1
|
Osvatic JT, Yuen B, Kunert M, Wilkins L, Hausmann B, Girguis P, Lundin K, Taylor J, Jospin G, Petersen JM. Gene loss and symbiont switching during adaptation to the deep sea in a globally distributed symbiosis. THE ISME JOURNAL 2023; 17:453-466. [PMID: 36639537 PMCID: PMC9938160 DOI: 10.1038/s41396-022-01355-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Chemosynthetic symbioses between bacteria and invertebrates occur worldwide from coastal sediments to the deep sea. Most host groups are restricted to either shallow or deep waters. In contrast, Lucinidae, the most species-rich family of chemosymbiotic invertebrates, has both shallow- and deep-sea representatives. Multiple lucinid species have independently colonized the deep sea, which provides a unique framework for understanding the role microbial symbionts play in evolutionary transitions between shallow and deep waters. Lucinids acquire their symbionts from their surroundings during early development, which may allow them to flexibly acquire symbionts that are adapted to local environments. Via metagenomic analyses of museum and other samples collected over decades, we investigated the biodiversity and metabolic capabilities of the symbionts of 22 mostly deep-water lucinid species. We aimed to test the theory that the symbiont played a role in adaptation to life in deep-sea habitats. We identified 16 symbiont species, mostly within the previously described genus Ca. Thiodiazotropha. Most genomic functions were shared by both shallow-water and deep-sea Ca. Thiodiazotropha, though nitrogen fixation was exclusive to shallow-water species. We discovered multiple cases of symbiont switching near deep-sea hydrothermal vents and cold seeps, where distantly related hosts convergently acquired novel symbionts from a different bacterial order. Finally, analyses of selection revealed consistently stronger purifying selection on symbiont genomes in two extreme habitats - hydrothermal vents and an oxygen-minimum zone. Our findings reveal that shifts in symbiont metabolic capability and, in some cases, acquisition of a novel symbiont accompanied adaptation of lucinids to challenging deep-sea habitats.
Collapse
Affiliation(s)
- Jay T. Osvatic
- grid.10420.370000 0001 2286 1424University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030 Vienna, Austria ,University of Venna, Doctoral School in Microbiology and Environmental Science, Djerassiplatz 1, 1030 Vienna, Austria
| | - Benedict Yuen
- grid.10420.370000 0001 2286 1424University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Martin Kunert
- grid.10420.370000 0001 2286 1424University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Laetitia Wilkins
- grid.419529.20000 0004 0491 3210Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28209 Bremen, Germany
| | - Bela Hausmann
- grid.10420.370000 0001 2286 1424Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Girguis
- grid.38142.3c000000041936754XDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA
| | - Kennet Lundin
- grid.516430.50000 0001 0059 3334Gothenburg Natural History Museum, Box 7283, 40235 Gothenburg, Sweden ,grid.8761.80000 0000 9919 9582Gothenburg Global Biodiversity Centre, Box 461, 40530 Gothenburg, Sweden
| | - John Taylor
- grid.35937.3b0000 0001 2270 9879Natural History Museum, Cromwell Rd, London, SW7 5BD UK
| | | | - Jillian M. Petersen
- grid.10420.370000 0001 2286 1424University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
2
|
Chou PH, Hu MY, Guh YJ, Wu GC, Yang SH, Tandon K, Shao YT, Lin LY, Chen C, Tseng KY, Wang MC, Zhang CM, Han BC, Lin CC, Tang SL, Jeng MS, Chang CF, Tseng YC. Cellular mechanisms underlying extraordinary sulfide tolerance in a crustacean holobiont from hydrothermal vents. Proc Biol Sci 2023; 290:20221973. [PMID: 36629118 PMCID: PMC9832567 DOI: 10.1098/rspb.2022.1973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 01/12/2023] Open
Abstract
The shallow-water hydrothermal vent system of Kueishan Island has been described as one of the world's most acidic and sulfide-rich marine habitats. The only recorded metazoan species living in the direct vicinity of the vents is Xenograpsus testudinatus, a brachyuran crab endemic to marine sulfide-rich vent systems. Despite the toxicity of hydrogen sulfide, X. testudinatus occupies an ecological niche in a sulfide-rich habitat, with the underlying detoxification mechanism remaining unknown. Using laboratory and field-based experiments, we characterized the gills of X. testudinatus that are the major site of sulfide detoxification. Here sulfide is oxidized to thiosulfate or bound to hypotaurine to generate the less toxic thiotaurine. Biochemical and molecular analyses demonstrated that the accumulation of thiosulfate and hypotaurine is mediated by the sodium-independent sulfate anion transporter (SLC26A11) and taurine transporter (Taut), which are expressed in gill epithelia. Histological and metagenomic analyses of gill tissues demonstrated a distinct bacterial signature dominated by Epsilonproteobacteria. Our results suggest that thiotaurine synthesized in gills is used by sulfide-oxidizing endo-symbiotic bacteria, creating an effective sulfide-buffering system. This work identified physiological mechanisms involving host-microbe interactions that support life of a metazoan in one of the most extreme environments on our planet.
Collapse
Affiliation(s)
- Pei-Hsuan Chou
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan County, Taiwan
| | - Marian Y. Hu
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ying-Jey Guh
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan County, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans National Taiwan Ocean University, Keelung, Taiwan
| | - Shan-Hua Yang
- Institute of Fisheries Science, National Taiwan University, Taipei City, Taiwan
| | - Kshitij Tandon
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Yi-Ta Shao
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Chi Chen
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University and Academia Sinica, Taipei City, Taiwan
| | - Kuang-Yu Tseng
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Min-Chen Wang
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan County, Taiwan
| | - Cheng-Mao Zhang
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Bor-Cheng Han
- School of Public Health, Taipei Medical College, Taipei, Taiwan
| | - Ching-Chun Lin
- Biomedical Translation Research Center, Academia Sinica, Taipei City, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Ming-Shiou Jeng
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Ching-Fong Chang
- Center of Excellence for the Oceans National Taiwan Ocean University, Keelung, Taiwan
| | - Yung-Che Tseng
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan County, Taiwan
| |
Collapse
|
3
|
Full-Length Transcriptome Comparison Provides Novel Insights into the Molecular Basis of Adaptation to Different Ecological Niches of the Deep-Sea Hydrothermal Vent in Alvinocaridid Shrimps. DIVERSITY 2022. [DOI: 10.3390/d14050371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The deep-sea hydrothermal vent ecosystem is one of the extreme chemoautotrophic environments. Shinkaicaris leurokolos Kikuchi and Hashimoto, 2000, and Alvinocaris longirostris Kikuchi and Ohta, 1995, are typically co-distributed and closely related alvinocaridid shrimps in hydrothermal vent areas with different ecological niches, providing an excellent model for studying the adaptive evolution mechanism of animals in the extreme deep-sea hydrothermal vent environment. The shrimp S. leurokolos lives in close proximity to the chimney vent discharging high-temperature fluid, while A. longirostris inhabits the peripheral areas of hydrothermal vents. In this study, full-length transcriptomes of S. leurokolos and A. longirostris were generated using a combination of single-molecule real-time (SMRT) and Illumina RNA-seq technology. Expression analyses of the transcriptomes showed that among the top 30% of highly expressed genes of each species, more genes related to sulfide and heavy metal metabolism (sulfide: quinone oxidoreductase, SQR; persulfide dioxygenase, ETHE1; thiosulfate sulfurtransferase, TST, and ferritin, FRI) were specifically highly expressed in S. leurokolos, while genes involved in maintaining epibiotic bacteria or pathogen resistance (beta-1,3-glucan-binding protein, BGBP; endochitinase, CHIT; acidic mammalian chitinase, CHIA, and anti-lipopolysaccharide factors, ALPS) were highly expressed in A. longirostris. Gene family expansion analysis revealed that genes related to anti-oxidant metabolism (cytosolic manganese superoxide dismutase, SODM; glutathione S-transferase, GST, and glutathione peroxidase, GPX) and heat stress (heat shock cognate 70 kDa protein, HSP70 and heat shock 70 kDa protein cognate 4, HSP7D) underwent significant expansion in S. leurokolos, while CHIA and CHIT involved in pathogen resistance significantly expanded in A. longirostris. Finally, 66 positively selected genes (PSGs) were identified in the vent shrimp S. leurokolos. Most of the PSGs were involved in DNA repair, antioxidation, immune defense, and heat stress response, suggesting their function in the adaptive evolution of species inhabiting the extreme vent microhabitat. This study provides abundant genetic resources for deep-sea invertebrates, and is expected to lay the foundation for deep decipherment of the adaptive evolution mechanism of shrimps in a deep-sea chemosynthetic ecosystem based on further whole-genome comparison.
Collapse
|
4
|
Balanced Polymorphism at the Pgm-1 Locus of the Pompeii Worm Alvinella pompejana and Its Variant Adaptability Is Only Governed by Two QE Mutations at Linked Sites. Genes (Basel) 2022; 13:genes13020206. [PMID: 35205251 PMCID: PMC8872362 DOI: 10.3390/genes13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
The polychaete Alvinella pompejana lives exclusively on the walls of deep-sea hydrothermal chimneys along the East Pacific Rise (EPR), and displays specific adaptations to withstand the high temperatures and hypoxia associated with this highly variable habitat. Previous studies have revealed the existence of a balanced polymorphism on the enzyme phosphoglucomutase associated with thermal variations, where allozymes 90 and 100 exhibit different optimal activities and thermostabilities. Exploration of the mutational landscape of phosphoglucomutase 1 revealed the maintenance of four highly divergent allelic lineages encoding the three most frequent electromorphs over the geographic range of A. pompejana. This polymorphism is only governed by two linked amino acid replacements, located in exon 3 (E155Q and E190Q). A two-niche model of selection, including ‘cold’ and ‘hot’ conditions, represents the most likely scenario for the long-term persistence of these isoforms. Using directed mutagenesis and the expression of the three recombinant variants allowed us to test the additive effect of these two mutations on the biochemical properties of this enzyme. Our results are coherent with those previously obtained from native proteins, and reveal a thermodynamic trade-off between protein thermostability and catalysis, which is likely to have maintained these functional phenotypes prior to the geographic separation of populations across the Equator about 1.2 million years ago.
Collapse
|
5
|
Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm Riftia pachyptila. Appl Environ Microbiol 2021; 87:e0079421. [PMID: 34190607 DOI: 10.1128/aem.00794-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome and proteome data predict the presence of both the reductive citric acid cycle (rCAC; also called the reductive tricarboxylic acid cycle) and the Calvin-Benson-Bassham cycle (CBB) in "Candidatus Endoriftia persephonae," the autotrophic sulfur-oxidizing bacterial endosymbiont from the giant hydrothermal vent tubeworm Riftia pachyptila. We tested whether these cycles were differentially induced by sulfide supply, since the synthesis of biosynthetic intermediates by the rCAC is less energetically expensive than that by the CBB. R. pachyptila was incubated under in situ conditions in high-pressure aquaria under low (28 to 40 μmol · h-1) or high (180 to 276 μmol · h-1) rates of sulfide supply. Symbiont-bearing trophosome samples excised from R. pachyptila maintained under the two conditions were capable of similar rates of CO2 fixation. Activities of the rCAC enzyme ATP-dependent citrate lyase (ACL) and the CBB enzyme 1,3-bisphosphate carboxylase/oxygenase (RubisCO) did not differ between the two conditions, although transcript abundances for ATP-dependent citrate lyase were 4- to 5-fold higher under low-sulfide conditions. δ13C values of internal dissolved inorganic carbon (DIC) pools were varied and did not correlate with sulfide supply rate. In samples taken from freshly collected R. pachyptila, δ13C values of lipids fell between those collected for organisms using either the rCAC or the CBB exclusively. These observations are consistent with cooccurring activities of the rCAC and the CBB in this symbiosis. IMPORTANCE Previous to this study, the activities of the rCAC and CBB in R. pachyptila had largely been inferred from "omics" studies of R. pachyptila without direct assessment of in situ conditions prior to collection. In this study, R. pachyptila was maintained and monitored in high-pressure aquaria prior to measuring its CO2 fixation parameters. Results suggest that ranges in sulfide concentrations similar to those experienced in situ do not exert a strong influence on the relative activities of the rCAC and the CBB. This observation highlights the importance of further study of this symbiosis and other organisms with multiple CO2-fixing pathways, which recent genomics and biochemical studies suggest are likely to be more prevalent than anticipated.
Collapse
|
6
|
Petersen JM, Yuen B. The symbiotic 'all-rounders': Partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria. Appl Environ Microbiol 2021; 87:AEM.02129-20. [PMID: 33355107 PMCID: PMC8090883 DOI: 10.1128/aem.02129-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixation is a widespread metabolic trait in certain types of microorganisms called diazotrophs. Bioavailable nitrogen is limited in various habitats on land and in the sea, and accordingly, a range of plant, animal, and single-celled eukaryotes have evolved symbioses with diverse diazotrophic bacteria, with enormous economic and ecological benefits. Until recently, all known nitrogen-fixing symbionts were heterotrophs such as nodulating rhizobia, or photoautotrophs such as cyanobacteria. In 2016, the first chemoautotrophic nitrogen-fixing symbionts were discovered in a common family of marine clams, the Lucinidae. Chemosynthetic nitrogen-fixing symbionts use the chemical energy stored in reduced sulfur compounds to power carbon and nitrogen fixation, making them metabolic 'all-rounders' with multiple functions in the symbiosis. This distinguishes them from heterotrophic symbionts that require a source of carbon from their host, and their chemosynthetic metabolism distinguishes them from photoautotrophic symbionts that produce oxygen, a potent inhibitor of nitrogenase. In this review, we consider evolutionary aspects of this discovery, by comparing strategies that have evolved for hosting intracellular nitrogen-fixing symbionts in plants and animals. The symbiosis between lucinid clams and chemosynthetic nitrogen-fixing bacteria also has important ecological impacts, as they form a nested symbiosis with endangered marine seagrasses. Notably, nitrogen fixation by lucinid symbionts may help support seagrass health by providing a source of nitrogen in seagrass habitats. These discoveries were enabled by new techniques for understanding the activity of microbial populations in natural environments. However, an animal (or plant) host represents a diverse landscape of microbial niches due to its structural, chemical, immune and behavioural properties. In future, methods that resolve microbial activity at the single cell level will provide radical new insights into the regulation of nitrogen fixation in chemosynthetic symbionts, shedding new light on the evolution of nitrogen-fixing symbioses in contrasting hosts and environments.
Collapse
Affiliation(s)
- Jillian M Petersen
- Centre for Microbiology and Environmental Systems Science, University of Vienna
| | - Benedict Yuen
- Centre for Microbiology and Environmental Systems Science, University of Vienna
| |
Collapse
|
7
|
Rimskaya-Korsakova N, Fontaneto D, Galkin S, Malakhov V, Martínez A. Geochemistry drives the allometric growth of the hydrothermal vent tubeworm Riftia pachyptila (Annelida: Siboglinidae). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The tubeworm Riftia pachyptila is a key primarily producer in hydrothermal vent communities due to the symbiosis with sulphur-oxidizing bacteria, which provide nourishment to the worm from sulphides, oxygen and carbon dioxide. These substances diffuse from the vent water into the bloodstream of the worm through their tentacular crowns, and then to the bacteria, hosted in a specialized organ of the worm, called a trophosome. The uptake rates of these substances depend on the surface/volume relationship of the tentacles. We here describe two morphotypes, ‘fat’ and ‘slim’, respectively, from the basalt sulphide-rich vents at 9 °N and 21 °N at the East Pacific Rise, and the highly sedimented, sulphide-poor vents at 27 °N in the Guaymas Basin. The ‘fat’ morphotype has a thicker body and tube, longer trunk and smaller tentacular crowns, whereas the ‘slim’ morphotype has shorter trunk, thinner body and tube, and presents longer tentacular crowns and has a higher number of tentacular lamellae. Given the dependence on sulphides for the growth of R. pachyptila, as well as high genetic connectivity of the worm’s populations along the studied localities, we suggest that such morphological differences are adaptive and selected to keep the sulphide uptake near to the optimum values for the symbionts. ‘Fat’ and ‘slim’ morphotypes are also found in the vestimentiferan Ridgeia piscesae in similar sulphide-rich and poor environments in the northern Pacific.
Collapse
Affiliation(s)
| | - Diego Fontaneto
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Verbania Pallanza, Italy
| | - Sergey Galkin
- Laboratory of Ocean Benthic Fauna, Shirshov Institute of Oceanology of the Russian Academy of Science, Moscow, Russia
| | - Vladimir Malakhov
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alejandro Martínez
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Verbania Pallanza, Italy
| |
Collapse
|
8
|
Alfaro-Lucas JM, Pradillon F, Zeppilli D, Michel LN, Martinez-Arbizu P, Tanaka H, Foviaux M, Sarrazin J. High environmental stress and productivity increase functional diversity along a deep-sea hydrothermal vent gradient. Ecology 2020; 101:e03144. [PMID: 32720359 DOI: 10.1002/ecy.3144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 11/06/2022]
Abstract
Productivity and environmental stress are major drivers of multiple biodiversity facets and faunal community structure. Little is known on their interacting effects on early community assembly processes in the deep sea (>200 m), the largest environment on Earth. However, at hydrothermal vents productivity correlates, at least partially, with environmental stress. Here, we studied the colonization of rock substrata deployed along a deep-sea hydrothermal vent gradient at four sites with and without direct influence of vent fluids at 1,700-m depth in the Lucky Strike vent field (Mid-Atlantic Ridge [MAR]). We examined in detail the composition of faunal communities (>20 μm) established after 2 yr and evaluated species and functional patterns. We expected the stressful hydrothermal activity to (1) limit functional diversity and (2) filter for traits clustering functionally similar species. However, our observations did not support our hypotheses. On the contrary, our results show that hydrothermal activity enhanced functional diversity. Moreover, despite high species diversity, environmental conditions at surrounding sites appear to filter for specific traits, thereby reducing functional richness. In fact, diversity in ecological functions may relax the effect of competition, allowing several species to coexist in high densities in the reduced space of the highly productive vent habitats under direct fluid emissions. We suggest that the high productivity at fluid-influenced sites supports higher functional diversity and traits that are more energetically expensive. The presence of exclusive species and functional entities led to a high turnover between surrounding sites. As a result, some of these sites contributed more than expected to the total species and functional β diversities. The observed faunal overlap and energy links (exported productivity) suggest that rather than operating as separate entities, habitats with and without influence of hydrothermal fluids may be considered as interconnected entities. Low functional richness and environmental filtering suggest that surrounding areas, with their very heterogeneous species and functional assemblages, may be especially vulnerable to environmental changes related to natural and anthropogenic impacts, including deep-sea mining.
Collapse
Affiliation(s)
| | | | | | | | - P Martinez-Arbizu
- Senckenberg am Meer, German Center for Marine Biodiversity Research, Wilhelmshaven, Germany
| | - H Tanaka
- Tokyo Sea Life Park, Tokyo, Japan
| | | | | |
Collapse
|
9
|
Zhou L, Cao L, Wang X, Wang M, Wang H, Zhong Z, Xu Z, Chen H, Li L, Li M, Wang H, Zhang H, Lian C, Sun Y, Li C. Metal adaptation strategies of deep-sea Bathymodiolus mussels from a cold seep and three hydrothermal vents in the West Pacific. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136046. [PMID: 31863974 DOI: 10.1016/j.scitotenv.2019.136046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Deep-sea Bathymodiolus mussels are ubiquitous in most cold seeps and hydrothermal fields, where they have adapted to various toxic environments including high metal exposure. However, there is scarce knowledge of metal accumulation and metal-related biomarkers in B. mussels. Here, we present data for metal concentrations (Ag, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) and metal related biomarkers (superoxide dismutase-SOD, catalase-CAT, glutathione peroxidase-GPX, glutathione-GSH, metallothioneins-MTs, and lipid peroxidation-LPO) in different tissues of B. mussels from four different deep-sea geochemical settings: one cold seep and three vent fields in the West Pacific Ocean. Results showed that mussel gills generally exhibited higher metal enrichment than the mantle. Mussels from hydrothermal vents usually had higher metal concentrations (Fe, Cr, Cd, and Pb) than those from cold seep, which could be related to their higher contents in fluids or sediments. However, despite quite different metals loads among the geochemical environment settings, Mn, Zn, and Cu concentrations varied over a smaller range across the sampling sites, implying biological regulation by deep-sea mussels for these elements. Several statistically significant correlations were observed between SOD, CAT, GSH, MTs, and metal levels in analyzed tissues. Although the vent ecosystem is harsher than the cold seep ecosystem, according to our results their mussels' biomarker levels were not so different. This finding suggests that some adaptive or compensatory mechanisms may occur in chronically polluted deep-sea mussels. Principal component analysis allowed for distinguishing different deep-sea settings, indicating that B. mussels are robust indicators of their living environments. We also compared our results with those reported for coastal mussels. To our best knowledge, this is the first integrated study to report metal accumulation and metal-related biomarkers in the deep-sea B. mussels from the West Pacific.
Collapse
Affiliation(s)
- Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaocheng Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haining Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zheng Xu
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Leilei Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengna Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yan Sun
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
10
|
Polzin J, Arevalo P, Nussbaumer T, Polz MF, Bright M. Polyclonal symbiont populations in hydrothermal vent tubeworms and the environment. Proc Biol Sci 2019; 286:20181281. [PMID: 30887877 PMCID: PMC6408604 DOI: 10.1098/rspb.2018.1281] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/18/2019] [Indexed: 01/06/2023] Open
Abstract
Horizontally transmitted symbioses usually house multiple and variable symbiont genotypes that are acquired from a much more diverse environmental pool via partner choice mechanisms. However, in the deep-sea hydrothermal vent tubeworm Riftia pachyptila (Vestimentifera, Siboglinidae), it has been suggested that the Candidatus Endoriftia persephone symbiont is monoclonal. Here, we show with high-coverage metagenomics that adult R. pachyptila house a polyclonal symbiont population consisting of one dominant and several low-frequency variants. This dominance of one genotype is confirmed by multilocus gene sequencing of amplified housekeeping genes in a broad range of host individuals where three out of four loci ( atpA, uvrD and recA) revealed no genomic differences, while one locus ( gyrB) was more diverse in adults than in juveniles. We also analysed a metagenome of free-living Endoriftia and found that the free-living population showed greater sequence variability than the host-associated population. Most juveniles and adults shared a specific dominant genotype, while other genotypes can dominate in few individuals. We suggest that although generally permissive, partner choice is selective enough to restrict uptake of some genotypes present in the environment.
Collapse
Affiliation(s)
- Julia Polzin
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Philip Arevalo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Parsons Laboratory, 15 Vassar Street, Cambridge, MA 02139, USA
| | - Thomas Nussbaumer
- Institute of Environmental Medicine (IEM), Helmholtz Center Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Institute of Network Biology (INET), Helmholtz Center Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin F. Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Parsons Laboratory, 15 Vassar Street, Cambridge, MA 02139, USA
| | - Monika Bright
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
11
|
Ooka H, McGlynn SE, Nakamura R. Electrochemistry at Deep‐Sea Hydrothermal Vents: Utilization of the Thermodynamic Driving Force towards the Autotrophic Origin of Life. ChemElectroChem 2019. [DOI: 10.1002/celc.201801432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hideshi Ooka
- Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource Science (CSRS) 2-1, Hirosawa, Wako Saitama 351-0198 Japan
| | - Shawn E. McGlynn
- Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource Science (CSRS) 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- Earth-Life Science Institute (ELSI)Tokyo Institute of Technology 2-12-1-1E-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- Blue Marble Space Institute of Science Seattle, WA USA
| | - Ryuhei Nakamura
- Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource Science (CSRS) 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- Earth-Life Science Institute (ELSI)Tokyo Institute of Technology 2-12-1-1E-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
12
|
Husson B, Sarrazin J, van Oevelen D, Sarradin PM, Soetaert K, Menesguen A. Modelling the interactions of the hydrothermal mussel Bathymodiolus azoricus with vent fluid. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Lelièvre Y, Legendre P, Matabos M, Mihály S, Lee RW, Sarradin PM, Arango CP, Sarrazin J. Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates. Proc Biol Sci 2018; 284:rspb.2016.2123. [PMID: 28381618 DOI: 10.1098/rspb.2016.2123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/08/2017] [Indexed: 11/12/2022] Open
Abstract
Ocean tides and winter surface storms are among the main factors driving the dynamics and spatial structure of marine coastal species, but the understanding of their impact on deep-sea and hydrothermal vent communities is still limited. Multidisciplinary deep-sea observatories offer an essential tool to study behavioural rhythms and interactions between hydrothermal community dynamics and environmental fluctuations. Here, we investigated whether species associated with a Ridgeia piscesae tubeworm vent assemblage respond to local ocean dynamics. By tracking variations in vent macrofaunal abundance at different temporal scales, we provide the first evidence that tides and winter surface storms influence the distribution patterns of mobile and non-symbiotic hydrothermal species (i.e. pycnogonids Sericosura sp. and Polynoidae polychaetes) at more than 2 km depth. Local ocean dynamics affected the mixing between hydrothermal fluid inputs and surrounding seawater, modifying the environmental conditions in vent habitats. We suggest that hydrothermal species respond to these habitat modifications by adjusting their behaviour to ensure optimal living conditions. This behaviour may reflect a specific adaptation of vent species to their highly variable habitat.
Collapse
Affiliation(s)
- Yann Lelièvre
- Ifremer Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France .,Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Pierre Legendre
- Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Marjolaine Matabos
- Ifremer Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France
| | - Steve Mihály
- Ocean Networks Canada, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, Canada V8 W 2Y2
| | - Raymond W Lee
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Pierre-Marie Sarradin
- Ifremer Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France
| | - Claudia P Arango
- Biodiversity Program, Queensland Museum, PO BOX 3300, South Brisbane, Queensland 4101, Australia
| | - Jozée Sarrazin
- Ifremer Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France
| |
Collapse
|
14
|
Proteomic and Mutant Analysis of the CO 2 Concentrating Mechanism of Hydrothermal Vent Chemolithoautotroph Thiomicrospira crunogena. J Bacteriol 2017; 199:JB.00871-16. [PMID: 28115547 DOI: 10.1128/jb.00871-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/12/2017] [Indexed: 12/21/2022] Open
Abstract
Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO2 + HCO3- + CO32-) with CO2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotroph Thiomicrospira crunogena has a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes of T. crunogena cultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, were at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded by Tcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853-encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla.IMPORTANCE DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among the Bacteria and Archaea In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotroph T. crunogena were identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla in Bacteria and also in one phylum of Archaea, the Euryarchaeota Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genus Thiomicrospira.
Collapse
|
15
|
Wong YH, Sun J, He LS, Chen LG, Qiu JW, Qian PY. High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons. Sci Rep 2015; 5:16597. [PMID: 26593439 PMCID: PMC4655397 DOI: 10.1038/srep16597] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/08/2015] [Indexed: 12/29/2022] Open
Abstract
Bathymodiolid mussels dominate hydrothermal vents, cold methane/sulfide-hydrocarbon seeps, and other sites of organic enrichment. Here, we aimed to explore the innate immune system and detoxification mechanism of the deep sea mussel Bathymodiolus platifrons collected from a methane seep in the South China Sea. We sequenced the transcriptome of the mussels’ gill, foot and mantle tissues and generated a transcriptomic database containing 96,683 transcript sequences. Based on GO and KEGG annotations, we reported transcripts that were related to the innate immune system, heavy metal detoxification and sulfide metabolic genes. Our in-depth analysis on the isoforms of peptidoglycan recognition protein (PGRP) that have different cellular location and potentially differential selectivity towards peptidoglycan (PGN) from gram-positive and gram-negative bacteria were differentially expressed in different tissues. We also reported a potentially novel form of metallothionein and the production of phytochelatin in B. platifrons, which has not been reported in any of its coastal relative Mytilus mussel species. Overall, the present study provided new insights into heavy metal and sulfide metabolism in B. platifrons and can be served as the basis for future molecular studies on host-symbiont interactions in cold seep mussels.
Collapse
Affiliation(s)
- Yue Him Wong
- Division of Life Science, School of Science, the Hong Kong University of Science and Technology, Hong Kong S.A.R
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong S.A.R
| | - Li Sheng He
- Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Hainan, People Republic of China
| | - Lian Guo Chen
- Division of Life Science, School of Science, the Hong Kong University of Science and Technology, Hong Kong S.A.R
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong S.A.R
| | - Pei-Yuan Qian
- Division of Life Science, School of Science, the Hong Kong University of Science and Technology, Hong Kong S.A.R
| |
Collapse
|
16
|
Menning KJ, Menon BB, Fox G, Scott KM. Dissolved inorganic carbon uptake in Thiomicrospira crunogena XCL-2 is Δp- and ATP-sensitive and enhances RubisCO-mediated carbon fixation. Arch Microbiol 2015; 198:149-59. [PMID: 26581415 DOI: 10.1007/s00203-015-1172-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/30/2015] [Accepted: 11/11/2015] [Indexed: 11/26/2022]
Abstract
The gammaproteobacterium Thiomicrospira crunogena XCL-2 is an aerobic sulfur-oxidizing hydrothermal vent chemolithoautotroph that has a CO2 concentrating mechanism (CCM), which generates intracellular dissolved inorganic carbon (DIC) concentrations much higher than extracellular, thereby providing substrate for carbon fixation at sufficient rate. This CCM presumably requires at least one active DIC transporter to generate the elevated intracellular concentrations of DIC measured in this organism. In this study, the half-saturation constant (K CO2) for purified carboxysomal RubisCO was measured (276 ± 18 µM) which was much greater than the K CO2 of whole cells (1.03 µM), highlighting the degree to which the CCM facilitates CO2 fixation under low CO2 conditions. To clarify the bioenergetics powering active DIC uptake, cells were incubated in the presence of inhibitors targeting ATP synthesis (DCCD) or proton potential (CCCP). Incubations with each of these inhibitors resulted in diminished intracellular ATP, DIC, and fixed carbon, despite an absence of an inhibitory effect on proton potential in the DCCD-incubated cells. Electron transport complexes NADH dehydrogenase and the bc 1 complex were found to be insensitive to DCCD, suggesting that ATP synthase was the primary target of DCCD. Given the correlation of DIC uptake to the intracellular ATP concentration, the ABC transporter genes were targeted by qRT-PCR, but were not upregulated under low-DIC conditions. As the T. crunogena genome does not include orthologs of any genes encoding known DIC uptake systems, these data suggest that a novel, yet to be identified, ATP- and proton potential-dependent DIC transporter is active in this bacterium. This transporter serves to facilitate growth by T. crunogena and other Thiomicrospiras in the many habitats where they are found.
Collapse
Affiliation(s)
- Kristy J Menning
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Balaraj B Menon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Gordon Fox
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Kathleen M Scott
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA.
| |
Collapse
|
17
|
Resilience and receptivity worked in tandem to sustain a geothermal mat community amidst erratic environmental conditions. Sci Rep 2015; 5:12179. [PMID: 26184838 PMCID: PMC4505329 DOI: 10.1038/srep12179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/17/2015] [Indexed: 11/23/2022] Open
Abstract
To elucidate how geothermal irregularities affect the sustainability of high-temperature microbiomes we studied the synecological dynamics of a geothermal microbial mat community (GMMC) vis-à-vis fluctuations in its environment. Spatiotemporally-discrete editions of a photosynthetic GMMC colonizing the travertine mound of a circum-neutral hot spring cluster served as the model-system. In 2010 a strong geyser atop the mound discharged mineral-rich hot water, which nourished a GMMC continuum from the proximal channels (PC) upto the slope environment (SE) along the mound’s western face. In 2011 that geyser extinguished and consequently the erstwhile mats disappeared. Nevertheless, two relatively-weaker vents erupted in the southern slope and their mineral-poor outflow supported a small GMMC patch in the SE. Comparative metagenomics showed that this mat was a relic of the 2010 community, conserved via population dispersal from erstwhile PC as well as SE niches. Subsequently in 2012, as hydrothermal activity augmented in the southern slope, ecological niches widened and the physiologically-heterogeneous components of the 2011 “seed-community” split into PC and SE meta-communities, thereby reclaiming either end of the thermal gradient. Resilience of incumbent populations, and the community’s receptiveness towards immigrants, were the key qualities that ensured the GMMC’s sustenance amidst habitat degradation and dispersal to discrete environments.
Collapse
|
18
|
Marsh L, Copley JT, Tyler PA, Thatje S. In hot and cold water: differential life-history traits are key to success in contrasting thermal deep-sea environments. J Anim Ecol 2015; 84:898-913. [PMID: 25732205 PMCID: PMC4964920 DOI: 10.1111/1365-2656.12337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/30/2014] [Indexed: 01/10/2023]
Abstract
Few species of reptant decapod crustaceans thrive in the cold‐stenothermal waters of the Southern Ocean. However, abundant populations of a new species of anomuran crab, Kiwa tyleri, occur at hydrothermal vent fields on the East Scotia Ridge. As a result of local thermal conditions at the vents, these crabs are not restricted by the physiological limits that otherwise exclude reptant decapods south of the polar front. We reveal the adult life history of this species by piecing together variation in microdistribution, body size frequency, sex ratio, and ovarian and embryonic development, which indicates a pattern in the distribution of female Kiwaidae in relation to their reproductive development. High‐density ‘Kiwa’ assemblages observed in close proximity to sources of vent fluids are constrained by the thermal limit of elevated temperatures and the availability of resources for chemosynthetic nutrition. Although adult Kiwaidae depend on epibiotic chemosynthetic bacteria for nutrition, females move offsite after extrusion of their eggs to protect brooding embryos from the chemically harsh, thermally fluctuating vent environment. Consequently, brooding females in the periphery of the vent field are in turn restricted by low‐temperature physiological boundaries of the deep‐water Southern Ocean environment. Females have a high reproductive investment in few, large, yolky eggs, facilitating full lecithotrophy, with the release of larvae prolonged, and asynchronous. After embryos are released, larvae are reliant on locating isolated active areas of hydrothermal flow in order to settle and survive as chemosynthetic adults. Where the cold water restricts the ability of all adult stages to migrate over long distances, these low temperatures may facilitate the larvae in the location of vent sites by extending the larval development period through hypometabolism. These differential life‐history adaptations to contrasting thermal environments lead to a disjunct life history among males and females of K. tyleri, which is key to their success in the Southern Ocean vent environment. We highlight the complexity in understanding the importance of life‐history biology, in combination with environmental, ecological and physiological factors contributing to the overall global distribution of vent‐endemic species.
Collapse
Affiliation(s)
- Leigh Marsh
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Jonathan T Copley
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Paul A Tyler
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Sven Thatje
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| |
Collapse
|
19
|
Van Dover CL. Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: a review. MARINE ENVIRONMENTAL RESEARCH 2014; 102:59-72. [PMID: 24725508 DOI: 10.1016/j.marenvres.2014.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/25/2014] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Deep-sea hydrothermal-vent ecosystems have stimulated decades of scientific research and hold promise of mineral and genetic resources that also serve societal needs. Some endemic taxa thrive only in vent environments, and vent-associated organisms are adapted to a variety of natural disturbances, from tidal variations to earthquakes and volcanic eruptions. In this paper, physicochemical and biological impacts of a range of human activities at vents are considered. Mining is currently the only anthropogenic activity projected to have a major impact on vent ecosystems, albeit at a local scale, based on our current understanding of ecological responses to disturbance. Natural recovery from a single mining event depends on immigration and larval recruitment and colonization; understanding processes and dynamics influencing life-history stages may be a key to effective minimization and mitigation of mining impacts. Cumulative impacts on benthic communities of several mining projects in a single region, without proper management, include possible species extinctions and shifts in community structure and function.
Collapse
Affiliation(s)
- Cindy Lee Van Dover
- Marine Laboratory, Nicholas School of the Environment, Duke University, 135 Marine Lab Rd, Beaufort, NC 28516, USA.
| |
Collapse
|
20
|
Patterns of Macroinvertebrate and Fish Diversity in Freshwater Sulphide Springs. DIVERSITY-BASEL 2014. [DOI: 10.3390/d6030597] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Extreme environments are characterised by the presence of physicochemical stressors and provide unique study systems to address problems in evolutionary ecology research. Sulphide springs provide an example of extreme freshwater environments; because hydrogen sulphide’s adverse physiological effects induce mortality in metazoans even at micromolar concentrations. Sulphide springs occur worldwide, but while microbial communities in sulphide springs have received broad attention, little is known about macroinvertebrates and fish inhabiting these toxic environments. We reviewed qualitative occurrence records of sulphide spring faunas on a global scale and present a quantitative case study comparing diversity patterns in sulphidic and adjacent non-sulphidic habitats across replicated river drainages in Southern Mexico. While detailed studies in most regions of the world remain scarce, available data suggests that sulphide spring faunas are characterised by low species richness. Dipterans (among macroinvertebrates) and cyprinodontiforms (among fishes) appear to dominate the communities in these habitats. At least in fish, there is evidence for the presence of highly endemic species and populations exclusively inhabiting sulphide springs. We provide a detailed discussion of traits that might predispose certain taxonomic groups to colonize sulphide springs, how colonizers subsequently adapt to cope with sulphide toxicity, and how adaptation may be linked to speciation processes.
Collapse
|
21
|
Zimmermann J, Lott C, Weber M, Ramette A, Bright M, Dubilier N, Petersen JM. Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent. Environ Microbiol 2014; 16:3638-56. [DOI: 10.1111/1462-2920.12427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Judith Zimmermann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| | - Christian Lott
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
- Elba Field Station; HYDRA Institute for Marine Sciences; Fetovaia Campo nell'Elba (LI) Italy
| | - Miriam Weber
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
- Elba Field Station; HYDRA Institute for Marine Sciences; Fetovaia Campo nell'Elba (LI) Italy
| | - Alban Ramette
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| | - Monika Bright
- Department of Limnology and Oceanography; University of Vienna; Althanstrasse Vienna Austria
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| | - Jillian M. Petersen
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| |
Collapse
|
22
|
Liao L, Wankel SD, Wu M, Cavanaugh CM, Girguis PR. Characterizing the plasticity of nitrogen metabolism by the host and symbionts of the hydrothermal vent chemoautotrophic symbioses Ridgeia piscesae. Mol Ecol 2013; 23:1544-1557. [PMID: 24237389 DOI: 10.1111/mec.12460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/30/2022]
Abstract
Chemoautotrophic symbionts of deep sea hydrothermal vent tubeworms are known to provide their hosts with all their primary nutrition. While studies have examined how chemoautotrophic symbionts provide the association with nitrogen, fewer have examined if symbiont nitrogen metabolism varies as a function of environmental conditions. Ridgeia piscesae tubeworms flourish at Northeastern Pacific vents, occupy a range of microhabitats, and exhibit a high degree of morphological plasticity [e.g. long-skinny (LS) and short-fat (SF) phenotypes] that may relate to environmental conditions. This plasticity affords an opportunity to examine whether symbiont nitrogen metabolism varies among host phenotypes. LS and SF R. piscesae were recovered from the Axial and Main Endeavour Field hydrothermal vents. Nitrate and ammonium were quantified in Ridgeia blood, and the expression of key nitrogen metabolism genes, as well as stable nitrogen isotope ratios, was quantified in host branchial plume and symbiont-containing tissues. Nitrate and ammonium were abundant in the blood of both phenotypes though environmental ammonium concentrations were, paradoxically, lowest among individuals with the highest blood ammonium. Assimilatory nitrate reductase transcripts were always below detection, though in both LS and SF R. piscesae symbionts, we observed elevated expression of dissimilatory nitrate reductase genes, as well as symbiont and host ammonium assimilation genes. Site-specific differences in expression, along with tissue stable isotope analyses, suggest that LS and SF Ridgeia symbionts are engaged in both dissimilatory nitrate reduction and ammonia assimilation to varying degrees. As such, it appears that environmental conditions -not host phenotype-primarily dictates symbiont nitrogen metabolism.
Collapse
Affiliation(s)
- Li Liao
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA, 02138-2020, USA; SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | | | | | | | | |
Collapse
|
23
|
Robidart J, Callister SJ, Song P, Nicora CD, Wheat CG, Girguis PR. Characterizing microbial community and geochemical dynamics at hydrothermal vents using osmotically driven continuous fluid samplers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4399-4407. [PMID: 23495803 DOI: 10.1021/es3037302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microbes play a key role in mediating aquatic biogeochemical cycles. However, our understanding of the relationships between microbial phylogenetic/physiological diversity and habitat physicochemical characteristics is restrained by our limited capacity to concurrently collect microbial and geochemical samples at appropriate spatial and temporal scales. Accordingly, we have developed a low-cost, continuous fluid sampling system (the Biological OsmoSampling System, or BOSS) to address this limitation. The BOSS does not use electricity, can be deployed in harsh/remote environments, and collects/preserves samples with daily resolution for >1 year. Here, we present data on the efficacy of DNA and protein preservation during a 1.5 year laboratory study as well as the results of two field deployments at deep-sea hydrothermal vents, wherein we examined changes in microbial diversity, protein expression, and geochemistry over time. Our data reveal marked changes in microbial composition co-occurring with changes in hydrothermal fluid composition as well as the temporal dynamics of an enigmatic sulfide-oxidizing symbiont in its free-living state. We also present the first data on in situ protein preservation and expression dynamics highlighting the BOSS's potential utility in meta-proteomic studies. These data illustrate the value of using BOSS to study relationships among microbial and geochemical phenomena and environmental conditions.
Collapse
Affiliation(s)
- Julie Robidart
- Harvard University, Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
24
|
Detection and Characterisation of Mutations Responsible for Allele-Specific Protein Thermostabilities at the Mn-Superoxide Dismutase Gene in the Deep-Sea Hydrothermal Vent Polychaete Alvinella pompejana. J Mol Evol 2013; 76:295-310. [DOI: 10.1007/s00239-013-9559-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/27/2013] [Indexed: 12/19/2022]
|
25
|
Von Damm KL. Controls on the Chemistry and Temporal Variability of Seafloor Hydrothermal Fluids. SEAFLOOR HYDROTHERMAL SYSTEMS: PHYSICAL, CHEMICAL, BIOLOGICAL, AND GEOLOGICAL INTERACTIONS 2013. [DOI: 10.1029/gm091p0222] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Toward an Appreciation of Hydrothennal-Vent Animals: Their Environment, Physiological Ecology, and Tissue Stable Isotope Values. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/gm091p0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
27
|
Modeling the Impact of Diffuse Vent Microorganisms Along Mid-Ocean Ridges and Flanks. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/178gm11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
28
|
Marsh L, Copley JT, Huvenne VAI, Linse K, Reid WDK, Rogers AD, Sweeting CJ, Tyler PA. Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean. PLoS One 2012; 7:e48348. [PMID: 23144754 PMCID: PMC3483289 DOI: 10.1371/journal.pone.0048348] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/24/2012] [Indexed: 12/03/2022] Open
Abstract
Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m2 of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m−2), followed by a peltospiroid gastropod (>1,500 individuals m−2), eolepadid barnacle (>1,500 individuals m−2), and carnivorous actinostolid anemone (>30 individuals m−2). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ34S values of primary consumers with distance from vent sources, and variation in their δ13C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies, these results provide a baseline for determining temporal change and investigations of processes structuring faunal assemblages at Southern Ocean vents.
Collapse
Affiliation(s)
- Leigh Marsh
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kleiner M, Petersen JM, Dubilier N. Convergent and divergent evolution of metabolism in sulfur-oxidizing symbionts and the role of horizontal gene transfer. Curr Opin Microbiol 2012; 15:621-31. [DOI: 10.1016/j.mib.2012.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
|
30
|
Dreier A, Stannek L, Blumenberg M, Taviani M, Sigovini M, Wrede C, Thiel V, Hoppert M. The fingerprint of chemosymbiosis: origin and preservation of isotopic biosignatures in the nonseep bivalve Loripes lacteus compared with Venerupis aurea. FEMS Microbiol Ecol 2012; 81:480-93. [DOI: 10.1111/j.1574-6941.2012.01374.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - Lorena Stannek
- Institute of Microbiology and Genetics; University of Goettingen; Goettingen; Germany
| | - Martin Blumenberg
- Courant Centre Geobiology; University of Goettingen; Goettingen; Germany
| | | | | | - Christoph Wrede
- Institute of Microbiology and Genetics; University of Goettingen; Goettingen; Germany
| | - Volker Thiel
- Courant Centre Geobiology; University of Goettingen; Goettingen; Germany
| | | |
Collapse
|
31
|
Affiliation(s)
- Bent Vismann
- a Marine Biological Laboratory , University of Copenhagen , Strandpromenaden 5, DK-3000 , Helsingar , Denmark
| |
Collapse
|
32
|
Transcriptional response of the sulfur chemolithoautotroph Thiomicrospira crunogena to dissolved inorganic carbon limitation. J Bacteriol 2012; 194:2074-81. [PMID: 22328671 DOI: 10.1128/jb.06504-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hydrothermal vent gammaproteobacterium Thiomicrospira crunogena inhabits an unstable environment and must endure dramatic changes in habitat chemistry. This sulfur chemolithoautotroph responds to changes in dissolved inorganic carbon (DIC) (DIC = CO(2) + HCO(3)(-) + CO(3)(-2)) availability with a carbon-concentrating mechanism (CCM) in which whole-cell affinity for DIC, as well as the intracellular DIC concentration, increases substantially under DIC limitation. To determine whether this CCM is regulated at the level of transcription, we resuspended cells that were cultivated under high-DIC conditions in chemostats in growth medium with low concentrations of DIC and tracked CCM development in the presence and absence of the RNA polymerase inhibitor rifampin. Induction of the CCM, as measured by silicone oil centrifugation, was hindered in the presence of rifampin. Similar results were observed for carboxysome gene transcription and assembly, as assayed by quantitative reverse transcription-PCR (qRT-PCR) and transmission electron microscopy, respectively. Genome-wide transcription patterns for cells grown under DIC limitation and those grown under ammonia limitation were assayed via microarrays and compared. In addition to carboxysome genes, two novel genes (Tcr_1019 and Tcr_1315) present in other organisms, including chemolithoautotrophs, but whose function(s) has not been elucidated in any organism were found to be upregulated under low-DIC conditions. Likewise, under ammonia limitation, in addition to the expected enhancement of ammonia transporter and P(II) gene transcription, the transcription of two novel genes (Tcr_0466 and Tcr_2018) was measurably enhanced. Upregulation of all four genes (Tcr_1019, 4-fold; Tcr_131, ∼7-fold; Tcr_0466, >200-fold; Tcr_2018, 7-fold), which suggests that novel components are part of the response to nutrient limitation by this organism, was verified via qRT-PCR.
Collapse
|
33
|
Wendeberg A, Zielinski FU, Borowski C, Dubilier N. Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis. THE ISME JOURNAL 2012; 6:104-12. [PMID: 21734728 PMCID: PMC3246237 DOI: 10.1038/ismej.2011.81] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/10/2011] [Accepted: 05/17/2011] [Indexed: 11/09/2022]
Abstract
The hydrothermal vent mussel Bathymodiolus puteoserpentis (Mytilidae) from the Mid-Atlantic Ridge hosts symbiotic sulfur- and methane-oxidizing bacteria in its gills. In this study, we investigated the activity and distribution of these two symbionts in juvenile mussels from the Logatchev hydrothermal vent field (14°45'N Mid-Atlantic Ridge). Expression patterns of two key genes for chemosynthesis were examined: pmoA (encoding subunit A of the particulate methane monooxygenase) as an indicator for methanotrophy, and aprA (encoding the subunit A of the dissimilatory adenosine-5'-phosphosulfate reductase) as an indicator for thiotrophy. Using simultaneous fluorescence in situ hybridization (FISH) of rRNA and mRNA we observed highest mRNA FISH signals toward the ciliated epithelium where seawater enters the gills. The levels of mRNA expression differed between individual specimens collected in a single grab from the same sampling site, whereas no obvious differences in symbiont abundance or distribution were observed. We propose that the symbionts respond to the steep temporal and spatial gradients in methane, reduced sulfur compounds and oxygen by modifying gene transcription, whereas changes in symbiont abundance and distribution take much longer than regulation of mRNA expression and may only occur in response to long-term changes in vent fluid geochemistry.
Collapse
Affiliation(s)
- Annelie Wendeberg
- Department of Molecular Ecology, Celsiusstr, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | | | | | |
Collapse
|
34
|
Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. ISME JOURNAL 2011; 6:766-76. [PMID: 22011719 DOI: 10.1038/ismej.2011.137] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The two closely related deep-sea tubeworms Riftia pachyptila and Tevnia jerichonana both rely exclusively on a single species of sulfide-oxidizing endosymbiotic bacteria for their nutrition. They do, however, thrive in markedly different geochemical conditions. A detailed proteogenomic comparison of the endosymbionts coupled with an in situ characterization of the geochemical environment was performed to investigate their roles and expression profiles in the two respective hosts. The metagenomes indicated that the endosymbionts are genotypically highly homogeneous. Gene sequences coding for enzymes of selected key metabolic functions were found to be 99.9% identical. On the proteomic level, the symbionts showed very consistent metabolic profiles, despite distinctly different geochemical conditions at the plume level of the respective hosts. Only a few minor variations were observed in the expression of symbiont enzymes involved in sulfur metabolism, carbon fixation and in the response to oxidative stress. Although these changes correspond to the prevailing environmental situation experienced by each host, our data strongly suggest that the two tubeworm species are able to effectively attenuate differences in habitat conditions, and thus to provide their symbionts with similar micro-environments.
Collapse
|
35
|
Robidart JC, Roque A, Song P, Girguis PR. Linking hydrothermal geochemistry to organismal physiology: physiological versatility in Riftia pachyptila from sedimented and basalt-hosted vents. PLoS One 2011; 6:e21692. [PMID: 21779334 PMCID: PMC3136470 DOI: 10.1371/journal.pone.0021692] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/08/2011] [Indexed: 11/22/2022] Open
Abstract
Much of what is known regarding Riftia pachyptila physiology is based on the wealth of studies of tubeworms living at diffuse flows along the fast-spreading, basalt-hosted East Pacific Rise (EPR). These studies have collectively suggested that Riftia pachyptila and its chemoautotrophic symbionts are physiologically specialized, highly productive associations relying on hydrogen sulfide and oxygen to generate energy for carbon fixation, and the symbiont's nitrate reduction to ammonia for energy and biosynthesis. However, Riftia also flourish in sediment-hosted vents, which are markedly different in geochemistry than basalt-hosted systems. Here we present data from shipboard physiological studies and global quantitative proteomic analyses of Riftia pachyptila trophosome tissue recovered from tubeworms residing in the EPR and the Guaymas basin, a sedimented, hydrothermal vent field. We observed marked differences in symbiont nitrogen metabolism in both the respirometric and proteomic data. The proteomic data further suggest that Riftia associations in Guaymas may utilize different sulfur compounds for energy generation, may have an increased capacity for energy storage, and may play a role in degrading exogenous organic carbon. Together these data reveal that Riftia symbionts are far more physiologically plastic than previously considered, and that -contrary to previous assertions- Riftia do assimilate reduced nitrogen in some habitats. These observations raise new hypotheses regarding adaptations to the geochemical diversity of habitats occupied by Riftia, and the degree to which the environment influences symbiont physiology and evolution.
Collapse
Affiliation(s)
- Julie C Robidart
- University of California Santa Cruz, Department of Ocean Sciences, Santa Cruz, California, United States of America
| | | | | | | |
Collapse
|
36
|
Markert S, Gardebrecht A, Felbeck H, Sievert SM, Klose J, Becher D, Albrecht D, Thürmer A, Daniel R, Kleiner M, Hecker M, Schweder T. Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics 2011; 11:3106-17. [PMID: 21710568 DOI: 10.1002/pmic.201100059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/25/2011] [Accepted: 04/19/2011] [Indexed: 11/11/2022]
Abstract
Riftia pachyptila, the giant deep-sea tube worm, inhabits hydrothermal vents in the Eastern Pacific ocean. The worms are nourished by a dense population of chemoautotrophic bacterial endosymbionts. Using the energy derived from sulfide oxidation, the symbionts fix CO(2) and produce organic carbon, which provides the nutrition of the host. Although the endosymbionts have never been cultured, cultivation-independent techniques based on density gradient centrifugation and the sequencing of their (meta-) genome enabled a detailed physiological examination on the proteomic level. In this study, the Riftia symbionts' soluble proteome map was extended to a total of 493 identified proteins, which allowed for an explicit description of vital metabolic processes such as the energy-generating sulfide oxidation pathway or the Calvin cycle, which seems to involve a reversible pyrophosphate-dependent phosphofructokinase. Furthermore, the proteomic view supports the hypothesis that the symbiont uses nitrate as an alternative electron acceptor. Finally, the membrane-associated proteome of the Riftia symbiont was selectively enriched and analyzed. As a result, 275 additional proteins were identified, most of which have putative functions in electron transfer, transport processes, secretion, signal transduction and other cell surface-related functions. Integrating this information into complex pathway models a comprehensive survey of the symbiotic physiology was established.
Collapse
|
37
|
Gollner S, Riemer B, Martínez Arbizu P, Le Bris N, Bright M. Diversity of meiofauna from the 9°50'N East Pacific rise across a gradient of hydrothermal fluid emissions. PLoS One 2010; 5. [PMID: 20856898 PMCID: PMC2938375 DOI: 10.1371/journal.pone.0012321] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 07/28/2010] [Indexed: 11/26/2022] Open
Abstract
Background We studied the meiofauna community at deep-sea hydrothermal vents along a gradient of vent fluid emissions in the axial summit trought (AST) of the East Pacific Rise 9°50′N region. The gradient ranged from extreme high temperatures, high sulfide concentrations, and low pH at sulfide chimneys to ambient deep-sea water conditions on bare basalt. We explore meiofauna diversity and abundance, and discuss its possible underlying ecological and evolutionary processes. Methodology/Principal Findings After sampling in five physico-chemically different habitats, the meiofauna was sorted, counted and classified. Abundances were low at all sites. A total of 52 species were identified at vent habitats. The vent community was dominated by hard substrate generalists that also lived on bare basalt at ambient deep-sea temperature in the axial summit trough (AST generalists). Some vent species were restricted to a specific vent habitat (vent specialists), but others occurred over a wide range of physico-chemical conditions (vent generalists). Additionally, 35 species were only found on cold bare basalt (basalt specialists). At vent sites, species richness and diversity clearly increased with decreasing influence of vent fluid emissions from extreme flow sulfide chimney (no fauna), high flow pompei worm (S: 4–7, H'loge: 0.11–0.45), vigorous flow tubeworm (S: 8–23; H'loge: 0.44–2.00) to low flow mussel habitats (S: 28–31; H'loge: 2.34–2.60). Conclusions/Significance Our data suggest that with increasing temperature and toxic hydrogen sulfide concentrations and increasing amplitude of variation of these factors, fewer species are able to cope with these extreme conditions. This results in less diverse communities in more extreme habitats. The finding of many species being present at sites with and without vent fluid emissions points to a non endemic deep-sea hydrothermal vent meiofaunal community. This is in contrast to a mostly endemic macrofauna but similar to what is known for meiofauna from shallow-water vents.
Collapse
Affiliation(s)
- Sabine Gollner
- Department of Marine Biology, University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|
38
|
Le Bris N, Duperron S. Chemosynthetic communities and biogeochemical energy pathways along the Mid-Atlantic Ridge: The case of Bathymodiolus azoricus. GEOPHYSICAL MONOGRAPH SERIES 2010. [DOI: 10.1029/2008gm000712] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Kalanetra KM, Nelson DC. Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents. MARINE BIOLOGY 2009; 157:791-800. [PMID: 24391244 PMCID: PMC3873080 DOI: 10.1007/s00227-009-1362-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/24/2009] [Indexed: 05/30/2023]
Abstract
Vacuolate sulfur bacteria with high morphological similarity to vacuolate-attached filaments previously described from shallow hydrothermal vents (White Point, CA) were found at deep-sea hydrothermal vents. These filamentous bacteria grow in dense mats that cover surfaces and potentially provide a significant source of organic carbon where they occur. Vacuolate-attached filaments were collected near vents at the Clam Bed site of the Endeavour Segment of the Juan de Fuca Ridge and from the sediment surface at Escanaba Trough on the Gorda Ridge. A phylogenetic analysis comparing their 16S rRNA gene sequences to those collected from the shallow White Point site showed that all vacuolate-attached filament sequences form a monophyletic group within the vacuolate sulfur-oxidizing bacteria clade in the gamma proteobacteria. Abundance of the attached filaments was quantified over the length of the exterior surface of the tubes of Ridgeia piscesae worms collected from the Clam Bed site at Juan de Fuca yielding a per worm average of 0.070 ± 0.018 cm3 (n = 4). In agreement with previous results for White Point filaments, anion measurements by ion chromatography showed no detectable internal nitrate concentrations above ambient seawater (n = 9). For one R. piscesae tube worm "bush" at the Easter Island vent site, potential gross epibiont productivity is estimated to be 15 to 45× the net productivity of the worms.
Collapse
Affiliation(s)
- Karen M. Kalanetra
- Department of Microbiology, University of California, 357 Briggs Hall, Davis, CA 95616 USA
- Present Address: Department of Public Health Sciences, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - Douglas C. Nelson
- Department of Microbiology, University of California, 357 Briggs Hall, Davis, CA 95616 USA
| |
Collapse
|
40
|
Organisms of deep sea hydrothermal vents as a source for studying adaptation and evolution. Symbiosis 2009. [DOI: 10.1007/bf03179972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
|
42
|
Hsu-Kim H, Mullaugh KM, Tsang JJ, Yucel M, Luther GW. Formation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau Spreading Center: implications for sulfide bioavailability to chemoautotrophs. GEOCHEMICAL TRANSACTIONS 2008; 9:6. [PMID: 18489753 PMCID: PMC2396607 DOI: 10.1186/1467-4866-9-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 05/19/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND The speciation of dissolved sulfide in the water immediately surrounding deep-ocean hydrothermal vents is critical to chemoautotrophic organisms that are the primary producers of these ecosystems. The objective of this research was to identify the role of Zn and Fe for controlling the speciation of sulfide in the hydrothermal vent fields at the Eastern Lau Spreading Center (ELSC) in the southern Pacific Ocean. Compared to other well-studied hydrothermal systems in the Pacific, the ELSC is notable for unique ridge characteristics and gradients over short distances along the north-south ridge axis. RESULTS In June 2005, diffuse-flow (< 50 degrees C) and high-temperature (> 250 degrees C) vent fluids were collected from four field sites along the ELSC ridge axis. Total and filtered Zn and Fe concentrations were quantified in the vent fluid samples using voltammetric and spectrometric analyses. The results indicated north-to-south variability in vent fluid composition. In the high temperature vent fluids, the ratio of total Fe to total Zn varied from 39 at Kilo Moana, the most northern site, to less than 7 at the other three sites. The concentrations of total Zn, Fe, and acid-volatile sulfide indicated that oversaturation and precipitation of sphalerite (ZnS(s)) and pyrite (FeS2(s)) were possible during cooling of the vent fluids as they mixed with the surrounding seawater. In contrast, most samples were undersaturated with respect to mackinawite (FeS(s)). The reactivity of Zn(II) in the filtered samples was tested by adding Cu(II) to the samples to induce metal-exchange reactions. In a portion of the samples, the concentration of labile Zn2+ increased after the addition of Cu(II), indicating the presence of strongly-bound Zn(II) species such as ZnS clusters and nanoparticles. CONCLUSION Results of this study suggest that Zn is important to sulfide speciation at ELSC vent habitats, particularly at the southern sites where Zn concentrations increase relative to Fe. As the hydrothermal fluids mix with the ambient seawater, Zn-sulfide clusters and nanoparticles are likely preventing sulfide oxidation by O2 and reducing bioavailability of S(-II) to organisms.
Collapse
Affiliation(s)
- Heileen Hsu-Kim
- Civil & Environmental Engineering, Duke University, Box 90287, Durham, NC 27708, USA
| | - Katherine M Mullaugh
- College of Marine and Earth Studies, University of Delaware, 700 Pilottown Rd., Lewes, DE 19958, USA
| | - Jeffrey J Tsang
- College of Marine and Earth Studies, University of Delaware, 700 Pilottown Rd., Lewes, DE 19958, USA
| | - Mustafa Yucel
- College of Marine and Earth Studies, University of Delaware, 700 Pilottown Rd., Lewes, DE 19958, USA
| | - George W Luther
- College of Marine and Earth Studies, University of Delaware, 700 Pilottown Rd., Lewes, DE 19958, USA
| |
Collapse
|
43
|
Robidart JC, Bench SR, Feldman RA, Novoradovsky A, Podell SB, Gaasterland T, Allen EE, Felbeck H. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol 2008; 10:727-37. [PMID: 18237306 DOI: 10.1111/j.1462-2920.2007.01496.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The facultative symbiont of Riftia pachyptila, named here Candidatus Endoriftia persephone, has evaded culture to date, but much has been learned regarding this symbiosis over the past three decades since its discovery. The symbiont population metagenome was sequenced in order to gain insight into its physiology. The population genome indicates that the symbionts use a partial Calvin-Benson Cycle for carbon fixation and the reverse TCA cycle (an alternative pathway for carbon fixation) that contains an unusual ATP citrate lyase. The presence of all genes necessary for heterotrophic metabolism, a phosphotransferase system, and dicarboxylate and ABC transporters indicate that the symbiont can live mixotrophically. The metagenome has a large suite of signal transduction, defence (both biological and environmental) and chemotaxis mechanisms. The physiology of Candidatus Endoriftia persephone is explored with respect to functionality while associated with a eukaryotic host, versus free-living in the hydrothermal environment.
Collapse
|
44
|
Newton ILG, Woyke T, Auchtung TA, Dilly GF, Dutton RJ, Fisher MC, Fontanez KM, Lau E, Stewart FJ, Richardson PM, Barry KW, Saunders E, Detter JC, Wu D, Eisen JA, Cavanaugh CM. The Calyptogena magnifica chemoautotrophic symbiont genome. Science 2007; 315:998-1000. [PMID: 17303757 DOI: 10.1126/science.1138438] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chemoautotrophic endosymbionts are the metabolic cornerstone of hydrothermal vent communities, providing invertebrate hosts with nearly all of their nutrition. The Calyptogena magnifica (Bivalvia: Vesicomyidae) symbiont, Candidatus Ruthia magnifica, is the first intracellular sulfur-oxidizing endosymbiont to have its genome sequenced, revealing a suite of metabolic capabilities. The genome encodes major chemoautotrophic pathways as well as pathways for biosynthesis of vitamins, cofactors, and all 20 amino acids required by the clam.
Collapse
Affiliation(s)
- I L G Newton
- Harvard University, 16 Divinity Avenue, Biolabs 4080, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Girguis PR, Childress JJ. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. ACTA ACUST UNITED AC 2006; 209:3516-28. [PMID: 16943492 DOI: 10.1242/jeb.02404] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hydrothermal vent tubeworm Riftia pachyptila is a dominant member of many hydrothermal vent communities along the East Pacific rise and is one of the fastest growing metazoans known. Riftia flourish in diffuse hydrothermal fluid flows, an environment with high spatial and temporal heterogeneity in physical and chemical conditions. To date, physiological and biochemical studies of Riftia have focused on Riftia's adaptations to its chemoautotrophic bacterial symbionts. However the relation between in situ physico-chemical heterogeneity and Riftia host and symbiont metabolism, in particular symbiont chemoautotrophic function, remain poorly understood. Accordingly, we conducted experiments using shipboard high-pressure respirometers to ascertain the effect of varying substrate concentrations and temperature on Riftia metabolite uptake and symbiont carbon fixation. Our results show that substrate concentrations can strongly govern Riftia oxygen and sulfide uptake rates, as well as net carbon uptake (which is a proxy for chemoautotrophic primary production). However, after sufficient exposure to sulfide and oxygen, Riftia were capable of sustaining symbiont autotrophic function for several hours in seawater devoid of sulfide or oxygen, enabling the association to support symbiont metabolism through brief periods of substrate deficiency. Overall, temperature had the largest influence on Riftia metabolite uptake and symbiont autotrophic metabolism. In sum, while Riftia requires sufficient availability of substrates to support symbiont chemoautotrophic function, it is extremely well poised to buffer the temporal and spatial heterogeneity in environmental substrate concentrations, alleviating the influence of environmental heterogeneity on symbiont chemoautotrophic function.
Collapse
Affiliation(s)
- Peter R Girguis
- Harvard University, 16 Divinity Avenue, Biological labs room 3085, Cambridge, MA 02138, USA.
| | | |
Collapse
|
46
|
Gamo T, Ishibashi J, Tsunogai U, Okamura K, Chiba H. Unique geochemistry of submarine hydrothermal fluids from arc-back-arc settings of the western Pacific. BACK-ARC SPREADING SYSTEMS: GEOLOGICAL, BIOLOGICAL, CHEMICAL, AND PHYSICAL INTERACTIONS 2006. [DOI: 10.1029/166gm08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Dubilier N, Blazejak A, Rühland C. Symbioses between bacteria and gutless marine oligochaetes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:251-75. [PMID: 16623397 DOI: 10.1007/3-540-28221-1_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Nicole Dubilier
- Max-Planck-Institut für Marine Mikrobiologie, Celsiusstr. 1, 28359 Bremen, Germany.
| | | | | |
Collapse
|
48
|
Phleger CF, Nelson MM, Groce AK, Cary SC, Coyne KJ, Nichols PD. Lipid composition of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp. Comp Biochem Physiol B Biochem Mol Biol 2005; 141:196-210. [PMID: 15893489 DOI: 10.1016/j.cbpc.2005.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 03/02/2005] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
Lipid composition was determined for hydrothermal vent species collected by the Deep Submergence Vehicle ALVIN from chimneys at 2,500 m depth on the East Pacific Rise. These are the first lipid biomarker studies for most of these species. Lipid content was low and dominated by polar lipid in the vestimentiferan tubeworm Riftia pachyptila, mussels Bathymodiolus sp. and limpets Lepetodrilus spp. The galatheid (Munidopsis subsquamosa) and most brachyuran adult (Bythograea thermydron) crabs were characterized by higher storage lipid (triacylglycerol). Total polyunsaturated fatty acids were similar in R. pachyptila plume and body, but higher in the posterior part of the soft body, which had more docosahexaenoic acid (2-5% of total FA) compared to the anterior and plume (< or =0.3%). Two sulphur-oxidizing bacterial markers, 16:1(n-7)c and 18:1(n-7)c, were high in R. pachyptila and mussel (up to 23%), but lower in both crab species (4-17%). R. pachyptila had greater nonmethylene interrupted diunsaturated fatty acids (8-13%) than all other species (2-8%). R. pachyptila may desaturate and elongate 18:1(n-7)c to obtain essential polyunsaturated fatty acids 20:5(n-3) and 20:4(n-6). The sterol composition of R. pachyptila included similar amounts of cholesterol and desmosterol, whereas the other species had a more diverse sterol composition. These differences in lipids, fatty acids and sterols reflect diverse nutritional strategies and possibly temperature regimes in these species.
Collapse
Affiliation(s)
- Charles F Phleger
- Department of Biology, San Diego State University, San Diego California 92182, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Flores JF, Fisher CR, Carney SL, Green BN, Freytag JK, Schaeffer SW, Royer WE. Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Proc Natl Acad Sci U S A 2005; 102:2713-8. [PMID: 15710902 PMCID: PMC549462 DOI: 10.1073/pnas.0407455102] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Key to the remarkable ability of vestimentiferan tubeworms to thrive in the harsh conditions of hydrothermal vents are hemoglobins that permit the sequestration and delivery of hydrogen sulfide and oxygen to chemoautotrophic bacteria. Here, we demonstrate that zinc ions, not free cysteine residues, bind sulfide in vestimentiferan hemoglobins. The crystal structure of the C1 hemoglobin from the hydrothermal vent tubeworm Riftia pachyptila has been determined to 3.15 A and revealed the unexpected presence of 12 tightly bound Zn(2+) ions near the threefold axes of this D(3) symmetric hollow sphere. Chelation experiments on R. pachyptila whole-coelomic fluid and purified hemoglobins reveal a role for Zn(2+) ions in sulfide binding. Free cysteine residues, previously proposed as sulfide-binding sites in vestimentiferan hemoglobins, are found buried in surprisingly hydrophobic pockets below the surface of the R. pachyptila C1 molecule, suggesting that access of these residues to environmental sulfide is restricted. Attempts to reduce the sulfide-binding capacities of R. pachyptila hemoglobins by addition of a thiol inhibitor were also unsuccessful. These findings challenge the currently accepted paradigm of annelid hemoglobin evolution and adaptation to reducing environments.
Collapse
Affiliation(s)
- Jason F Flores
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Stewart FJ, Cavanaugh CM. Symbiosis of Thioautotrophic Bacteria with Riftia pachyptila. MOLECULAR BASIS OF SYMBIOSIS 2005; 41:197-225. [PMID: 16623395 DOI: 10.1007/3-540-28221-1_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Frank J Stewart
- Department of Organismic and Evolutionary Biology, Harvard University, The Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|