within myelin. The greatest impediment to our understanding of MBP is the lack of an assayable biological activity. In contrast to the situation with enzymes, for example, we have no functional test for changes in protein structure or changes accompanying interactions with other molecules. Current evidence suggests that the protein has a structural role within myelin and that its own three-dimensional structure is strongly dependent on the molecules with which it is associated. If this picture is correct, studies of the isolated protein or of the protein in reconstituted lipid systems may yield, at best, a rough guide to the structure within its biological environment. Further clarification of the structure and function of MBP may have to await development of more powerful techniques for studying proteins bound to large molecular aggregates, such as lipid bilayers. The paucity of generally applicable methods is reflected in the fact that even low resolution structures are known for only a handful of intrinsic membrane proteins, and even more limited information exists for proteins associated with membrane surfaces. However, the increasing use of a combination of electron microscopy and diffraction on two-dimensional arrays of proteins formed on lipid bilayers (Henderson et al., 1990) offers the hope that it may not be too long before it will be possible to study at moderate resolution the three-dimensional structure of MBP bound to a lipid membrane.
Collapse
Affiliation(s)
- R Smith
- Department of Biochemistry, University of Queensland, St. Lucia, Australia
| |
Collapse
|