Timmers AM, van Groningen-Luyben DA, de Grip WJ. Uptake and isomerization of all-trans retinol by isolated bovine retinal pigment epithelial cells: further clues to the visual cycle.
Exp Eye Res 1991;
52:129-38. [PMID:
2013297 DOI:
10.1016/0014-4835(91)90253-b]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The site and substrate for all-trans to 11-cis isomerization in the visual cycle have remained obscure for several decades. Only recently studies on a subcellular level have begun to shed some light on these phenomena. We have addressed this system on a cellular level by utilizing intact isolated bovine retinal pigment epithelial cells, maintained during short-term incubation in vitro. Supplementation with labeled all-trans retinol incorporated in a lipid vesicle carrier, in a range of 1-6 nmol per 10(6) cells, resulted in a rapid uptake of retinol. The majority of the internalized retinol was processed prior to mixing with endogenous retinoid pools and most of it was converted into all-trans retinylester. Up to 10% of the incorporated label was isomerized yielding 11-cis retinol, 11-cis retinaldehyde and 11-cis retinylester. The kinetics of the 11-cis retinoid formation indicated that 11-cis retinol is the first isomerization product. The level of 11-cis retinol apparently 'triggered' further processing into other 11-cis retinoids. An updated model with discussion topics is presented for the retinoid pathway relevant to the visual cycle.
Collapse