1
|
Lai CC, Weng TC, Chen PL, Tseng YF, Lin CY, Chia MY, Sung WC, Lee MS, Hu AYC. Development and characterization of standard reagents for cell-based prepandemic influenza vaccine products. Hum Vaccin Immunother 2020; 16:2245-2251. [PMID: 32118516 PMCID: PMC7553690 DOI: 10.1080/21645515.2020.1721223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Outbreaks of infection by novel avian influenza virus strains in humans cause public health issues worldwide, and the development of vaccines against such novel strains is the most effective method for the prevention of these virus outbreaks. All types of vaccines must be tested for potency before use; thus, quantitative potency assays are needed for influenza vaccines. The single radial immunodiffusion (SRID) assay is considered the gold standard for quantification of influenza virus antigens, and the SRID reference reagents are essential for the determination of vaccine potency. However, it remains debatable whether reference reagents derived from egg-based vaccine platforms can be used to precisely quantify non-egg-derived vaccines; thus, influenza vaccine production using cell-based platforms has attracted increasing attention. To evaluate the utility of reference reagents derived from a cell-based influenza vaccine platform, we prepared cell-based reference reagents from MDCK cell-grown viruses and compared them with egg-derived reference reagents. A primary liquid standard (PLS) was purified from cell-derived candidate influenza vaccine viruses, and hemagglutinin (HA) antigen content was determined by a densitometric method. The produced PLS could be stored at 4°C for more than 10 months. We also established a simple HA protein purification method for goat antiserum preparation, and the performance of the resulting antiserum was compared to that of standard reagents obtained using different production platforms. The results of this study indicate that these reference reagents can be used for both cell-based and egg-based production platforms and that the differences between these two types of platforms are negligible.
Collapse
Affiliation(s)
- Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan.,College of Life Science, National Tsing Hua University , Hsinchu, Taiwan
| | - Tsai-Chuan Weng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| | - Po-Ling Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan.,College of Life Science, National Tsing Hua University , Hsinchu, Taiwan
| | - Yu-Fen Tseng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| | - Chun-Yang Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| | - Min-Yuan Chia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University , Taichung, Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| |
Collapse
|
2
|
Kon TC, Onu A, Berbecila L, Lupulescu E, Ghiorgisor A, Kersten GF, Cui YQ, Amorij JP, Van der Pol L. Influenza Vaccine Manufacturing: Effect of Inactivation, Splitting and Site of Manufacturing. Comparison of Influenza Vaccine Production Processes. PLoS One 2016; 11:e0150700. [PMID: 26959983 PMCID: PMC4784929 DOI: 10.1371/journal.pone.0150700] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/18/2016] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to evaluate the impact of different inactivation and splitting procedures on influenza vaccine product composition, stability and recovery to support transfer of process technology. Four split and two whole inactivated virus (WIV) influenza vaccine bulks were produced and compared with respect to release criteria, stability of the bulk and haemagglutinin recovery. One clarified harvest of influenza H3N2 A/Uruguay virus prepared on 25.000 fertilized eggs was divided equally over six downstream processes. The main unit operation for purification was sucrose gradient zonal ultracentrifugation. The inactivation of the virus was performed with either formaldehyde in phosphate buffer or with beta-propiolactone in citrate buffer. For splitting of the viral products in presence of Tween®, either Triton™ X-100 or di-ethyl-ether was used. Removal of ether was established by centrifugation and evaporation, whereas removal of Triton-X100 was performed by hydrophobic interaction chromatography. All products were sterile filtered and subjected to a 5 months real time stability study. In all processes, major product losses were measured after sterile filtration; with larger losses for split virus than for WIV. The beta-propiolactone inactivation on average resulted in higher recoveries compared to processes using formaldehyde inactivation. Especially ether split formaldehyde product showed low recovery and least stability over a period of five months.
Collapse
Affiliation(s)
- Theone C. Kon
- Department of Product Development, Intravacc, Institute for Translational Vaccinology, Bilthoven, The Netherlands
- * E-mail:
| | - Adrian Onu
- Laboratory of Biotechnology, Cantacuzino National Research Institute, Bucharest, Romania
| | - Laurentiu Berbecila
- Unit of Influenza Vaccine Production, Cantacuzino National Research Institute, Bucharest, Romania
| | - Emilia Lupulescu
- Laboratory of Respiratory Viral Infections, Cantacuzino National Research Institute, Bucharest, Romania
| | - Alina Ghiorgisor
- Laboratory of Respiratory Viral Infections, Cantacuzino National Research Institute, Bucharest, Romania
| | - Gideon F. Kersten
- Department of Research, Intravacc, Institute for Translational Vaccinology, Bilthoven, The Netherlands
| | - Yi-Qing Cui
- Department of Product Development, Intravacc, Institute for Translational Vaccinology, Bilthoven, The Netherlands
| | - Jean-Pierre Amorij
- Department of Business Development, Intravacc, Institute for Translational Vaccinology, Bilthoven, The Netherlands
| | - Leo Van der Pol
- Department of Research, Intravacc, Institute for Translational Vaccinology, Bilthoven, The Netherlands
| |
Collapse
|
3
|
Critical review of current and emerging quantification methods for the development of influenza vaccine candidates. Vaccine 2015; 33:5913-9. [DOI: 10.1016/j.vaccine.2015.07.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
4
|
Urbas L, Košir B, Peterka M, Pihlar B, Štrancar A, Barut M. Reversed phase monolithic analytical columns for the determination of HA1 subunit of influenza virus haemagglutinin. J Chromatogr A 2011; 1218:2432-7. [DOI: 10.1016/j.chroma.2010.12.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/14/2010] [Accepted: 12/18/2010] [Indexed: 11/16/2022]
|
5
|
Garcia-Cañas V, Lorbetskie B, Girard M. Rapid and selective characterization of influenza virus constituents in monovalent and multivalent preparations using non-porous reversed-phase high performance liquid chromatography columns. J Chromatogr A 2006; 1123:225-32. [PMID: 16677659 DOI: 10.1016/j.chroma.2006.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/03/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
The characterization of influenza vaccine composition has been approached through a novel methodology suitable for routine analysis. It is based on a two-stage process involving an initial sample processing step followed by analysis by reversed-phase HPLC with UV detection. The sample processing involves an initial concentration step carried out in the presence of a combination of detergents and organic solvents to enhance solubilization and ultimately to provide adequate detection. Conditions that provided fast, reproducible and selective separations of vaccine constituents were investigated by reversed-phase HPLC. The use of non-porous silica stationary phases was found to minimize carry-over and non-specific adsorption observed with conventional columns. An evaluation of separation parameters, including mobile phase composition and column temperature, allowed optimization of the selectivity of the method. The optimized method was suitable for the characterization of processed monovalent preparations (containing influenza virus constituents from a single strain). In addition, it allowed the simultaneous detection of the three influenza subtypes in trivalent vaccines in a single analysis. Several influenza constituents were detected including nucleoprotein, the highly hydrophobic matrix protein and the primary surface antigen, haemagglutinin (HA).
Collapse
Affiliation(s)
- Virginia Garcia-Cañas
- Centre for Biologics Research, Health Canada, Banting Bldg., Tunney's Pasture, Ottawa, Ont., Canada K1A 0L2
| | | | | |
Collapse
|
6
|
Barackman JD, Ott G, Pine S, O'Hagan DT. Oral administration of influenza vaccine in combination with the adjuvants LT-K63 and LT-R72 induces potent immune responses comparable to or stronger than traditional intramuscular immunization. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:652-7. [PMID: 11329476 PMCID: PMC96119 DOI: 10.1128/cdli.8.3.652-657.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2000] [Accepted: 03/19/2001] [Indexed: 11/20/2022]
Abstract
Mucosal immunization strategies are actively being pursued in the hopes of improving the efficacy of vaccines against the influenza virus. Our group investigated the oral immunization of mice via intragastric gavage with influenza hemagglutinin (HA) combined with mutant Escherichia coli heat-labile enterotoxins K63 (LT-K63) and R72 (LT-R72). These oral immunizations resulted in potent serum antibody and HA inhibition titers, in some cases stronger than those obtained with traditional intramuscular administration, in addition to HA-specific immunoglobulin A in the saliva and nasal secretions. This study demonstrates that it may be possible to develop effective oral influenza vaccines.
Collapse
Affiliation(s)
- J D Barackman
- Chiron Corporation, Emeryville, California 94608, USA.
| | | | | | | |
Collapse
|
7
|
Singh M, Briones M, O'Hagan DT. A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. J Control Release 2001; 70:267-76. [PMID: 11182197 DOI: 10.1016/s0168-3659(00)00330-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the current studies was to evaluate a bioadhesive delivery system for intranasal administration of a flu vaccine, in combination with a mucosal adjuvant (LTK63). A commercially available influenza vaccine, containing hemagglutinin (HA) from influenza/A Johannesberg H1N1 1996, and LTK63 or LTR72 adjuvants, which are genetically detoxified derivatives of heat labile enterotoxin from Escherichia coli, were administered IN in a bioadhesive delivery system, which comprised esterified hyaluronic acid (HYAFF) microspheres, to mice, rabbits and micro-pigs at days 0 and 28. For comparison, additional groups of animals were immunized intranasally with the HA vaccine alone, with soluble HA+LTK63, or IM with HA. In all three species, the groups of animals receiving IN immunization with the bioadhesive microsphere formulations, including LT mutants, showed significantly enhanced serum IgG responses (P<0.05) and higher hemagglutination inhibition (HI) titers in comparison to the other groups. In addition, the bioadhesive formulation also showed a significantly enhanced nasal wash IgA response (P<0.05). Most encouragingly, in pigs, the bioadhesive microsphere vaccine delivery system induced serum immune responses following IN immunization, which were significantly more potent than those induced by traditional IM immunization at the same vaccine dose (P<0.05).
Collapse
Affiliation(s)
- M Singh
- Chiron Technologies, Chiron Corporation, 4560 Horton Street, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
8
|
Barackman JD, Ott G, O'Hagan DT. Intranasal immunization of mice with influenza vaccine in combination with the adjuvant LT-R72 induces potent mucosal and serum immunity which is stronger than that with traditional intramuscular immunization. Infect Immun 1999; 67:4276-9. [PMID: 10417205 PMCID: PMC96738 DOI: 10.1128/iai.67.8.4276-4279.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization of mice by the intranasal route with influenza virus hemagglutinin in combination with the mutant Escherichia coli heat-labile enterotoxin R72 (LT-R72) induced significantly enhanced serum and mucosal antibodies, surpassing, in most cases, responses achieved by traditional intramuscular immunization using inactivated split influenza vaccine. Furthermore, intranasal immunization with LT-R72 induced a potent serum immunoglobulin G2a response, indicating that this adjuvant has Th1 character.
Collapse
|