1
|
Rani D, Pachauri V, Madaboosi N, Jolly P, Vu XT, Estrela P, Chu V, Conde JP, Ingebrandt S. Top-Down Fabricated Silicon Nanowire Arrays for Field-Effect Detection of Prostate-Specific Antigen. ACS OMEGA 2018; 3:8471-8482. [PMID: 31458975 PMCID: PMC6644640 DOI: 10.1021/acsomega.8b00990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/18/2018] [Indexed: 05/16/2023]
Abstract
Highly sensitive electrical detection of biomarkers for the early stage screening of cancer is desired for future, ultrafast diagnostic platforms. In the case of prostate cancer (PCa), the prostate-specific antigen (PSA) is of prime interest and its detection in combination with other PCa-relevant biomarkers in a multiplex approach is advised. Toward this goal, we demonstrate the label-free, potentiometric detection of PSA with silicon nanowire ion-sensitive field-effect transistor (Si NW-ISFET) arrays. To realize the field-effect detection, we utilized the DNA aptamer-receptors specific for PSA, which were covalently and site-specifically immobilized on Si NW-ISFETs. The platform was used for quantitative detection of PSA and the change in threshold voltage of the Si NW-ISEFTs was correlated with the concentration of PSA. Concentration-dependent measurements were done in a wide range of 1 pg/mL to 1 μg/mL, which covers the clinical range of interest. To confirm the PSA-DNA aptamer binding on the Si NW surfaces, a sandwich-immunoassay based on chemiluminescence was implemented. The electrical approach using the Si NW-ISFET platform shows a lower limit of detection and a wide dynamic range of the assay. In future, our platform should be utilized to detect multiple biomarkers in one assay to obtain more reliable information about cancer-related diseases.
Collapse
Affiliation(s)
- Dipti Rani
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
| | - Vivek Pachauri
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
| | - Narayanan Madaboosi
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - Pawan Jolly
- Department
of Electronic and Electrical Engineering, University of Bath, BA2 7AY Bath, United Kingdom
| | - Xuan-Thang Vu
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
- Institute
of Physics I, RWTH Aachen University, Sommerfeldstr. 14, 52074 Aachen, Germany
| | - Pedro Estrela
- Department
of Electronic and Electrical Engineering, University of Bath, BA2 7AY Bath, United Kingdom
| | - Virginia Chu
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - João Pedro Conde
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - Sven Ingebrandt
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
- E-mail:
| |
Collapse
|
2
|
Transistor-Based Impedimetric Monitoring of Single Cells. LABEL-FREE MONITORING OF CELLS IN VITRO 2018. [DOI: 10.1007/11663_2017_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Abstract
Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element covered by a gate dielectric layer which is electronically sensitive to the (bio-)chemical changes that occur on its surface. This review will provide a brief overview of the history of ISFET biosensors with general operation concepts and sensing mechanisms. We also discuss silicon nanowire-based ISFETs (SiNW FETs) as the modern nanoscale version of classical ISFETs, as well as strategies to functionalize them with biologically sensitive layers. We include in our discussion other ISFET types based on nanomaterials such as carbon nanotubes, metal oxides and so on. The latest examples of highly sensitive label-free detection of deoxyribonucleic acid (DNA) molecules using SiNW FETs and single-cell recordings for drug screening and other applications of ISFETs will be highlighted. Finally, we suggest new device platforms and newly developed, miniaturized read-out tools with multichannel potentiometric and impedimetric measurement capabilities for future biomedical applications.
Collapse
|
4
|
Koppenhöfer D, Kettenbaum F, Susloparova A, Law JKY, Vu XT, Schwab T, Schäfer KH, Ingebrandt S. Neurodegeneration through oxidative stress: monitoring hydrogen peroxide induced apoptosis in primary cells from the subventricular zone of BALB/c mice using field-effect transistors. Biosens Bioelectron 2014; 67:490-6. [PMID: 25241122 DOI: 10.1016/j.bios.2014.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 11/28/2022]
Abstract
Dementia is one of the big medical challenges of our time with Alzheimer's, Huntington's and Parkinson's disease among its most common forms. In year 2000, 4.5 million people were diagnosed with Alzheimer's disease in the United States. In the case of Alzheimer's disease one of many contributing factors is a metabolic imbalance that leads to elevated oxidative stress levels. Consequences of this imbalance can be symptoms like apraxia, agnosia or sundowning. The use of field-effect transistors is a novel approach to study the effects of external stimuli on cells in vitro to provide researchers with a new tool for high resolution and high throughput studies to better understand cellular interaction and the effects of pharmacological compounds. In our study we use ion-sensitive field-effect transistors (FETs) to analyze the apoptosis inducing effects of hydrogen peroxide treatment on primary cells obtained from the subventricular zone of postnatal BALB/c mice. Upon apoptosis, the cell-substrate adhesion of the neurons is gradually weakened until complete detachment. In former studies we used our FET devices to conduct Electrical Cell-substrate Impedance Sensing (ECIS) experiments on the single cell level using morphologically different cell lines. Here we demonstrate that our novel approach of ECIS using FET devices can be expanded to primary neuronal tissue with high prospects for further studies in the field of pharmacological research.
Collapse
Affiliation(s)
- D Koppenhöfer
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, Zweibrücken, Germany
| | - F Kettenbaum
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, Zweibrücken, Germany
| | - A Susloparova
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, Zweibrücken, Germany
| | - J K Y Law
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, Zweibrücken, Germany
| | - X T Vu
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, Zweibrücken, Germany
| | - T Schwab
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, Zweibrücken, Germany
| | - K H Schäfer
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, Zweibrücken, Germany
| | - S Ingebrandt
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, Zweibrücken, Germany.
| |
Collapse
|
5
|
Susloparova A, Koppenhöfer D, Vu X, Weil M, Ingebrandt S. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Biosens Bioelectron 2013; 40:50-6. [DOI: 10.1016/j.bios.2012.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/02/2012] [Accepted: 06/06/2012] [Indexed: 11/29/2022]
|
6
|
Koppenhöfer D, Susloparova A, Docter D, Stauber RH, Ingebrandt S. Monitoring nanoparticle induced cell death in H441 cells using field-effect transistors. Biosens Bioelectron 2012; 40:89-95. [PMID: 22794933 DOI: 10.1016/j.bios.2012.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 11/19/2022]
Abstract
In this work we propose the use of field-effect transistors (FETs) to examine the reaction of individual tumor cells to treatment with cell death inducing nanoparticles for future use in cancer therapy.For our analysis the human cancer cell line H441 (a human lung adenocarcinoma epithelial cell line) was cultivated on fibronectin coated FETs and treated with various concentrations of silicon nanoparticles. The cell line was cultivated under standard conditions. The reactions of the cells to the nanoparticles were analyzed via transfer function measurements, microscopic examination and standard MTT viability assays. Microscopic examination showed a clear change of morphology to round cells, which accompanies detachment from the surface of the substrate. Cell detachment could also be observed as a signal shift in the transfer function.The results of our study indicate the applicability of FETs for cancer research and analyzing pharmacological effects of new compounds. In addition our results implicate the usefulness of silicon nanoparticle based compounds in cancer therapy.
Collapse
Affiliation(s)
- D Koppenhöfer
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | | | | | | | | |
Collapse
|
7
|
Posterausstellung P81-100. BIOMED ENG-BIOMED TE 2011. [DOI: 10.1515/bmt.2011.861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Schäfer S, Eick S, Hofmann B, Dufaux T, Stockmann R, Wrobel G, Offenhäusser A, Ingebrandt S. Time-dependent observation of individual cellular binding events to field-effect transistors. Biosens Bioelectron 2008; 24:1201-8. [PMID: 18692383 DOI: 10.1016/j.bios.2008.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/04/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
Electrolyte-gate field-effect transistors (EG-FETs) gained continuously more importance in the field of bioelectronics. The reasons for this are the intrinsic properties of these FETs. Binding of analysts or changes in the electrolyte composition are leading to variations of the drain-source current. Furthermore, due to the signal amplification upon voltage-to-current conversion even small extracellular signals can be detected. Here we report about impedance spectroscopy with an FET array to characterize passive components of a cell attached to the transistor gate. We developed a 16-channel readout system, which provides a simultaneous, lock-in based readout. A test signal of known amplitude and phase was applied via the reference electrode. We monitored the electronic transfer function of the FETs with the attached cell. The resulting frequency spectrum was used to investigate the surface adhesion of individual HEK293 cells. We applied different chemical treatments with either the serinpeptidase trypsin or the ionophor amphotericin B (AmpB). Binding studies can be realized by a time-dependent readout of the lock-in amplifier at a constant frequency. We observed cell detachment upon trypsin activity as well as membrane decomposition induced by AmpB. The results were interpreted in terms of an equivalent electrical circuit model of the complete system. The presented method could in future be applied to monitor more relevant biomedical manipulations of individual cells. Due to the utilization of the silicon technology, our method could be easily up-scaled to many output channels for high throughput pharmacological screening.
Collapse
Affiliation(s)
- S Schäfer
- Institute of Bio- and Nanosystems (IBN-2) and Center of Nanoelectronic Systems for Information Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ingebrandt S, Han Y, Nakamura F, Poghossian A, Schöning MJ, Offenhäusser A. Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors. Biosens Bioelectron 2007; 22:2834-40. [PMID: 17187976 DOI: 10.1016/j.bios.2006.11.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 09/12/2006] [Accepted: 11/22/2006] [Indexed: 11/22/2022]
Abstract
We present a label-free method for the detection of DNA hybridization, which is monitored by non-metallized silicon field-effect transistors (FET) in a microarray approach. The described method enables a fast and fully electronic readout of ex situ binding assays. The label-free detection utilizing the field-effect is based on the intrinsic charge of the DNA molecules and/or on changes of the solid-liquid interface impedance, when biomolecules bind to the sensor surface. With our sensor system, usually a time-resolved, dc readout is used. In general, this FET signal suffers from sensor drift, temperature drift, changes in electrolyte composition or pH value, influence of the reference electrode, etc. In this article, we present a differential ac readout concept for FET microarrays, which enables a stable operation of the sensor against many of these side-parameters, reliable readout and a possibility for a quick screening of large sensor arrays. We present the detection of point mutations in short DNA samples with this method in an ex situ binding assay.
Collapse
Affiliation(s)
- S Ingebrandt
- Institute of Bio- and Nanosystems, Institute 2: Bioelectronics, Center of Nanoelectronic Systems for Information Technology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
|
12
|
Abstract
During the last decennia many protein-related electrical phenomena have been studied and applied in a variety of measuring systems, from simple metal electrodes with adsorbed proteins to sophisticated systems with lipid bilayers. Many of the investigations concern the monitoring of immuno reactions. The basic underlying electrical effects of the observed phenomena are the protein modulated dielectric constant, conductivity, electrical potential, ion permeability and ion mobility. In this paper special attention is paid to the capacitive measurements with EIS systems as well as impedance and potential measurements with FET devices. The Donnan theory is treated and applied to the static ImmunoFET operation, explaining the relatively small effects which have been reported. Finally, an alternative approach is described in which the ImmunoFET is applied in a dynamic way, to circumvent the drawbacks of the static measurements.
Collapse
Affiliation(s)
- P Bergveld
- University of Twente, Enschede, The Netherlands
| |
Collapse
|
13
|
Possibilities and limitations of direct detection of protein charges by means of an immunological field-effect transistor. Anal Chim Acta 1990. [DOI: 10.1016/s0003-2670(00)80554-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Abstract
A new method is presented for the detection of an immunological reaction taking place in a membrane, which covers the gate area of an ISFET. By stepwise changing the electrolyte concentration of the sample solution, a transient diffusion of ions through the membrane-protein layer occurs, resulting in a transient membrane potential, which is measured by the ISFET. The diffusion rate is determined by the immobile charge density in the amphoteric protein layer, which changes upon formation of antibody-antigen complexes. No membrane potential is induced at zero fixed charge density as occurs at a protein characteristic pH. Isoelectric points of embedded proteins can be determined by detecting the zero potential response. Up to now, the authors have studied the membrane adsorption of lysozyme, human serum albumin (HSA) and the immune reaction of HSA with the antibody anti-human serum albumin (alpha HSA). The influence of protein parameters on the amplitude of the transient can be described with an empirical equation. Assuming Langmuir behaviour, the protein concentration in the solution can well be correlated with the concentration in the membrane. This new detection method is unique concerning direct measurements of charge densities and isoelectric points of amphoteric macromolecules adsorbed in the membrane. The simple procedure of one incubation stage followed by one detection stage, without separate washing and labelling techniques, gives direct information about specific charge properties of the macromolecules to be studied.
Collapse
Affiliation(s)
- R B Schasfoort
- Department of Applied Physics, University of Twente, Enschede, The Netherlands
| | | | | | | |
Collapse
|