1
|
Hans JB, Haubner A, Arandjelovic M, Bergl RA, Fünfstück T, Gray M, Morgan DB, Robbins MM, Sanz C, Vigilant L. Characterization of MHC class II B polymorphism in multiple populations of wild gorillas using non-invasive samples and next-generation sequencing. Am J Primatol 2015; 77:1193-206. [PMID: 26283172 DOI: 10.1002/ajp.22458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023]
Abstract
Genes encoded by the major histocompatibility complex (MHC) are crucial for the recognition and presentation of antigens to the immune system. In contrast to their closest relatives, chimpanzees and humans, much less is known about variation in gorillas at these loci. This study explored the exon 2 variation of -DPB1, -DQB1, and -DRB genes in 46 gorillas from four populations while simultaneously evaluating the feasibility of using fecal samples for high-throughput MHC genotyping. By applying strict similarity- and frequency-based analysis, we found, despite our modest sample size, a total of 18 alleles that have not been described previously, thereby illustrating the potential for efficient and highly accurate MHC genotyping from non-invasive DNA samples. We emphasize the importance of controlling for multiple potential sources of error when applying this massively parallel short-read sequencing technology to PCR products generated from low concentration DNA extracts. We observed pronounced differences in MHC variation between species, subspecies and populations that are consistent with both the ancient and recent demographic histories experienced by gorillas.
Collapse
Affiliation(s)
- Jörg B Hans
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Haubner
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Richard A Bergl
- North Carolina Zoological Park, Asheboro, North Carolina, USA
| | | | - Maryke Gray
- International Gorilla Conservation Program, Kigali, Rwanda
| | | | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
2
|
Wilming LG, Hart EA, Coggill PC, Horton R, Gilbert JGR, Clee C, Jones M, Lloyd C, Palmer S, Sims S, Whitehead S, Wiley D, Beck S, Harrow JL. Sequencing and comparative analysis of the gorilla MHC genomic sequence. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat011. [PMID: 23589541 PMCID: PMC3626023 DOI: 10.1093/database/bat011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Major histocompatibility complex (MHC) genes play a critical role in vertebrate immune response and because the MHC is linked to a significant number of auto-immune and other diseases it is of great medical interest. Here we describe the clone-based sequencing and subsequent annotation of the MHC region of the gorilla genome. Because the MHC is subject to extensive variation, both structural and sequence-wise, it is not readily amenable to study in whole genome shotgun sequence such as the recently published gorilla genome. The variation of the MHC also makes it of evolutionary interest and therefore we analyse the sequence in the context of human and chimpanzee. In our comparisons with human and re-annotated chimpanzee MHC sequence we find that gorilla has a trimodular RCCX cluster, versus the reference human bimodular cluster, and additional copies of Class I (pseudo)genes between Gogo-K and Gogo-A (the orthologues of HLA-K and -A). We also find that Gogo-H (and Patr-H) is coding versus the HLA-H pseudogene and, conversely, there is a Gogo-DQB2 pseudogene versus the HLA-DQB2 coding gene. Our analysis, which is freely available through the VEGA genome browser, provides the research community with a comprehensive dataset for comparative and evolutionary research of the MHC.
Collapse
Affiliation(s)
- Laurens G Wilming
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1HH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Doxiadis GGM, de Groot N, Claas FHJ, Doxiadis IIN, van Rood JJ, Bontrop RE. A highly divergent microsatellite facilitating fast and accurate DRB haplotyping in humans and rhesus macaques. Proc Natl Acad Sci U S A 2007; 104:8907-12. [PMID: 17502594 PMCID: PMC1868589 DOI: 10.1073/pnas.0702964104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DRB region of the MHC in primate species is known to display abundant region configuration polymorphism with regard to the number and content of genes present per haplotype. Furthermore, depending on the species studied, the different DRB genes themselves may display varying degrees of allelic polymorphism. Because of this combination of diversity (differential gene number) and polymorphism (allelic variation), molecular typing methods for the primate DRB region are cumbersome. All intact DRB genes present in humans and rhesus macaques appear to possess, however, a complex and highly divergent microsatellite. Microsatellite analysis of a sizeable panel of outbred rhesus macaques, covering most of the known Mamu-DRB haplotypes, resulted in the definition of unique genotyping patterns that appear to be specific for a given haplotype. Subsequent examination of a representative panel of human cells illustrated that this approach also facilitates high-resolution HLA-DRB typing in an easy, quick, and reproducible fashion. The genetic composition of this complex microsatellite is shown to be in concordance with the phylogenetic relationships of various HLA-DRB and Mamu-DRB exon 2 gene/lineage sequences. Moreover, its length variability segregates with allelic variation of the respective gene. This simple protocol may find application in a variety of research avenues such as transplantation biology, disease association studies, molecular ecology, paternity testing, and forensic medicine.
Collapse
Affiliation(s)
- Gaby G. M. Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands; and
- To whom correspondence may be addressed. E-mail: or
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands; and
| | - Frans H. J. Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, E3-Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Ilias I. N. Doxiadis
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, E3-Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Jon J. van Rood
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, E3-Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- To whom correspondence may be addressed. E-mail: or
| | - Ronald E. Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands; and
| |
Collapse
|
4
|
Knapp LA. Facts, faeces and setting standards for the study of MHC genes using noninvasive samples. Mol Ecol 2005; 14:1597-9; discussion 1601-2. [PMID: 15813797 DOI: 10.1111/j.1365-294x.2005.02458.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leslie A Knapp
- Primate Immunogenetics and Molecular Ecology Research Group, Department of Biological Anthropology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Lukas D, Bradley BJ, Nsubuga AM, Doran-Sheehy D, Robbins MM, Vigilant L. Major histocompatibility complex and microsatellite variation in two populations of wild gorillas. Mol Ecol 2005; 13:3389-402. [PMID: 15487998 DOI: 10.1111/j.1365-294x.2004.02353.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In comparison to their close relatives the chimpanzees and humans, very little is known concerning the amount and structure of genetic variation in gorillas. Two species of gorillas are recognized and while the western gorillas number in the tens of thousands, only several hundred representatives of the mountain gorilla subspecies of eastern gorillas survive. To analyse the possible effects of these different population sizes, this study compares the variation observed at microsatellite and major histocompatibility complex (MHC) loci in samples of wild western and mountain gorillas, collected using a sampling scheme that targeted multiple social groups within defined geographical areas. Noninvasive samples proved a viable source of DNA for sequence analysis of the second exon of the DRB loci of the MHC. Observed levels of variation at the MHC locus were similar between the two gorilla species and were comparable to those in other primates. Comparison of results from analysis of variation at multiple microsatellite loci found only a slight reduction in heterozygosity for the mountain gorillas despite the relatively smaller population size.
Collapse
Affiliation(s)
- D Lukas
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Doxiadis GG, Otting N, de Groot NG, Noort R, Bontrop RE. Unprecedented polymorphism of Mhc-DRB region configurations in rhesus macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3193-9. [PMID: 10706710 DOI: 10.4049/jimmunol.164.6.3193] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rhesus macaque is an important model in preclinical transplantation research and for the study of chronic and infectious diseases, and so extensive knowledge of its MHC (MhcMamu) is needed. Nucleotide sequencing of exon 2 allowed the detection of 68 Mamu-DRB alleles. Although most alleles belong to loci/lineages that have human equivalents, identical Mhc-DRB alleles are not shared between humans and rhesus macaques. The number of -DRB genes present per haplotype can vary from two to seven in the rhesus macaque, whereas it ranges from one to four in humans. Within a panel of 210 rhesus macaques, 24 Mamu-DRB region configurations can be distinguished differing in the number and composition of loci. None of the Mamu-DRB region configurations has been described for any other species, and only one of them displays major allelic variation giving rise to a total of 33 Mamu-DRB haplotypes. In the human population, only five HLA-DRB region configurations were defined, which in contrast to the rhesus macaque exhibit extensive allelic polymorphism. In comparison with humans, the unprecedented polymorphism of the Mamu-DRB region configurations may reflect an alternative strategy of this primate species to cope with pathogens. Because of the Mamu-DRB diversity, nonhuman primate colonies used for immunological research should be thoroughly typed to facilitate proper interpretation of results. This approach will minimize as well the number of animals necessary to conduct experiments.
Collapse
Affiliation(s)
- G G Doxiadis
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | |
Collapse
|
7
|
Bergström TF, Erlandsson R, Engkvist H, Josefsson A, Erlich HA, Gyllensten U. Phylogenetic history of hominoid DRB loci and alleles inferred from intron sequences. Immunol Rev 1999; 167:351-65. [PMID: 10319273 DOI: 10.1111/j.1600-065x.1999.tb01404.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolutionary relationships among the MHC class II DRB4, DRB5 and DRB6 loci as well as the allelic lineages and alleles of the DRB1 locus were studied based on intron 1 and intron 2 sequences from humans, chimpanzee (Pan troglodytes), bonobo (Pan paniscus) and gorilla (Gorilla gorilla). The phylogenetic trees for these sequences indicate that most of the DRB1 allelic lineages predate the separation of the hominoid species studied, consistent with previous analysis of the coding sequences of these lineages. However, the intron sequence variation among alleles within DRB1 allelic lineages is very limited, consistent with the notion that the majority of the contemporary alleles have been generated within the last 250,000 years. The clustering of the DRB1 allelic lineages *08 and *12 with *03 supports a common ancestry for the DR8 and DR52 haplotypes. Similarly, the clustering of DRB1 allelic lineages *15 and *01 with the DRB3 locus is consistent with a common ancestry for the DR1 and DR51 haplotypes. Two cases of recombination around the second exon were observed: 1) the HLA-DRB6 locus appears to have been generated through a recombination between a DRB5 allele and an ancestral DRB6 allele, and 2) the gorilla sequence Gogo-DRB1 *03 appears to have been generated through a recombination between the DRB3 locus and an allele from the DRB1 *03 allelic lineage. The nucleotide substitution rate of DRB introns was estimated to 0.85-1.63 x 10(-9) per site per year, based on comparisons between the most closely related sequences from different hominoid species. This estimate is similar to the substitution rate for other intronic regions of the primate genome.
Collapse
Affiliation(s)
- T F Bergström
- Department of Genetics and Pathology, University of Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
Bontrop RE, Otting N, Slierendregt BL, Lanchbury JS. Evolution of major histocompatibility complex polymorphisms and T-cell receptor diversity in primates. Immunol Rev 1995; 143:33-62. [PMID: 7558081 DOI: 10.1111/j.1600-065x.1995.tb00669.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R E Bontrop
- Biomedical Primate Research Centre-TNO, Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
9
|
Abstract
The evolutionary relationships among Mhc-DPA1 alleles of various nonhuman primate species was studied by sequence analysis of exon 2. Here we report the nucleotide sequences of 15 Mhc-DPA1 alleles obtained from several great ape and Old and New World monkey species. Comparison with their human homologues reveals that alleles can be grouped into transspecies lineages, indicating that some HLA-DPA1-associated polymorphisms have been maintained for at least 35 million years.
Collapse
Affiliation(s)
- N Otting
- Biomedical Primate Research Center-TNO, Rijswijk, The Netherlands
| | | |
Collapse
|
10
|
Slierendregt BL, Otting N, Kenter M, Bontrop RE. Allelic diversity at the Mhc-DP locus in rhesus macaques (Macaca mulatta). Immunogenetics 1995; 41:29-37. [PMID: 7806271 DOI: 10.1007/bf00188429] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Allelic diversity at the major histocompatibility complex class II DP locus of rhesus macaques was studied by sequencing exon 2 of Mamu-DPA1 and -DPB1 genes. The Mamu-DPA1 gene is apparently invariant, whereas the Mamu-DPB1 locus displays polymorphism. Here we report the characterization of 1 Mamu-DPA1 and 13 Mamu-DPB1 alleles which were compared with other available primate Mhc-DPA1 and -DPB1 sequences. As compared with Mhc-DRB and -DQB1, most codons for the contact residues in the antigen binding site of the primate Mhc-DPB1 gene have a relatively low degree of variation in encoding various types of amino acids. In contrast to Mhc-DRB and -DQB, the HLA- and Mamu-DPB1 sequences cluster in a species-specific manner in phylogenetic trees. Mhc-DPB1 polymorphisms, however, are inherited in a transspecies mode of evolution, as is demonstrated by the sharing of lineage members between closely related macaque species. The data demonstrate that the transspecies character of Mhc-DPB1 polymorphism was retained over much shorter periods of time as compared with its sister class II loci, Mhc-DQ and -DR.
Collapse
Affiliation(s)
- B L Slierendregt
- Biomedical Primate Research Centre-TNO, Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
11
|
Slierendregt BL, Bontrop RE. Current knowledge on the major histocompatibility complex class II region in non-human primates. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 1994; 21:391-402. [PMID: 9098449 DOI: 10.1111/j.1744-313x.1994.tb00212.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- B L Slierendregt
- Biomedical Primate Research Centre-TNO, Rijswijk, The Netherlands
| | | |
Collapse
|
12
|
Slierendregt BL, Otting N, Jonker M, Bontrop RE. Gel electrophoretic analysis of rhesus macaque major histocompatibility complex class II DR molecules. Hum Immunol 1994; 40:33-40. [PMID: 8045791 DOI: 10.1016/0198-8859(94)90019-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rhesus macaque MHC class II DR molecules were isolated from radiolabeled B-cell line extracts by immunoprecipitation with the mAbs 7.3.19.1 and B8.11.2 and subsequently analyzed by 2D-gel electrophoresis. The B-cell lines used for this study were obtained from monkeys that are homozygous for the Mamu-DR region as defined by serologic techniques. Some of these animals have been selectively bred and originate from consanguineous matings. These analyses show that monkeys with the same allotyping may express different types of DR molecules. As in humans, the number of DR molecules expressed per haplotype is not constant and varies from 1 to 3, depending on the serologically defined Mamu-DR specificity, whereas it has been shown that the number of Mamu-DRB genes present per haplotype varies from 2 to 6. Therefore the present study also demonstrates that some of the rhesus macaque DR regions contain one or more pseudogenes.
Collapse
Affiliation(s)
- B L Slierendregt
- Medical Biological Laboratory TNO, Department of Chronic and Infectious Diseases, Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
13
|
Bontrop RE. Nonhuman primate Mhc-DQA and -DQB second exon nucleotide sequences: a compilation. Immunogenetics 1994; 39:81-92. [PMID: 8276461 DOI: 10.1007/bf00188610] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R E Bontrop
- TNO Medical Biological Laboratories, Rijswijk, The Netherlands
| |
Collapse
|
14
|
Elferink BG, Geluk A, Otting N, Slierendregt BL, van Meijgaarden KE, de Vries RR, Ottenhoff TH, Bontrop RE. The biologic importance of conserved major histocompatibility complex class II motifs in primates. Hum Immunol 1993; 38:201-5. [PMID: 8106278 DOI: 10.1016/0198-8859(93)90541-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phylogenetic comparisons of polymorphic second-exon sequences of MHC class II DRB genes showed that equivalents of the HLA-DRB1*03 alleles are present in various nonhuman primate species such as chimpanzees, gorillas, and rhesus macaques. These alleles must root from ancestral structure(s) that were once present in a progenitor species that lived about 35 million years ago. Due to accumulation of genetic variation, however, sequences that cluster into a lineage are generally unique to a species. To investigate the biologic importance of such conservation and variation, the peptide-binding capacity of various Mhc-DRB1*03 lineage members was studied. Primate Mhc-DRB1*03 lineage members successfully binding the p3-13 peptide of the 65-kD heat-shock protein of Mycobacterium tuberculosis/leprae share a motif that maps to the floor of the peptide-binding site. Apart from that, some rhesus macaque MHC class-II-positive cells were able to present the p3-13 peptide to HLA-DR17-restricted T cells whereas cells obtained from great ape species failed to do so. Therefore, these studies open ways to understand which MHC polymorphisms have been maintained in evolution and which MHC residues are essential for peptide binding and T-cell recognition.
Collapse
Affiliation(s)
- B G Elferink
- Department of Immunohematology, Leiden University Hospital, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Slierendregt BL, Kenter M, Otting N, Anholts J, Jonker M, Bontrop RE. Major histocompatibility complex class II haplotypes in a breeding colony of chimpanzees (Pan troglodytes). TISSUE ANTIGENS 1993; 42:55-61. [PMID: 8266319 DOI: 10.1111/j.1399-0039.1993.tb02237.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- B L Slierendregt
- MBL-TNO, Department of Chronic and Infectious Diseases, Rijswijk, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Trtková K, Kupfermann H, Grahovac B, Mayer WE, O'hUigin C, Tichy H, Bontrop R, Klein J. Mhc-DRB genes of platyrrhine primates. Immunogenetics 1993; 38:210-22. [PMID: 8505064 DOI: 10.1007/bf00211521] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The two infraorders of anthropoid primates, Platyrrhini (New World monkeys) and Catarrhini (Old World monkeys and the hominoids) are estimated to have diverged from a common ancestor 37 million years ago. The major histocompatibility complex class II DRB gene and haplotype polymorphism of the Catarrhini has been characterized in several recent studies. The present study was undertaken to obtain information on the DRB polymorphism of the Platyrrhini. Fifty-five complete exon 2 DRB sequences were obtained from six species of Platyrrhini representing both the Callitrichidae and the Cebidae families. Combined with the results of a parallel contig mapping study, our data indicate that at least three loci (DRB1*03, DRB3, and DRB5) are shared by the Catarrhini and the Platyrrhini. However, the three loci are occupied by functional genes in the former infraorder and mostly by pseudogenes in the latter. Instead of the pseudogenes, the Platyrrhini have evolved a new set of apparently functional genes-DRB11 and DRB*W12 through DRB*W19, which have thus far not been found in the Catarrhini. The DRB*W13, *W14, *W15, *W17, *W18, and *W19 genes seem to be restricted to the Cebidae family, whereas the DRB*W16 locus has so far been documented in the Callitrichidae family only. The DRB alleles of the cotton-top tamarin, and perhaps also those of the common marmoset (both members of the family Callitrichidae), are characterized by low nucleotide diversity, possibly indicating that they diverged from a common ancestral gene relatively recently.
Collapse
Affiliation(s)
- K Trtková
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Schönbach C, Vincek V, Mayer WE, Golubic M, O'hUigin C, Klein J. Multiplication of Mhc-DRB5 loci in the orangutan: implications for the evolution of DRB haplotypes. Mamm Genome 1993; 4:159-70. [PMID: 8439728 DOI: 10.1007/bf00352232] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The beta chain-encoding (B) class II genes of the primate major histocompatibility complex belong to several families. The DRB family of class II genes is distinguished by the occurrence of haplotype polymorphism--the existence of multiple chromosomal forms differing in length, gene number, and gene combinations, each form occurring at an appreciable frequency in the population. Some of the haplotypes, or fragments thereof, are shared by humans, chimpanzees, and gorillas. In an effort to follow the DRB haplotype polymorphism further back in time, we constructed DRB contig maps of the two chromosomes present in the orangutan cell line CP81. Two types of genes were found in the two haplotypes, Popy-DRB5 and Popy-DRB1*03, the former occurring in two copies and one gene fragment in each haplotype, so that the CP81 cell line contains four complete DRB5 genes and two DRB5 fragments altogether. Since the four genes are more closely related to one another than they are to other DRB5 genes, they must have arisen from a single ancestral copy by multiple duplications. At the same time, however, the two CP81 haplotypes differ considerably in their restriction enzyme sites and in the presence of Alu elements at different positions, indicating that they have been separated for a length of time that exceeds the lifespan of a primate species. Moreover, a segment of about 100 kilobase pairs is shared between the orangutan CP81-1 and the human HLA-DR2 haplotype. These findings indicate that part of the haplotype polymorphism may have persisted for more than 13 million years, which is the estimated time of human-orangutan divergence.
Collapse
Affiliation(s)
- C Schönbach
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Tübingen, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
18
|
Bontrop RE, Kenter M, Otting N, Jonker M. Major histocompatibility complex class II polymorphisms in humans and chimpanzees. J Med Primatol 1993. [DOI: 10.1111/j.1600-0684.1993.tb00636.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Marcel Kenter
- Department of Chronic and Infectious DiseasesITRI‐TNORijswijk
- Department of Immunohematology and Blood BankUniversity HospitalLeidenThe Netherlands
| | - Nel Otting
- Department of Chronic and Infectious DiseasesITRI‐TNORijswijk
| | - Margreet Jonker
- Department of Chronic and Infectious DiseasesITRI‐TNORijswijk
| |
Collapse
|