1
|
Cohen MB. Human Challenge Studies for Cholera. Curr Top Microbiol Immunol 2024; 445:177-188. [PMID: 35377003 DOI: 10.1007/82_2022_258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human challenge model permits an estimate of the vaccine protection against moderate and severe cholera. It eliminates the difficulty in setting up a vaccine study in endemic area including uncertainties about the incidence of cholera and the logistic arrangements for capturing those who do/do not become ill. Valuable information from small groups of subjects can be obtained in a short period. Under proper precautions and study design, the challenge model is safe and efficient. Although the model has evolved since it was introduced over 50 years ago, it has been used extensively to test vaccine efficacy. Vaccine licensure has resulted from data obtained using the human challenge model. In addition, the model has been used to: (1) Establish and validate a standardized inoculum, (2) Identify immune markers and immune responses, (3) Determine natural immunity (in re-challenge studies), (4) Identify the role of the gastric acid barrier in preventing cholera infection, (5) Show homologous and heterologous infection-derived immunity, and (6) Test the efficacy of anti-diarrheal/anti-secretory small molecules. The aim of this chapter is to present an overview on the state of the art for human challenge models used to study cholera and new medical interventions against it.
Collapse
Affiliation(s)
- Mitchell B Cohen
- Katharine Reynolds Ireland Chair of Pediatrics, University of Alabama at Birmingham, Physician-in-Chief, Children's of Alabama, Birmingham, AL, USA.
- , 1600 7th Ave. South, Suite 600, Birmingham, AL, 35213, USA.
| |
Collapse
|
2
|
Xian TH, Sinniah K, Yean CY, Krishnamoorthy V, Bahari MB, Ravichandran M, Prabhakaran G. Immunogenicity and protective efficacy of a live, oral cholera vaccine formulation stored outside-the-cold-chain for 140 days. BMC Immunol 2020; 21:29. [PMID: 32450807 PMCID: PMC7249306 DOI: 10.1186/s12865-020-00360-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 01/29/2023] Open
Abstract
Background Cholera, an acute watery diarrhoeal disease caused by Vibrio cholerae serogroup O1 and O139 across the continents. Replacing the existing WHO licensed killed multiple-dose oral cholera vaccines that demand ‘cold chain supply’ at 2–8 °C with a live, single-dose and cold chain-free vaccine would relieve the significant bottlenecks and cost determinants in cholera vaccination campaigns. In this direction, a prototype cold chain-free live attenuated cholera vaccine formulation (LACV) was developed against the toxigenic wild-type (WT) V. cholerae O139 serogroup. LACV was found stable and retained its viability (5 × 106 CFU/mL), purity and potency at room temperature (25 °C ± 2 °C, and 60% ± 5% relative humidity) for 140 days in contrast to all the existing WHO licensed cold-chain supply (2–8 °C) dependent killed oral cholera vaccines. Results The LACV was evaluated for its colonization potential, reactogenicity, immunogenicity and protective efficacy in animal models after its storage at room temperature for 140 days. In suckling mice colonization assay, the LACV recorded the highest recovery of (7.2 × 107 CFU/mL) compared to those of unformulated VCUSM14P (5.6 × 107 CFU/mL) and the WT O139 strain (3.5 × 107 CFU/mL). The LACV showed no reactogenicity even at an inoculation dose of 104–106 CFU/mL in a rabbit ileal loop model. The rabbits vaccinated with the LACV or unformulated VCUSM14P survived a challenge with WT O139 and showed no signs of diarrhoea or death in the reversible intestinal tie adult rabbit diarrhoea (RITARD) model. Vaccinated rabbits recorded a 275-fold increase in anti-CT IgG and a 15-fold increase in anti-CT IgA antibodies compared to those of rabbits vaccinated with unformulated VCUSM14P. Vibriocidal antibodies were increased by 31-fold with the LACV and 14-fold with unformulated VCUSM14P. Conclusion The vaccine formulation mimics a natural infection, is non-reactogenic and highly immunogenic in vivo and protects animals from lethal wild-type V. cholerae O139 challenge. The single dose LACV formulation was found to be stable at room temperature (25 ± 2 °C) for 140 days and it would result in significant cost savings during mass cholera vaccination campaigns.
Collapse
Affiliation(s)
- Tew Hui Xian
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Kurunathan Sinniah
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | | | - Mohd Baidi Bahari
- Faculty of Pharmacy, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Manickam Ravichandran
- Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Guruswamy Prabhakaran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia.
| |
Collapse
|
3
|
Shaikh H, Lynch J, Kim J, Excler JL. Current and future cholera vaccines. Vaccine 2019; 38 Suppl 1:A118-A126. [PMID: 31879125 DOI: 10.1016/j.vaccine.2019.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 01/21/2023]
Abstract
Cholera remains a major global public health problem that is primarily linked to insufficient access to safe water and proper sanitation. Oral Cholera Vaccine (OCV) has been recommended as an additional public health tool along with WASH in cholera endemic countries and in areas at risk for outbreaks. The new generation OCV is safe and offers good protection in older children and adults while limited protection in younger children less than five years of age has been observed. The combination of direct vaccine protection and vaccine herd immunity effects makes OCV highly cost-effective and, therefore, attractive for use in developing countries. Additionally, in recent studies OCV was safe in pregnant women, supporting its use in pregnant women in cholera endemic countries. However, knowledge need to be developed for current vaccines for their prolonged duration of protection and vaccines need improvements for better immune response in younger children. A single dose vaccination regimen would be more cost-effective and easier to deliver. Recent approaches have focused on designing genetically attenuated cholera strains for use in single-dose cholera vaccines. The global demand for OCV has been boosted by the WHO recommendation to use OCV and is driven largely by epidemics and outbreaks and has been increasing due to the availability of cheaper easy-to-use vaccines, feasibility of mass OCV vaccination campaigns, demonstration of protection to underserved population in precarious situations, and vaccine costs being borne by Gavi (Vaccine Alliance). For rapid access in emergency and equitable distribution of OCV in cholera-endemic low-income countries, a global OCV stockpile was established in 2013 with support from the Global Alliance for Vaccines and Immunization. The three WHO-prequalified vaccines are Dukoral®, Shanchol™, Euvichol® (and Euvichol® Plus presentation), the latter two being included in the stockpile.
Collapse
Affiliation(s)
- Hanif Shaikh
- International Vaccine Institute, Seoul, Republic of Korea; K.E.M. Hospital Research Centre, Pune, Maharashtra, India.
| | - Julia Lynch
- International Vaccine Institute, Seoul, Republic of Korea
| | - Jerome Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | | |
Collapse
|
4
|
Saluja T, Mogasale VV, Excler JL, Kim JH, Mogasale V. An overview of Vaxchora TM, a live attenuated oral cholera vaccine. Hum Vaccin Immunother 2019; 16:42-50. [PMID: 31339792 PMCID: PMC7012186 DOI: 10.1080/21645515.2019.1644882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 01/22/2023] Open
Abstract
Cholera remains a public health threat among the least privileged populations and regions affected by conflicts and natural disasters. Together with Water, Sanitation and Hygiene practices, use of oral cholera vaccines (OCVs) is a key tool to prevent cholera. Bivalent whole-cell killed OCVs have been extensively used worldwide and found effective in protecting populations against cholera in endemic and outbreak settings. No cholera vaccine had been available for United States (US) travelers at risk for decades until 2016 when CVD 103-HgR (Vaxchora™), an oral live attenuated vaccine, was licensed by the US FDA. A single dose of Vaxchora™ protected US volunteers against experimental challenge 10 days and 3 months after vaccination. However, use of Vaxchora™ poses several challenges in resource poor settings as it requires reconstitution, is age-restricted to 18 to 64 years, has no data in populations endemic for cholera, and faces challenges related to cold chain and cost.
Collapse
Affiliation(s)
- Tarun Saluja
- International Vaccine Institute, SNU Research Park, Seoul, Republic of Korea
| | - Vijayalaxmi V. Mogasale
- Department of Pediatrics, Yenepoya Medical College and Research Center, Yenepoya University, Mangalore, India
| | - Jean-Louis Excler
- International Vaccine Institute, SNU Research Park, Seoul, Republic of Korea
| | - Jerome H. Kim
- International Vaccine Institute, SNU Research Park, Seoul, Republic of Korea
| | - Vittal Mogasale
- International Vaccine Institute, SNU Research Park, Seoul, Republic of Korea
| |
Collapse
|
5
|
Chattopadhyay R, Pratt D. Role of controlled human malaria infection (CHMI) in malaria vaccine development: A U.S. food & drug administration (FDA) perspective. Vaccine 2017; 35:2767-2769. [PMID: 28431816 DOI: 10.1016/j.vaccine.2017.03.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022]
Affiliation(s)
- Rana Chattopadhyay
- Division of Vaccines & Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 71, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA.
| | - Douglas Pratt
- Division of Vaccines & Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 71, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| |
Collapse
|
6
|
Helminth-Tuberculosis Co-infection: An Immunologic Perspective. Trends Immunol 2016; 37:597-607. [PMID: 27501916 DOI: 10.1016/j.it.2016.07.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/15/2023]
Abstract
Over 2 billion people worldwide are infected with helminths (worms). Similarly, infection with Mycobacterium tuberculosis (Mtb) occurs in over a third of the world's population, often with a great degree of geographical overlap with helminth infection. Interestingly, the responses induced by the extracellular helminths and those induced by the intracellular Mtb are often mutually antagonistic and, as a consequence, can result in impaired (or cross-regulated) host responses to either of the infecting pathogens. In this review, we outline the nature of the immune responses induced by infections with helminths and tuberculosis (TB) and then provide data from both experimental models and human studies that illustrate how the immune response engendered by helminth parasites modulates Mtb-specific responses in helminth-TB coinfection.
Collapse
|
7
|
Herzog C. Successful comeback of the single-dose live oral cholera vaccine CVD 103-HgR. Travel Med Infect Dis 2016; 14:373-7. [DOI: 10.1016/j.tmaid.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 02/05/2023]
|
8
|
Jackson SS, Chen WH. Evidence for CVD 103-HgR as an effective single-dose oral cholera vaccine. Future Microbiol 2015; 10:1271-81. [DOI: 10.2217/fmb.15.51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We propose the ideal oral cholera vaccine (OCV) should be an inexpensive, single, oral dose that rapidly confers immunity for a long duration, and is well tolerated by individuals vulnerable to cholera. Vaccine trials in industrialized countries of a single oral dose of 5 × 108 colony forming units (CFU) of the live, attenuated cholera strain CVD 103-HgR have shown 88–97% serum vibriocidal antibody seroconversion rates, a correlate of protection and documented vaccine efficacy of ≥80% using volunteer challenge studies with wild-type cholera. For individuals of developing countries, a 5 × 109 CFU dose of CVD 103-HgR is necessary to elicit similar antibody responses. Presently, a reformulation of CVD 103-HgR is in late-stage clinical development for prospective US FDA licensure; making a cholera vaccine for US travelers potentially accessible in 2016. The availability of CVD 103-HgR should be a welcome addition to the currently available OCVs.
Collapse
Affiliation(s)
- Sarah S Jackson
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Wilbur H Chen
- Center for Vaccine Development, University of Maryland School of Medicine, 685 W. Baltimore Street, Suite 480, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Umaraw P, Prajapati A, Verma AK, Pathak V, Singh VP. Control ofcampylobacterin poultry industry from farm to poultry processing unit: A review. Crit Rev Food Sci Nutr 2015; 57:659-665. [DOI: 10.1080/10408398.2014.935847] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Daifalla N, Cayabyab MJ, Xie E, Kim HB, Tzipori S, Stashenko P, Duncan M, Campos-Neto A. Commensal Streptococcus mitis is a unique vector for oral mucosal vaccination. Microbes Infect 2015; 17:237-42. [PMID: 25522856 PMCID: PMC4346494 DOI: 10.1016/j.micinf.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 02/08/2023]
Abstract
The development of vaccine approaches that induce mucosal and systemic immune responses is critical for the effective prevention of several infections. Here, we report on the use of the abundant human oral commensal bacterium Streptococcus mitis as a delivery vehicle for mucosal immunization. Using homologous recombination we generated a stable rS. mitis expressing a Mycobacterium tuberculosis protein (Ag85b). Oral administration of rS. mitis in gnotobiotic piglets resulted in efficient oral colonization and production of oral and systemic anti-Ag85b specific IgA and IgG antibodies. These results support that the commensal S. mitis is potentially a useful vector for mucosal vaccination.
Collapse
Affiliation(s)
| | | | - Emily Xie
- The Forsyth Institute, Cambridge, MA, United states
| | - Hyeun Bum Kim
- Cummings School of Veterinary Medicine at Tufts, Grafton, MA, United states; Department of Animal Resources Science at Dankook University, Cheonan, South Korea
| | - Saul Tzipori
- Cummings School of Veterinary Medicine at Tufts, Grafton, MA, United states
| | | | | | | |
Collapse
|
11
|
|
12
|
|
13
|
Kanungo S, Sen B, Ramamurthy T, Sur D, Manna B, Pazhani GP, Chowdhury G, Jhunjhunwala P, Nandy RK, Koley H, Bhattacharya MK, Gupta S, Goel G, Dey B, M T, Nair GB, Ghosh A, Mahalanabis D. Safety and immunogenicity of a live oral recombinant cholera vaccine VA1.4: a randomized, placebo controlled trial in healthy adults in a cholera endemic area in Kolkata, India. PLoS One 2014; 9:e99381. [PMID: 24983989 PMCID: PMC4077646 DOI: 10.1371/journal.pone.0099381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A live oral cholera vaccine VA 1.4 developed from a non-toxigenic Vibrio cholerae O1 El Tor strain using ctxB gene insertion was further developed into a clinical product following cGMP and was evaluated in a double-blind randomized placebo controlled parallel group two arm trial with allocation ratio of 1∶1 for safety and immunogenicity in men and women aged 18-60 years from Kolkata, India. METHOD A lyophilized dose of 1.9×109 CFU (n = 44) or a placebo (n = 43) reconstituted with a diluent was administered within 5 minutes of drinking 100 ml of a buffer solution made of sodium bicarbonate and ascorbic acid and a second dose on day 14. RESULT The vaccine did not elicit any diarrhea related adverse events. Other adverse events were rare, mild and similar in two groups. One subject in the vaccine group excreted the vaccine strain on the second day after first dose. The proportion of participants who seroconverted (i.e. had 4-folds or higher rise in reciprocal titre) in the vaccine group were 65.9% (95% CI: 50.1%-79.5%) at both 7 days (i.e. after 1st dose) and 21 days (i.e. after 2nd dose). None of the placebo recipients seroconverted. Anti-cholera toxin antibody was detected in very few recipients of the vaccine. CONCLUSION This study demonstrates that VA 1.4 at a single dose of 1.9×109 is safe and immunogenic in adults from a cholera endemic region. No additional benefit after two doses was seen. TRIAL REGISTRATION Clinical Trials Registry-India, National Institute of Medical Statistics (Indian Council of Medical Research) CTRI/2012/04/002582.
Collapse
Affiliation(s)
- Suman Kanungo
- Department of Epidemiology, National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Bandana Sen
- Society for Applied Studies, Kolkata, West Bengal, India
| | - Thandavarayan Ramamurthy
- Department of Microbiology, National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Dipika Sur
- Department of Epidemiology, National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Byomkesh Manna
- Department of Epidemiology, National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Gururaja P. Pazhani
- Department of Microbiology, National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Goutam Chowdhury
- Department of Microbiology, National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Puja Jhunjhunwala
- Department of Microbiology, National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Ranjan K. Nandy
- Department of Microbiology, National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Hemanta Koley
- Department of Microbiology, National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Mihir Kumar Bhattacharya
- Department of Epidemiology, National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Sanjay Gupta
- Catalyst Clinical Services Pvt. Ltd., Delhi, India
| | - Gaurav Goel
- Catalyst Clinical Services Pvt. Ltd., Delhi, India
| | - Bindu Dey
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Thungapathra M
- Institute of Post Graduate Medicine and Research, Chandigarh, India
| | - G. Balakrish Nair
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Amit Ghosh
- Department of Microbiology, National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | | |
Collapse
|
14
|
Chowdhury MI, Sheikh A, Qadri F. Development of Peru-15 (CholeraGarde®), a live-attenuated oral cholera vaccine: 1991–2009. Expert Rev Vaccines 2014; 8:1643-52. [DOI: 10.1586/erv.09.137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Safety and immunogenicity of single-dose live oral cholera vaccine strain CVD 103-HgR, prepared from new master and working cell banks. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:66-73. [PMID: 24173028 DOI: 10.1128/cvi.00601-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Currently, no cholera vaccine is available for persons traveling from the United States to areas of high cholera transmission and who for reasons of occupation or host factors are at increased risk for development of the disease. A single-dose oral cholera vaccine with a rapid onset of protection would be particularly useful for such travelers and might also be an adjunct control measure for cholera outbreaks. The attenuated Vibrio cholerae O1 vaccine strain CVD 103-HgR harbors a 94% deletion of the cholera toxin A subunit gene (ctxA) and has a mercury resistance gene inserted in the gene encoding hemolysin A. We undertook a phase I randomized placebo-controlled two-site trial to assess the safety and immunogenicity of a preliminary formulation of CVD 103-HgR prepared from new master and working cell banks. Healthy young adults were randomized (5:1 vaccinees to placebo recipients) to receive a single oral dose of ∼4.4 × 10(8) CFU of vaccine or a placebo. Blood serum vibriocidal and cholera toxin-specific IgG antibodies were measured before and 10, 14, and 28 days following vaccination or placebo. Excretion of the vaccine strain in the stool was assessed during the first week postvaccination. A total of 66 subjects were enrolled, comprising 55 vaccinees and 11 placebo recipients. The vaccine was well tolerated. The overall vibriocidal and anti-cholera toxin seroconversion rates were 89% and 57%, respectively. CVD 103-HgR is undergoing renewed manufacture for licensure in the United States under the auspices of PaxVax. Our data mimic those from previous commercial formulations that elicited vibriocidal antibody seroconversion (a correlate of protection) in ∼90% of vaccinees. (This study has been registered at ClinicalTrials.gov under registration no. NCT01585181.).
Collapse
|
16
|
|
17
|
Amuguni H, Tzipori S. Bacillus subtilis: a temperature resistant and needle free delivery system of immunogens. Hum Vaccin Immunother 2012; 8:979-86. [PMID: 22699442 DOI: 10.4161/hv.20694] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Most pathogens enter the body through mucosal surfaces. Mucosal immunization, a non-invasive needle-free route, often stimulates a mucosal immune response that is both effective against mucosal and systemic pathogens. The development of mucosally administered heat-stable vaccines with long shelf life would therefore significantly enhance immunization programs in developing countries by avoiding the need for a cold chain or systemic injections. Currently, recombinant vaccine carriers are being used for antigen delivery. Engineering Bacillus subtilis for use as a non-invasive and heat stable antigen delivery system has proven successful. Bacterial spores protected by multiple layers of protein are known to be robust and resistant to desiccation. Stable constructs have been created by integration into the bacterial chromosome of immunogens. The spore coat has been used as a vehicle for heterologous antigen presentation and protective immunization. Sublingual (SL) and intranasal (IN) routes have recently received attention as delivery routes for therapeutic drugs and vaccines and recent attempts by several investigators, including our group, to develop vaccines that can be delivered intranasally and sublingually have met with a lot of success. As discussed in this review, the use of Bacillus subtilis to express antigens that can be administered either intranasally or sublingually is providing new insights in the area of mucosal vaccines. In our work, we evaluated the efficacy of SL and IN immunizations with B. subtilis engineered to express tetanus toxin fragment C (TTFC) in mice and piglets. These bacteria engineered to express heterologous antigen either on the spore surface or within the vegetative cell have been used for oral, IN and SL delivery of antigens. A Bacillus subtilis spore coat protein, CotC was used as a fusion partner to express the tetanus fragment C. B. subtilis spores known to be highly stable and safe are also easy to purify making this spore-based display system a potentially powerful approach for surface expression of antigens. These advances will help to accelerate the development and testing of new mucosal vaccines against many human and animal diseases.
Collapse
Affiliation(s)
- Hellen Amuguni
- Division of Infectious Diseases, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | |
Collapse
|
18
|
Perforin- and granzyme-mediated cytotoxic effector functions are essential for protection against Francisella tularensis following vaccination by the defined F. tularensis subsp. novicida ΔfopC vaccine strain. Infect Immun 2012; 80:2177-85. [PMID: 22493083 DOI: 10.1128/iai.00036-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A licensed vaccine against Francisella tularensis is currently not available. Two Francisella tularensis subsp. novicida (herein referred to by its earlier name, Francisella novicida) attenuated strains, the ΔiglB and ΔfopC strains, have previously been evaluated as potential vaccine candidates against pneumonic tularemia in experimental animals. F. novicida ΔiglB, a Francisella pathogenicity island (FPI) mutant, is deficient in phagosomal escape and intracellular growth, whereas F. novicida ΔfopC, lacking the outer membrane lipoprotein FopC, which is required for evasion of gamma interferon (IFN-γ)-mediated signaling, is able to escape and replicate in the cytosol. To dissect the difference in protective immune mechanisms conferred by these two vaccine strains, we examined the efficacy of the F. novicida ΔiglB and ΔfopC mutants against pulmonary live-vaccine-strain (LVS) challenge and found that both strains provided comparable protection in wild-type, major histocompatibility complex class I (MHC I) knockout, and MHC II knockout mice. However, F. novicida ΔfopC-vaccinated but not F. novicida ΔiglB-vaccinated perforin-deficient mice were more susceptible and exhibited greater bacterial burdens than similarly vaccinated wild-type mice. Moreover, perforin produced by natural killer (NK) cells and release of granzyme contributed to inhibition of LVS replication within macrophages. This NK cell-mediated LVS inhibition was enhanced with anti-F. novicida ΔfopC immune serum, suggesting antibody-dependent cell-mediated cytotoxicity (ADCC) in F. novicida ΔfopC-mediated protection. Overall, this study provides additional immunological insight into the basis for protection conferred by live attenuated F. novicida strains with different phenotypes and supports further investigation of this organism as a vaccine platform for tularemia.
Collapse
|
19
|
Employing Live Microbes for Vaccine Delivery. DEVELOPMENT OF NOVEL VACCINES 2012. [PMCID: PMC7123214 DOI: 10.1007/978-3-7091-0709-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
20
|
Ali M, Emch M, Park JK, Yunus M, Clemens J. Natural cholera infection-derived immunity in an endemic setting. J Infect Dis 2011; 204:912-8. [PMID: 21849288 PMCID: PMC3156915 DOI: 10.1093/infdis/jir416] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/15/2011] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Live oral cholera vaccines may protect against cholera in a manner similar to natural cholera infections. However, information on which to base these vaccines is limited. METHODS The study was conducted in a cholera-endemic population in Bangladesh. Patients with cholera (index patients) detected between 1991 and 2000 were age-matched to 4 cholera-free controls and then followed up during the subsequent 3 years. RESULTS El Tor cholera was associated with a 65% (95% confidence interval [CI], 37%-81%; P < .001) lower risk of a subsequent El Tor episode. Reduction of the risk of subsequent El Tor cholera was similar for children < 5 years and for older persons and was sustained during all 3 years of follow-up. Having El Tor Inaba cholera was associated with lower risks of both El Tor Inaba and El Tor Ogawa cholera, but having El Tor Ogawa cholera was associated only with a reduced risk of El Tor Ogawa cholera. O139 cholera was associated with a 63% (95% CI, -61% to 92%; P = .18) lower risk of subsequent O139 cholera, but there was no evidence of cross-protection between the O1 and O139 serogroups. CONCLUSIONS Live oral cholera vaccines designed to protect against the O1 and O139 serogroups should contain at least the Inaba serotype and strains of both serogroups.
Collapse
Affiliation(s)
- Mohammad Ali
- International Vaccine Institute, Seoul, Republic of Korea.
| | | | | | | | | |
Collapse
|
21
|
Infectious Diarrhea. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2011. [PMCID: PMC7151906 DOI: 10.1016/b978-1-4377-0774-8.10039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Levine MM. Immunogenicity and efficacy of oral vaccines in developing countries: lessons from a live cholera vaccine. BMC Biol 2010; 8:129. [PMID: 20920375 PMCID: PMC2958895 DOI: 10.1186/1741-7007-8-129] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/01/2010] [Indexed: 01/22/2023] Open
Abstract
Oral vaccines, whether living or non-living, viral or bacterial, elicit diminished immune responses or have lower efficacy in developing countries than in developed countries. Here I describe studies with a live oral cholera vaccine that include older children no longer deriving immune support from breast milk or maternal antibodies and that identify some of the factors accounting for the lower immunogenicity, as well as suggesting counter-measures that may enhance the effectiveness of oral immunization in developing countries. The fundamental breakthrough is likely to require reversing effects of the 'environmental enteropathy' that is often present in children living in fecally contaminated, impoverished environments.
Collapse
Affiliation(s)
- Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
23
|
Harro JM, Peters BM, O'May GA, Archer N, Kerns P, Prabhakara R, Shirtliff ME. Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration. ACTA ACUST UNITED AC 2010; 59:306-23. [PMID: 20602638 PMCID: PMC2936112 DOI: 10.1111/j.1574-695x.2010.00708.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccine development against pathogenic bacteria is an imperative initiative as bacteria are gaining resistance to current antimicrobial therapies and few novel antibiotics are being developed. Candidate antigens for vaccine development can be identified by a multitude of high-throughput technologies that were accelerated by access to complete genomes. While considerable success has been achieved in vaccine development against bacterial pathogens, many species with multiple virulence factors and modes of infection have provided reasonable challenges in identifying protective antigens. In particular, vaccine candidates should be evaluated in the context of the complex disease properties, whether planktonic (e.g. sepsis and pneumonia) and/or biofilm associated (e.g. indwelling medical device infections). Because of the phenotypic differences between these modes of growth, those vaccine candidates chosen only for their efficacy in one disease state may fail against other infections. This review will summarize the history and types of bacterial vaccines and adjuvants as well as present an overview of modern antigen discovery and complications brought about by polymicrobial infections. Finally, we will also use one of the better studied microbial species that uses differential, multifactorial protein profiles to mediate an array of diseases, Staphylococcus aureus, to outline some of the more recently identified problematic issues in vaccine development in this biofilm-forming species.
Collapse
Affiliation(s)
- Janette M Harro
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Yuki Y, Kiyono H. Mucosal vaccines: novel advances in technology and delivery. Expert Rev Vaccines 2009; 8:1083-97. [PMID: 19627189 DOI: 10.1586/erv.09.61] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mucosal vaccines are considered the most suitable type of vaccines to combat emerging and re-emerging infectious diseases because of their ability to induce both mucosal and systemic immunity. Considerable advances have been made toward the development of mucosal vaccines against influenza virus and rotavirus. Many additional mucosal vaccines are in development, including vaccines against cholera, typhoid, traveler's diarrhea and respiratory infections. In addition to oral and nasal vaccines, transcutaneous (or skin patch) and sublingual immunizations are now part of a new generation of mucosal vaccines. Furthermore, a rice-based oral vaccine (MucoRice) has been receiving global attention as a new form of cold chain-free vaccine, because it is stable at room temperature for a prolonged period. This review describes recent developments in mucosal vaccines with promising preclinical and clinical results.
Collapse
Affiliation(s)
- Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| | | |
Collapse
|
25
|
Mahalanabis D, Ramamurthy T, Nair G, Ghosh A, Shaikh S, Sen B, Thungapathra M, Ghosh R, Pazhani G, Nandy R, Jana S, Bhattacharya S. Randomized placebo controlled human volunteer trial of a live oral cholera vaccine VA1.3 for safety and immune response. Vaccine 2009; 27:4850-6. [DOI: 10.1016/j.vaccine.2009.05.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 05/11/2009] [Accepted: 05/21/2009] [Indexed: 11/24/2022]
|
26
|
Feunou PF, Ismaili J, Debrie AS, Huot L, Hot D, Raze D, Lemoine Y, Locht C. Genetic stability of the live attenuated Bordetella pertussis vaccine candidate BPZE1. Vaccine 2008; 26:5722-7. [PMID: 18762220 DOI: 10.1016/j.vaccine.2008.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 08/11/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Despite the extensive use of efficacious pertussis vaccines, Bordetella pertussis infections are still among the main causes for childhood morbidity and mortality. Severe pertussis occurs mostly in very young children, often too young to be sufficiently protected by current vaccines, which require several administrations in regimens that vary between countries. Since natural infection with B. pertussis is able to induce protection, we have developed the live attenuated B. pertussis vaccine strain BPZE1 that protects mice upon a single intranasal administration. This strain was obtained by genetically inactivating pertussis toxin via two point mutations in the ptx gene, by deleting dnt encoding dermonecrotic toxin, and by replacing the B. pertussis ampG gene by Escherichia coli ampG, resulting in the removal of tracheal cytotoxin. Here, we assessed the genetic stability of BPZE1 after 20 and 27 weeks of continuous passaging in vitro and in vivo, respectively. BPZE1 was passaged 20 times in vitro and 9 times in vivo in Balb/C mice. After these passages, 8 hemolytic colonies were analyzed by PCR for the absence of dnt and B. pertussis ampG and the presence of E. coli ampG, by DNA sequencing for the presence of the two ptx point mutations and by DNA microarrays for the global genomic stability. In addition, the protective capacity of BPZE1 was evaluated after the passages. No genetic or protective difference was detected between the passaged bacteria and non-passaged BPZE1, indicating that stability of the vaccine strain is not a concern for BPZE1 to be considered as an attenuated live vaccine against whooping cough.
Collapse
|
27
|
Frey J. Biological safety concepts of genetically modified live bacterial vaccines. Vaccine 2006; 25:5598-605. [PMID: 17239999 DOI: 10.1016/j.vaccine.2006.11.058] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 11/23/2006] [Accepted: 11/27/2006] [Indexed: 11/29/2022]
Abstract
Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.
Collapse
Affiliation(s)
- Joachim Frey
- Institute of Veterinary Bacteriology, Laenggassstrasse 122, CH-3001 Bern, Switzerland.
| |
Collapse
|
28
|
Abstract
Live, orally administered, attenuated vaccine strains of Vibrio cholerae have many theoretical advantages over killed vaccines. A single oral inoculation could result in intestinal colonization and rapid immune responses, obviating the need for repetitive dosing. Live V. cholerae organisms can also respond to the intestinal environment and immunological exposure to in vivo expressed bacterial products, which could result in improved immunological protection against wild-type V. cholerae infection. The concern remains that live oral cholera vaccines may be less effective among partially immune individuals in cholera endemic areas as pre-existing antibodies can inhibit live organisms and decrease colonization of the gut. A number of live oral cholera vaccines have been developed to protect against cholera caused by the classical and El Tor serotypes of V. cholerae O1, including CVD 103-HgR, Peru-15 and V. cholerae 638. A number of live oral cholera vaccines have also been similarly developed to protect against cholera caused by V. cholerae O139, including CVD 112 and Bengal-15. Live, orally administered, attenuated cholera vaccines are in various stages of development and evaluation.
Collapse
Affiliation(s)
- Edward T Ryan
- Massachusetts General Hospital Tropical & Geographic Medicine Center, Division of Infectious Diseases, Jackson 504 55 Fruit Street, Boston, MA 02114, USA.
| | | | | |
Collapse
|
29
|
Hill DR, Ford L, Lalloo DG. Oral cholera vaccines: use in clinical practice. THE LANCET. INFECTIOUS DISEASES 2006; 6:361-73. [PMID: 16728322 DOI: 10.1016/s1473-3099(06)70494-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cholera continues to occur globally, particularly in sub-Saharan Africa and Asia. Oral cholera vaccines have been developed and have now been used for several years, primarily in traveller populations. The licensure in the European Union of a killed whole cell cholera vaccine combined with the recombinant B subunit of cholera toxin (rCTB-WC) has stimulated interest in protection against cholera. Because of the similarity between cholera toxin and the heat-labile toxin of Escherichia coli, a cause of travellers' diarrhoea, it has been proposed that the rCTB-WC vaccine may be used against travellers' diarrhoea. An analysis of trials of this vaccine against cholera (serotype O1) shows that for 4-6 months it will protect 61-86% of people living in cholera-endemic regions; lower levels of protection continue for 3 years. Protection wanes rapidly in young children. Because the risk of cholera for most travellers is extremely low, vaccination should be considered only for those working in relief or refugee settings or for those who will be travelling in cholera-epidemic areas and who will be unable to obtain prompt medical care. The vaccine can be expected to prevent 7% or less of cases of travellers' diarrhoea and should not be used for this purpose.
Collapse
Affiliation(s)
- David R Hill
- National Travel Health Network and Centre, London, UK.
| | | | | |
Collapse
|
30
|
Favre D, Lüdi S, Stoffel M, Frey J, Horn MP, Dietrich G, Spreng S, Viret JF. Expression of enterotoxigenic Escherichia coli colonization factors in Vibrio cholerae. Vaccine 2006; 24:4354-68. [PMID: 16581160 DOI: 10.1016/j.vaccine.2006.02.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/22/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
As a first step towards a vaccine against diarrhoeal disease caused by enterotoxigenic Escherichia coli (ETEC), we have studied the expression of several ETEC antigens in the live attenuated Vibrio cholerae vaccine strain CVD 103-HgR. Colonization factors (CF) CFA/I, CS3, and CS6 were expressed at the surface of V. cholerae CVD 103-HgR. Both CFA/I and CS3 required the co-expression of a positive regulator for expression, while CS6 was expressed without regulation. Up-regulation of CF expression in V. cholerae was very efficient, so that high amounts of CFA/I and CS3 similar to those in wild-type ETEC were synthesized from chromosomally integrated CF and positive regulator loci. Increasing either the operon and/or the positive regulator gene dosage resulted in only a small increase in CFA/I and CS3 expression. In contrast, the level of expression of the non-regulated CS6 fimbriae appeared to be more dependent on gene dosage. While CF expression in wild-type ETEC is known to be tightly thermoregulated and medium dependent, it seems to be less stringent in V. cholerae. Finally, co-expression of two or three CFs in the same strain was efficient even under the control of one single regulator gene.
Collapse
Affiliation(s)
- Didier Favre
- Berna Biotech Ltd., Department of Live Bacterial Vaccines, Rehhagstrasse 79, 3018 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Spreng S, Dietrich G, Weidinger G. Rational design of Salmonella-based vaccination strategies. Methods 2006; 38:133-43. [PMID: 16414270 DOI: 10.1016/j.ymeth.2005.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 11/30/2022] Open
Abstract
A permanently growing body of information is becoming available about the quality of protective immune responses induced by mucosal immunization. Attenuated live bacterial vaccines can be administered orally and induce long-lasting protective immunity in humans without causing major side effects. An attenuated Salmonella enterica serovar Typhi strain is registered as live oral vaccine against typhoid fever and has been in use for more than two decades. Recombinant attenuated Salmonella strains are also an attractive means of delivering heterologous antigens to the immune system, thereby, stimulating strong mucosal and systemic immune responses and consequently provide an efficient platform technology to design novel vaccination strategies. This includes the choice of heterologous protective antigens and their expression under the control of appropriate promoters within the carrier strain. The availability of well-characterized attenuated mutants of Salmonella concomitantly supports fine tuning of immune response triggered against heterologous antigens. Exploring different mucosal sites as a potential route of immunization has to be taken into account as an additional important way to modulate immune responses according to clinical requirements. This article focuses on the rational design of strategies to modulate appropriate immunological effector functions on the basis of selection of (i) attenuating mutations of the Salmonella strains, (ii) specific expression systems for the heterologous antigens, and (iii) route of mucosal administration.
Collapse
Affiliation(s)
- Simone Spreng
- Berna Biotech Ltd., Bacterial Vaccine Research, Rehhagstr. 79, CH-3018 Berne, Switzerland.
| | | | | |
Collapse
|
32
|
Leyten EMS, Soonawala D, Schultsz C, Herzog C, Ligthelm RJ, Wijnands S, Visser LG. Analysis of efficacy of CVD 103-HgR live oral cholera vaccine against all-cause travellers’ diarrhoea in a randomised, double-blind, placebo-controlled study. Vaccine 2005; 23:5120-6. [PMID: 15982790 DOI: 10.1016/j.vaccine.2005.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 03/03/2005] [Accepted: 03/31/2005] [Indexed: 11/30/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC), which produces heat labile toxin (LT) and/or heat stable toxin (ST), is considered to be the most common known cause of travellers' diarrhoea (TD). Owing to the antigenic similarity between cholera toxin and LT, immunization with inactivated oral B-subunit/whole-cell cholera vaccine (BS-WC) offers short term (3 months) but significant (>67%) protection against TD caused by LT-related ETEC. Since it expresses the cholera toxin B (CTB) subunit, the live attenuated oral cholera vaccine strain CVD 103-HgR, may induce similar protection. A trial was performed to determine if CVD 103-HgR live oral cholera vaccine would provide a protective efficacy of at least 50% against TD. In addition, the protective efficacy of the vaccine against TD specifically due to LT-ETEC and LT/ST-ETEC was determined. Volunteers (n=134) travelling to Indonesia, India, Thailand or West-Africa were randomised to receive either a placebo (n=65) or the vaccine (n=69). In the placebo group, 46% reported an episode of diarrhoea, compared to 52% in the vaccine group. No significant group differences were found with regard to incidence, duration or severity of all caused TD or ETEC-associated TD. However, ETEC-associated TD occurred earlier in the placebo group (median 5 days), compared to the vaccine group (median 15 days). In conclusion, CVD 103-HgR live oral cholera vaccine failed to provide a 50% protection against TD. This study does not exclude that the vaccine may offer a short-lived protection against ETEC-associated TD. However, the power of the study was limited by the unexpected low incidence of LT-ETEC-associated diarrhoea (9% of all TD) compared to ST-associated TD (24% of all TD).
Collapse
Affiliation(s)
- E M S Leyten
- Department of Infectious and Tropical Diseases, Leiden University Medical Center, Bld. 1, C5-P, Albinusdreef 2, 2300 Leiden, RC, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The term "expatriates" refers to professionals and their families who live abroad for several months or years. Owing to potential prolonged exposure, and living conditions that may be closer to those of the local population, they are at higher risk of acquiring infectious diseases that are endemic in their new place of residence. They often have reduced access to medical services, putting them at higher risk of complications and more severe outcomes. Vaccination is probably one of the most effective means of preventing expatriates from acquiring endemic or epidemic diseases. Incapacitation or sickness in the field may cause serious disruption to project activities and impose an extra workload on the local team. It may also result in repatriation, with further extra direct and indirect costs for the organization. Predeparture advice and preparation, to promote risk reduction behavior, coupled with adequate support in the field are key ingredients to ensure effective and successful activities of collaborators. Institutions and organizations sending expatriates to developing countries have a clear responsibility, and it is in their own interests to promote the health of their employees working abroad.
Collapse
Affiliation(s)
- Jan A Dijkstra
- Hôpital Cantonal Universitaire, Unité de Médecine des Voyages et des Migrations, Geneva, Switzerland
| | | | | |
Collapse
|
34
|
Parenteral Immunization Induces Mucosal Protection: A Challenge to the Mucosal Immunity Paradigm. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50049-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Gentschev I, Dietrich G, Spreng S, Neuhaus B, Maier E, Benz R, Goebel W, Fensterle J, Rapp UR. Use of the α-hemolysin secretion system of Escherichia coli for antigen delivery in the Salmonella typhi Ty21a vaccine strain. Int J Med Microbiol 2004; 294:363-71. [PMID: 15595386 DOI: 10.1016/j.ijmm.2004.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This study examined the suitability of the hemolysin secretion system of Escherichia coli for expression and delivery of alpha-hemolysin (HlyA) by the S. typhi Ty21a strain, the only live oral Salmonella vaccine strain licensed for human use, under in vitro and in vivo conditions. For this purpose, two plasmid vectors encoding either the whole alpha-hemolysin of E. coli (pANN202-812/pMOhly2) or the hemolysin secretion signal (pMOhly1) were transferred into S. typhi Ty21a. S. typhi Ty21a carrying pANN202-812/pMOhly2 revealed efficient secretion of hemolysin in vitro. After formulation according to a process suitable for commercial production of Salmonella-based live bacterial vaccines, plasmids were shown to be stable in Ty21a and hemolysin secretion was demonstrated even after storage of the strains under real-time and stress conditions. After intranasal immunization of mice with S. typhi Ty21a/pANN202-812 plasmids are stable in vivo, and immunization induced a profound immune response against the heterologous HlyA antigen. Therefore, the combination of the hemolysin secretion system and S. typhi Ty21a could form the basis for a new generation of live bacterial vaccines.
Collapse
Affiliation(s)
- Ivaylo Gentschev
- Institut für Medizinische Strahlenkunde und Zellforschung, University of Würzburg, Versbacher Str. 5, D-97078 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Stewart-Tull DES, Lucas C, Bleakley CR. Experimental immunisation and protection of guinea pigs with Vibrio cholerae toxoid and mucinases, neuraminidase and proteinase. Vaccine 2004; 22:2137-45. [PMID: 15149770 DOI: 10.1016/j.vaccine.2003.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Accepted: 12/02/2003] [Indexed: 11/21/2022]
Abstract
As measured by fluid accumulation in ileal loops, Vibrio cholerae mucinase complex, with or without toxoid, protected guinea pigs from challenges with V. cholerae live organisms and enterotoxin. The neuraminidase and proteinases of the complex were combined in modified oil emulsion or aluminum hydroxide adjuvants and the resultant vaccines given by the parenteral or oral routes. There was little difference between the two types of adjuvant. Control of stomach acidity improved oral vaccination. Animals injected intramuscularly (i.m.) with toxoid-containing vaccines were protected from challenge with cholera toxin (CT) whereas those given oral doses were not. Toxoid plus killed V. cholerae cells elicited a more effective protection against toxin challenge than killed V. cholerae cells alone. Vaccines containing mucinases, with or without toxoid, protected the animals from a live V. cholerae challenge. The anti-mucinase immune response may prevent adhesion of the V. cholerae cells and hence reduce delivery of toxin to receptors. These mucinases, neuraminidase and proteinases, may be useful components of acellular, toxoided cholera vaccines for human immunisation.
Collapse
Affiliation(s)
- Duncan E S Stewart-Tull
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
37
|
Viret JF, Dietrich G, Favre D. Biosafety aspects of the recombinant live oral Vibrio cholerae vaccine strain CVD 103-HgR. Vaccine 2004; 22:2457-69. [PMID: 15193410 DOI: 10.1016/j.vaccine.2003.12.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 12/03/2003] [Indexed: 11/26/2022]
Abstract
The development of live attenuated vaccines, allowing for the safe and effective immunisation at mucosal surfaces, is a strategy of great interest for vaccinologists. The main advantage of this approach over conventional parenteral vaccines is the induction of strong mucosal immune responses, allowing targeting of the pathogen at the initial point of contact with the host. Further advantages include the ease of administration, high acceptance by vaccines, and relatively low production costs. Finally, well-characterised, safe and immunogenic vaccine strains are well suited as vectors for the mucosal delivery of foreign vaccine antigens and of DNA vaccines. However, such vaccines, when based on or containing genetically modified organisms (GMOs), are facing new and specific regulatory hurdles, particularly regarding the potential risks for humans and the environment. In this contribution we address selected aspects of the risk assessment of live attenuated bacterial vaccines covered in the course of the registration of vaccine strain CVD 103-HgR as a recombinant live oral vaccine against cholera.
Collapse
|
38
|
Silva AJ, Mohan A, Benitez JA. Cholera vaccine candidate 638: intranasal immunogenicity and expression of a foreign antigen from the pulmonary pathogen Coccidioides immitis. Vaccine 2003; 21:4715-21. [PMID: 14585681 DOI: 10.1016/s0264-410x(03)00515-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vibrio cholerae strain 638 is a live genetically attenuated candidate cholera vaccine in which the CTXPhi prophage encoding cholera toxin has been deleted and hapA, encoding an extracellular Zn-dependent metalloprotease, was insertionally inactivated. Strain 638 was highly immunogenic when inoculated to adult Swiss mice by the intranasal route as judged by the induction of a strong serum vibriocidal antibody response. A side-by-side comparison of strain 638 with its isogenic hapA(+) precursor (strain 81) in the above model indicated that inactivation of hapA does not affect immunogenicity. The spherule-associated antigen 2/proline-rich antigen (Ag2/PRA) of Coccidioides immitis has been shown to protect mice against coccidioidomycosis to an extent dependent on the modes of antigen presentation and challenge with C. immitis arthrospores. In this work, we demonstrate the use of a live genetically attenuated V. cholerae strain to deliver Ag2/PRA. Ag2/PRA was expressed in 638 as a fusion protein with the Escherichia coli heat labile toxin B subunit leader peptide using the strong Tac promoter. The recombinant Ag2/PRA was efficiently expressed, processed and secreted to the periplasmic space. Intranasal immunizations of adult mice with strain 638 expressing Ag2/PRA induced serum vibriocidal antibody response to the vector strain and serum total IgG response to Ag2/PRA. Strain 638 expressing PRA could be recovered from trachea and lung up to 20h after immunization but was effectively cleared 72h post-inoculation.
Collapse
Affiliation(s)
- Anisia J Silva
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA
| | | | | |
Collapse
|
39
|
Dietrich G, Viret JF, Gentschev I. Haemolysin A and listeriolysin--two vaccine delivery tools for the induction of cell-mediated immunity. Int J Parasitol 2003; 33:495-505. [PMID: 12782050 DOI: 10.1016/s0020-7519(03)00058-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemolysin A of Escherichia coli and listeriolysin of Listeria monocytogenes represent important bacterial virulence factors. While such cytolysins are usually the reason for morbidity and even mortality, vaccine researchers have turned haemolysin A and listeriolysin into tools for vaccine delivery. Both cytolysins have found widespread application in vaccine research and are highly suitable for the elicitation of cell-mediated immunity. In this paper, we will review vaccine delivery mediated by the haemolysin A secretion system and listeriolysin and will highlight their use in vaccination approaches against protozoan parasites.
Collapse
Affiliation(s)
- Guido Dietrich
- Vaccine Research, Berna Biotech AG, Rehhagstr. 79, CH-3018, Bern, Switzerland.
| | | | | |
Collapse
|
40
|
Pitisuttithum P, Cohen MB, Phonrat B, Suthisarnsuntorn U, Bussaratid V, Desakorn V, Phumratanaprapin W, Singhasivanon P, Looareesuwan S, Schiff GM, Ivanoff B, Lang D. A human volunteer challenge model using frozen bacteria of the new epidemic serotype, V. cholerae O139 in Thai volunteers. Vaccine 2001; 20:920-5. [PMID: 11738758 DOI: 10.1016/s0264-410x(01)00381-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A total of 35 volunteers were recruited for an IRB-approved inpatient dose-escalation challenge. The goal was to identify a dose that produced an observed cholera attack rate > or =80% and an illness of sufficient severity during the defined study period such that the model would be useful for determining vaccine protection. Volunteers were challenged in groups of 5 with V. cholerae O139 that had been reconstituted immediately before use. Only 2 out of 5 volunteers who received the lowest dose (4.3 x 10(4) cfu) had diarrhea. As the inoculum size increased, the attack rate of diarrhea increased to 3-4 of 5 volunteers. At the highest dose tested, approximately 5 x 10(7) cfu, the attack rate was 73%. We recommend the use of frozen V. Cholera O139 in a human experimental challenge model to assess cholera vaccine efficacy (VE) in a cholera endemic area but with 4 days observation period before initiation of tetracycline to allow assessment of severity.
Collapse
Affiliation(s)
- P Pitisuttithum
- Vaccine Trial Centre [VTC], Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu JY, Wade WF, Taylor RK. Evaluation of cholera vaccines formulated with toxin-coregulated pilin peptide plus polymer adjuvant in mice. Infect Immun 2001; 69:7695-702. [PMID: 11705950 PMCID: PMC98864 DOI: 10.1128/iai.69.12.7695-7702.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2001] [Accepted: 08/24/2001] [Indexed: 11/20/2022] Open
Abstract
Cholera is an acute diarrheal disease that is caused by the gram-negative bacterium Vibrio cholerae. The low efficacy of currently available killed-whole-cell vaccines and the reactinogenicity coupled with potential reversion of live vaccines have thus far precluded widespread vaccination for the control of cholera. Recent studies on the molecular nature of the virulence components that contribute to V. cholerae pathogenesis have provided insights into possible approaches for the development of a defined subunit cholera vaccine. Genetic analysis has demonstrated that the toxin-coregulated pilus (TCP) is the major factor that contributes to colonization of the human intestine by V. cholerae. In addition, polyclonal and several monoclonal antibodies directed against TCP have been shown to provide passive immunity to disease in the infant mouse cholera model. In the present study, synthetic peptides corresponding to portions of the C-terminal disulfide region of TcpA pilin were formulated with polymer adjuvants currently in clinical trials and used to actively immunize adult female CD-1 mice. The experimental vaccine formulations elicited high levels of antigen-specific immunoglobulin G (IgG), including a broad spectrum of subclasses (IgG1, IgG2a, IgG2b, and IgG3), and lower levels of IgA. Infant mice born to the immunized mothers showed 100% protection against a 50% lethal dose (1 LD(50)) challenge and 50% protection against a 10-LD(50) challenge with virulent strain O395. These results indicate that specific regions of TcpA, including those delineated by the peptides used in this study, have the potential to be incorporated into an effective defined subunit vaccine for cholera.
Collapse
Affiliation(s)
- J Y Wu
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
42
|
Affiliation(s)
- E T Ryan
- Tropical and Geographic Medicine Center, Travelers' Advice and Immunization Center, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
43
|
Abstract
In this review, we take a look at the current status in the development of a vaccine against the human pathogenic bacterium, Helicobacter pylori, a major aetiological factor in peptic ulcer disease and gastric adenocarcinoma. Various animal models are now in use from mice infected with H. pylori, through gnotobiotic pigs and primates to ferrets naturally infected with their own Helicobacter, H. mustelae. A significant problem remains the requirement for a suitable mucosal adjuvant. Detoxification or the use of low doses of adjuvants already available may provide a solution and new immune stimulating compounds have been tested with some success. New approaches include the delivery of Helicobacter antigens by DNA immunization, microparticles or live vectors such as attenuated salmonella and the examination of alternative routes of vaccine administration. The phenomenon of post-immunization gastritis and improvements in vaccine efficacy are also discussed. A major area of interest is the mechanism by which immunization actually influences Helicobacter colonization. This remains a mystery: antibodies appear to be unimportant whereas CD4+ T-cells essential. Finally, a viewpoint is given on whom should be immunized when a final vaccine becomes available.
Collapse
Affiliation(s)
- P Sutton
- School of Microbiology and Immunology, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
44
|
Studer E, Candrian U. Development and validation of a detection system for wild-type Vibrio cholerae in genetically modified cholera vaccine. Biologicals 2000; 28:149-54. [PMID: 10964441 DOI: 10.1006/biol.2000.0252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Orochol, a live oral cholera vaccine licensed in Switzerland and in other countries, is based on the genetically modified Vibrio cholerae strain CVD103-HgR. This strain is derived from the wild-type O1 strain Inaba 569B by deletion of a fragment internal to the ctxA gene encoding the A1 subunit of cholera toxin and by replacement of an internal fragment of the hlyA gene with a fragment carrying the mer operon mediating mercury resistance. In this study we describe a polymerase chain reaction (PCR) system for the detection of wild-type Vibrio cholerae and the identification of the vaccine strain for the quality control of production batches. A multiplex PCR system that targets the intact ctxA gene of the wild-type strain and simultaneously the integration site of the mer operon in the hlyA gene (hlyA::mer) of the vaccine strain CVD103-HgR was developed. To evaluate the detection limit of the system, vaccine suspensions were artificially contaminated with wild-type V. cholerae 569B cells and tested by PCR. The detection limit of the system was statistically evaluated and found to be at 11625 wild-type cells per vaccine sachet (95% confidence limit). This number is below the infective dose of wild-type Vibrio cholerae. In Switzerland this test is used in combination with other tests in the official batch-release procedure to assure the safety of each batch of the cholera vaccine Orochol.
Collapse
Affiliation(s)
- E Studer
- Official Medicines Control Laboratory Biologika and R&D Unit, Division of Biologicals, Swiss Federal Office of Public Health, Bern, Switzerland
| | | |
Collapse
|
45
|
Tacket CO, Cohen MB, Wasserman SS, Losonsky G, Livio S, Kotloff K, Edelman R, Kaper JB, Cryz SJ, Giannella RA, Schiff G, Levine MM. Randomized, double-blind, placebo-controlled, multicentered trial of the efficacy of a single dose of live oral cholera vaccine CVD 103-HgR in preventing cholera following challenge with Vibrio cholerae O1 El tor inaba three months after vaccination. Infect Immun 1999; 67:6341-5. [PMID: 10569747 PMCID: PMC97039 DOI: 10.1128/iai.67.12.6341-6345.1999] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CVD 103-HgR is a live oral cholera vaccine strain constructed by deleting 94% of the gene for the enzymatically active A subunit of cholera toxin from classical Inaba Vibrio cholerae O1 569B; the strain also contains a mercury resistance gene as an identifying marker. This vaccine was well tolerated and immunogenic in double-blind, controlled studies and was protective in open-label studies of volunteers challenged with V. cholerae O1. A randomized, double-blind, placebo-controlled, multicenter study of vaccine efficacy was designed to test longer-term protection of CVD 103-HgR against moderate and severe El Tor cholera in U.S. volunteers. A total of 85 volunteers (50 at the University of Maryland and 35 at Children's Hospital Medical Center/University of Cincinnati) were recruited for vaccination and challenge with wild-type V. cholerae El Tor Inaba. Volunteers were randomized in a double-blind manner to receive, with buffer, a single oral dose of either CVD 103-HgR (2 x 10(8) to 8 x 10(8) CFU) or placebo (killed E. coli K-12). About 3 months after immunization, 51 of these volunteers were orally challenged with 10(5) CFU of virulent V. cholerae O1 El Tor Inaba strain N16961, prepared from a standardized frozen inoculum. Ninety-one percent of the vaccinees had a >/=4-fold rise in serum vibriocidal antibodies after vaccination. After challenge, 9 (39%) of the 23 placebo recipients and 1 (4%) of the 28 vaccinees had moderate or severe diarrhea (>/=3-liter diarrheal stool) (P < 0.01; protective efficacy, 91%). A total of 21 (91%) of 23 placebo recipients and 5 (18%) of 28 vaccinees had any diarrhea (P < 0.001; protective efficacy, 80%). Peak stool V. cholerae excretion among placebo recipients was 1.1 x 10(7) CFU/g and among vaccinees was 4.9 x 10(2) CFU/g (P < 0.001). This vaccine could therefore be a safe and effective tool to prevent cholera in travelers.
Collapse
Affiliation(s)
- C O Tacket
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Benítez JA, García L, Silva A, García H, Fando R, Cedré B, Pérez A, Campos J, Rodríguez BL, Pérez JL, Valmaseda T, Pérez O, Pérez A, Ramírez M, Ledón T, Jidy MD, Lastre M, Bravo L, Sierra G. Preliminary assessment of the safety and immunogenicity of a new CTXPhi-negative, hemagglutinin/protease-defective El Tor strain as a cholera vaccine candidate. Infect Immun 1999; 67:539-45. [PMID: 9916056 PMCID: PMC96352 DOI: 10.1128/iai.67.2.539-545.1999] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae 638 (El Tor, Ogawa), a new CTXPhi-negative hemagglutinin/protease-defective strain that is a cholera vaccine candidate, was examined for safety and immunogenicity in healthy adult volunteers. In a double-blind placebo-controlled study, no significant adverse reactions were observed in volunteers ingesting strain 638. Four volunteers of 42 who ingested strain 638 and 1 of 14 who received placebo experienced loose stools. The strain strongly colonized the human small bowel, as evidenced by its isolation from the stools of 37 of 42 volunteers. V. cholerae 638, at doses ranging from 4 x 10(7) to 2 x 10(9) vibrios, elicited significant serum vibriocidal antibody and anti-Ogawa immunoglobulin A antibody secreting cell responses.
Collapse
Affiliation(s)
- J A Benítez
- Grupo de Genética, Centro Nacional de Investigaciones Científicas, " Havana, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sack DA, Tacket CO, Cohen MB, Sack RB, Losonsky GA, Shimko J, Nataro JP, Edelman R, Levine MM, Giannella RA, Schiff G, Lang D. Validation of a volunteer model of cholera with frozen bacteria as the challenge. Infect Immun 1998; 66:1968-72. [PMID: 9573077 PMCID: PMC108151 DOI: 10.1128/iai.66.5.1968-1972.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To evaluate a standardized inoculum of Vibrio cholerae for volunteer challenge studies, 40 healthy adult volunteers were challenged at three different institutions with a standard inoculum prepared directly from vials of frozen, virulent, El Tor Inaba V. cholerae N16961, with no further incubation. Groups of 5 volunteers, with each group including 2 volunteers with blood group O, were given a dose of 10(5) CFU, and 34 of the 40 volunteers developed diarrhea (mean incubation time, 28 h). Transient fevers occurred in 15 (37.5%) of the volunteers. V. cholerae was excreted by 36 of 40 volunteers. Five additional volunteers received 10(4) CFU, and four developed diarrhea but with a lower average purging rate than required for the model. Of the 40 volunteers, 37 developed rises in their vibriocidal and antitoxin titers similar to those in previous groups challenged with freshly harvested bacteria. We conclude that challenge with frozen bacteria results in a reproducible illness similar to that induced by freshly harvested bacteria. Use of this model should minimize differences in attack rates or severity when groups are challenged at different times and in different institutions.
Collapse
Affiliation(s)
- D A Sack
- Department of International Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Despite the early success demonstrated with the hepatitis B vaccine, no other recombinant engineered vaccine has been approved for use in humans. It is unlikely that a recombinant vaccine will be developed to replace an existing licensed human vaccine with a proven record of safety and efficacy. This is due to the economic reality of making vaccines for human use. Genetically engineered subunit vaccines are more costly to manufacture than conventional vaccines, since the antigen must be purified to a higher standard than was demanded of older, conventional vaccines. Each vaccine must also be subjected to extensive testing and review by the FDA, as it would be considered a new product. This is costly to a company in terms of both time and money and is unnecessary if a licensed product is already on the market. Although recombinant subunit vaccines hold great promise, they do present some potential limitations. In addition to being less reactogenic, recombinant subunit vaccines have a tendency to be less immunogenic than their conventional counterparts. This can be attributed to these vaccines being held to a higher degree of purity than was traditionally done for an earlier generation of licensed subunit vaccines. Ironically, the contaminants often found in conventional subunit vaccines may have aided in the inflammatory process, which is essential for initiating a vigorous immune response. This potential problem may be overcome by employing one of the many new types of adjuvants that are becoming available for use in humans. Recombinant subunit vaccines may also suffer from being too well-defined, because they are composed of a single antigen. In contrast, conventional vaccines contain trace amounts of other antigens that may aid in conferring an immunity to infectious agents that is more solid than could be provided by a monovalent vaccine. This problem can be minimized, where necessary, by creating recombinant vaccines that are composed of multiple antigens from the same pathogen. These issues are less of a concern with a live attenuated vaccine, since these vaccines are less costly, require fewer steps to manufacture, and elicit long-lived immunity after only a single dose. Unfortunately, live vaccines carry a higher risk of vaccine-induced complications in recipients that make their use in highly developed, litiginous countries unlikely. In lesser developed countries, where the prevalence of disease and the need for effective vaccines outweighs the risk associated with their administration, live vaccines may play an important role in human health. This review has attempted to make the reader aware of some of the current approaches and issues that are associated with the development of these vaccines. Genetically engineered vaccines hold great promise for the future, but the potential of these vaccines to improve human and animal health has yet to be fully realized.
Collapse
Affiliation(s)
- M T Dertzbaugh
- Toxinology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702-5011, USA.
| |
Collapse
|
49
|
Steffen R, Mellin J, Woodall JP, Rollin PE, Lang RH, Lüthy R, Waldvogel A. Preparation for emergency relief after biological warfare. J Infect 1997; 34:127-32. [PMID: 9138135 DOI: 10.1016/s0163-4453(97)92433-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Upon invitation by the World Health Organization during the Gulf War, a task force "Scorpio" independent from the nations involved in the armed conflict was formed whose task was to determine whether, which and to what extent biological warfare agents had been used. risk assessment concluded that anthrax and Clostridium botulinum toxin were the major risks. The 21 civilian experts had rapidly to decide on the doctrine of operation, to assemble material which could be used and to be immunized or protected otherwise against the potential risks. Biological warfare agents may be used anywhere any time, be it by terrorists or during open or clandestine hostilities. The general population cannot rely on the military to take care of civilian relief, thus international and national organizations may wish to establish similar task forces basing on the "Scorpio" model on a national or regional basis.
Collapse
Affiliation(s)
- R Steffen
- Institute of Social and Preventive Medicine, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
de Haan L, Verweij WR, Feil IK, Lijnema TH, Hol WG, Agsteribbe E, Wilschut J. Mutants of the Escherichia coli heat-labile enterotoxin with reduced ADP-ribosylation activity or no activity retain the immunogenic properties of the native holotoxin. Infect Immun 1996; 64:5413-6. [PMID: 8945598 PMCID: PMC174540 DOI: 10.1128/iai.64.12.5413-5416.1996] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Escherichia coli heat-labile enterotoxin (LT) is a potent inducer of mucosal immune responses. In a previous study (L. DeHaan, W. R. Verweij, M. Holtrop, E. Agsteribbe, and J. Wilschut, Vaccine 14:620-626, 1996), we have shown that efficient induction of an LTB-specific mucosal immune response by LT requires the presence of the LTA chain, suggesting a possible role of the enzymatic activity of LTA in the induction of these responses. In the present study, we generated LT mutants with altered ADP-ribosylation activities and evaluated their immunogenicity upon intranasal administration to mice. The results demonstrate that the mucosal immunogenicity of LT is not dependent on its ADP-ribosylation activity.
Collapse
Affiliation(s)
- L de Haan
- Department of Physiological Chemistry, Groningen Institute for Drug Studies, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|