1
|
Salinas-Estrella E, Amaro-Estrada I, Cobaxin-Cárdenas ME, Preciado de la Torre JF, Rodríguez SD. Bovine Anaplasmosis: Will there ever be an almighty effective vaccine? Front Vet Sci 2022; 9:946545. [PMID: 36277070 PMCID: PMC9581321 DOI: 10.3389/fvets.2022.946545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022] Open
Abstract
Bovine anaplasmosis is a tick-borne bacterial disease with a worldwide distribution and the cause of severe economic losses in the livestock industry in many countries, including México. In the present work, we first review the elements of the immune response of the bovine, which allows ameliorating the clinical signs while eliminating the majority of the blood forms and generating an immunologic memory such that future confrontations with the pathogen will not end in disease. On the other hand, many vaccine candidates have been evaluated for the control of bovine anaplasmosis yet without no commercial worldwide effective vaccine. Lastly, the diversity of the pathogen and how this diversity has impaired the many efforts to control the disease are reviewed.
Collapse
|
2
|
Palacios C, Torioni de Echaide S, Mattion N. Evaluation of the immune response to Anaplasma marginale MSP5 protein using a HSV-1 amplicon vector system or recombinant protein. Res Vet Sci 2014; 97:514-20. [PMID: 25458492 DOI: 10.1016/j.rvsc.2014.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 11/26/2022]
Abstract
Anaplasma marginale is an intraerythrocytic vector-borne infectious agent of cattle. Immunization with the current vaccine, based on parasitized erythrocytes with live Anaplasma centrale, shows some constraints and confers partial protection, suggesting the feasibility for the development of new generation of vaccines. The aim of the present study was to assess the effect of sequential immunization of BALB/c mice, with herpesvirus amplicon vector-based vaccines combined with protein-based vaccines, on the quality of the immune response against the major surface protein 5 of A. marginale. The highest antibody titers against MSP5 were elicited in mice that received two doses of adjuvanted recombinant protein (p < 0.0001). Mice treated with a heterologous prime-boost strategy generated sustained antibody titers at least up to 200 days, and a higher specific cellular response. The results presented here showed that sequential immunization with HSV-based vectors and purified antigen enhances the quality of the immune response against A. marginale.
Collapse
Affiliation(s)
- Carlos Palacios
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. Cesar Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Susana Torioni de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, CP 2300, Rafaela, Santa Fe, Argentina
| | - Nora Mattion
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. Cesar Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
3
|
Silvestre BT, Rabelo ÉM, Versiani AF, da Fonseca FG, Silveira JA, Bueno LL, Fujiwara RT, Ribeiro MF. Evaluation of humoral and cellular immune response of BALB/c mice immunized with a recombinant fragment of MSP1a from Anaplasma marginale using carbon nanotubes as a carrier molecule. Vaccine 2014; 32:2160-6. [DOI: 10.1016/j.vaccine.2014.02.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
4
|
|
5
|
de la Fuente J, Lew A, Lutz H, Meli ML, Hofmann-Lehmann R, Shkap V, Molad T, Mangold AJ, Almazán C, Naranjo V, Gortázar C, Torina A, Caracappa S, García-Pérez AL, Barral M, Oporto B, Ceci L, Carelli G, Blouin EF, Kocan KM. Genetic diversity of anaplasma species major surface proteins and implications for anaplasmosis serodiagnosis and vaccine development. Anim Health Res Rev 2005; 6:75-89. [PMID: 16164010 DOI: 10.1079/ahr2005104] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes several pathogens of veterinary and human medical importance. An understanding of the diversity of Anaplasma major surface proteins (MSPs), including those MSPs that modulate infection, development of persistent infections, and transmission of pathogens by ticks, is derived in part, by characterization and phylogenetic analyses of geographic strains. Information concerning the genetic diversity of Anaplasma spp. MSPs will likely influence the development of serodiagnostic assays and vaccine strategies for the control of anaplasmosis.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078-2007, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Garcia-Garcia JC, de la Fuente J, Kocan KM, Blouin EF, Halbur T, Onet VC, Saliki JT. Mapping of B-cell epitopes in the N-terminal repeated peptides of Anaplasma marginale major surface protein 1a and characterization of the humoral immune response of cattle immunized with recombinant and whole organism antigens. Vet Immunol Immunopathol 2004; 98:137-51. [PMID: 15010223 DOI: 10.1016/j.vetimm.2003.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 11/25/2003] [Accepted: 11/25/2003] [Indexed: 11/22/2022]
Abstract
Major surface protein (MSP) 1a of the genus type species Anaplasma marginale (Rickettsiales: Anaplasmataceae) together with MSP1b forms the MSP1 complex. MSP1a has been shown to be involved in adhesion, infection and tick transmission of A. marginale, as well as to contribute to protective immunity in cattle. A differential antibody response to MSP1a and MSP1b was observed in cattle immunized with A. marginale derived from bovine erythrocytes (anti-MSP1a response) or cultured tick cells (anti-MSP1b response). In this study, we further characterized the MSP1a antibody response of cattle using several immunogens, including recombinant MSP1a (rMSP1a) protein, erythrocyte- or tick cell culture-derived A. marginale, or a combination of tick cell culture-derived A. marginale and rMSP1a. The MSP1a antibody response to all these immunogens was directed primarily against the N-terminal region of MSP1a that contains tandemly repeated peptides, whereas low antibody levels were detected against the C-terminal portion. Linear B-cell epitopes of MSP1a were mapped using synthetic peptides representing the entire sequence of the protein that were prepared by SPOT synthesis technology. Only two peptides in the N-terminal repeats were recognized by sera from immunized cattle. These peptides shared the sequence SSAGGQQQESS, which is likely to contain the linear B-cell epitope that was recognized by the pools of bovine sera. The average differential of antibody titers against MSP1a minus those against MSP1b correlated with lower percent reductions in PCV. A preferential antibody response to MSP1a was observed in cattle immunized with erythrocyte-derived, cell culture-derived plus rMSP1a or rMSP1a alone, and the percent reduction PCV was significantly lower in these cattle as compared with the other immunization groups. These results provide insight into the bovine antibody response against A. marginale and the role of MSP1a in protection of cattle against A. marginale infection.
Collapse
Affiliation(s)
- Jose C Garcia-Garcia
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078-2007, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Kocan KM, de la Fuente J, Guglielmone AA, Meléndez RD. Antigens and alternatives for control of Anaplasma marginale infection in cattle. Clin Microbiol Rev 2004; 16:698-712. [PMID: 14557295 PMCID: PMC207124 DOI: 10.1128/cmr.16.4.698-712.2003] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasmosis, a tick-borne cattle disease caused by the rickettsia Anaplasma marginale, is endemic in tropical and subtropical areas of the world. The disease causes considerable economic loss to both the dairy and beef industries worldwide. Analyses of 16S rRNA, groESL, and surface proteins have resulted in the recent reclassification of the order Rickettsiales. The genus Anaplasma, of which A. marginale is the type species, now also includes A. bovis, A. platys, and A. phagocytophilum, which were previously known as Ehrlichia bovis, E. platys, and the E. phagocytophila group (which causes human granulocytic ehrlichiosis), respectively. Live and killed vaccines have been used for control of anaplasmosis, and both types of vaccines have advantages and disadvantages. These vaccines have been effective in preventing clinical anaplasmosis in cattle but have not blocked A. marginale infection. Thus, persistently infected cattle serve as a reservoir of infective blood for both mechanical transmission and infection of ticks. Advances in biochemical, immunologic, and molecular technologies during the last decade have been applied to research of A. marginale and related organisms. The recent development of a cell culture system for A. marginale provides a potential source of antigen for the development of improved killed and live vaccines, and the availability of cell culture-derived antigen would eliminate the use of cattle in vaccine production. Increased knowledge of A. marginale antigen repertoires and an improved understanding of bovine cellular and humoral immune responses to A. marginale, combined with the new technologies, should contribute to the development of more effective vaccines for control and prevention of anaplasmosis.
Collapse
Affiliation(s)
- Katherine M Kocan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | | | | | | |
Collapse
|
8
|
Brown WC, McGuire TC, Mwangi W, Kegerreis KA, Macmillan H, Lewin HA, Palmer GH. Major histocompatibility complex class II DR-restricted memory CD4(+) T lymphocytes recognize conserved immunodominant epitopes of Anaplasma marginale major surface protein 1a. Infect Immun 2002; 70:5521-32. [PMID: 12228278 PMCID: PMC128355 DOI: 10.1128/iai.70.10.5521-5532.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Revised: 06/17/2002] [Accepted: 07/15/2002] [Indexed: 01/20/2023] Open
Abstract
Native major surface protein 1 (MSP1) of Anaplasma marginale, composed of covalently associated MSP1a and MSP1b proteins, stimulates protective immunity in cattle against homologous and heterologous strain challenge. Protective immunity against pathogens in the family Anaplasmataceae involves both CD4(+) T cells and neutralizing immunoglobulin G. Thus, an effective vaccine should contain both CD4(+) T- and B-lymphocyte epitopes that will elicit strong memory responses upon infection with homologous and heterologous strains. Previous studies demonstrated that the predominant CD4(+) T-cell response in MSP1 vaccinates is directed against the MSP1a subunit. The present study was designed to identify conserved CD4(+) T-cell epitopes in MSP1a presented by a broadly represented subset of major histocompatibility complex (MHC) class II molecules that would be suitable for inclusion in a recombinant vaccine. Transmembrane protein prediction analysis of MSP1a from the Virginia strain revealed a large hydrophilic domain (HD), extending from amino acids (aa) 1 to 366, and a hydrophobic region extending from aa 367 to 593. The N terminus (aa 1 to 67) includes one 28-aa form A repeat and one 29-aa form B repeat, which each contain an antibody neutralization-sensitive epitope [Q(E)ASTSS]. In MSP1 vaccinates, recombinant MSP1a HD (aa 1 to 366) stimulated recall proliferative responses that were comparable to those against whole MSP1a excluding the repeat region (aa 68 to 593). Peptide mapping determined a minimum of five conserved epitopes in aa 151 to 359 that stimulated CD4(+) T cells from cattle expressing DR-DQ haplotypes common in Holstein-Friesian breeds. Peptides representing three epitopes (aa 231 to 266, aa 270 to 279, and aa 290 to 319) were stimulatory for CD4(+) T-cell clones and restricted by DR. A DQ-restricted CD4(+) T-cell epitope, present in the N-terminal form B repeat (VSSQSDQASTSSQLG), was also mapped using T-cell clones from one vaccinate. Although form B repeat-specific T cells did not recognize the form A repeat peptide (VSSQS_EASTSSQLG), induction of T-cell anergy by this peptide was ruled out. The presence of multiple CD4(+) T-cell epitopes in the MSP1a HD, in addition to the neutralization-sensitive epitope, supports the testing of this immunogen for induction of protective immunity against A. marginale challenge.
Collapse
Affiliation(s)
- Wendy C Brown
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Brown WC, Palmer GH, Lewin HA, McGuire TC. CD4(+) T lymphocytes from calves immunized with Anaplasma marginale major surface protein 1 (MSP1), a heteromeric complex of MSP1a and MSP1b, preferentially recognize the MSP1a carboxyl terminus that is conserved among strains. Infect Immun 2001; 69:6853-62. [PMID: 11598059 PMCID: PMC100064 DOI: 10.1128/iai.69.11.6853-6862.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Accepted: 07/29/2001] [Indexed: 11/20/2022] Open
Abstract
Native major surface protein 1 (MSP1) of the ehrlichial pathogen Anaplasma marginale induces protective immunity in calves challenged with homologous and heterologous strains. MSP1 is a heteromeric complex of a single MSP1a protein covalently associated with MSP1b polypeptides, of which at least two (designated MSP1F1 and MSP1F3) in the Florida strain are expressed. Immunization with recombinant MSP1a and MSP1b alone or in combination fails to provide protection. The protective immunity in calves immunized with native MSP1 is associated with the development of opsonizing and neutralizing antibodies, but CD4(+) T-lymphocyte responses have not been evaluated. CD4(+) T lymphocytes participate in protective immunity to ehrlichial pathogens through production of gamma interferon (IFN-gamma), which promotes switching to high-affinity immunoglobulin G (IgG) and activation of phagocytic cells to produce nitric oxide. Thus, an effective vaccine for A. marginale and related organisms should contain both T- and B-lymphocyte epitopes that induce a strong memory response that can be recalled upon challenge with homologous and heterologous strains. This study was designed to determine the relative contributions of MSP1a and MSP1b proteins, which contain both variant and conserved amino acid sequences, in stimulating memory CD4(+) T-lymphocyte responses in calves immunized with native MSP1. Peripheral blood mononuclear cells and CD4(+) T-cell lines from MSP1-immunized calves proliferated vigorously in response to the immunizing strain (Florida) and heterologous strains of A. marginale. The conserved MSP1-specific response was preferentially directed to the carboxyl-terminal region of MSP1a, which stimulated high levels of IFN-gamma production by CD4(+) T cells. In contrast, there was either weak or no recognition of MSP1b proteins. Paradoxically, all calves developed high titers of IgG antibodies to both MSP1a and MSP1b polypeptides. These findings suggest that in calves immunized with MSP1 heteromeric complex, MSP1a-specific T lymphocytes may provide help to MSP1b-specific B lymphocytes. The data provide a basis for determining whether selected MSP1a CD4(+) T-lymphocyte epitopes and selected MSP1a and MSP1b B-lymphocyte epitopes presented on the same molecule can stimulate a protective immune response.
Collapse
Affiliation(s)
- W C Brown
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA.
| | | | | | | |
Collapse
|
10
|
Arulkanthan A, Brown WC, McGuire TC, Knowles DP. Biased immunoglobulin G1 isotype responses induced in cattle with DNA expressing msp1a of Anaplasma marginale. Infect Immun 1999; 67:3481-7. [PMID: 10377129 PMCID: PMC116534 DOI: 10.1128/iai.67.7.3481-3487.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization with the native major surface protein 1 (MSP1) (a heterodimer containing disulfide and noncovalently bonded polypeptides designated MSP1a and MSP1b) of the erythrocytic stage of Anaplasma marginale conferred protection against homologous challenge (G. H. Palmer, A. F. Barbet, W. C. Davis, and T. C. McGuire, Science 231:1299-1302, 1986). The MSP1a polypeptide possesses a conserved neutralization-sensitive epitope. In the present study, the immune response to DNA-mediated immunization using msp1a was studied. The plasmid pVCL/MSP1a, which encodes the complete msp1a gene of A. marginale under the control of human cytomegalovirus immediate-early enhancer/promoter and intron A, was constructed. The immune responses elicited by immunization with pVCL/MSP1a into cardiotoxin-induced regenerating muscle were evaluated in mice and cattle. Antibody reactive with native MSP1a was detected in pooled sera of immunized BALB/c mice 3 weeks following primary immunization. Two calves seronegative for A. marginale were immunized four times, at weeks 0, 3, 7, and 13, with pVCL/MSP1a. By 8 weeks, both calves responded to MSP1a with an antibody titer of 1:100, which peaked at 1:1,600 and 1:800 by 16 weeks after the initial immunization. Interestingly, immunoblotting with anti-immunoglobulin G1 (anti-IgG1) and anti-IgG2 specific monoclonal antibodies revealed a restricted IgG1 anti-MSP1a response in both animals. T-lymphocyte lines, established after the fourth immunization, proliferated specifically against A. marginale homogenate and purified MSP1 in a dose-dependent manner. These data provide a basis for an immunization strategy to direct bovine immune responses by using DNA vaccine vectors containing single or multiple genes encoding major surface proteins of A. marginale.
Collapse
Affiliation(s)
- A Arulkanthan
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Recent applications of DNA analysis, cloning, sequencing and expression technology have resulted in significant advances in our understanding of the hemoparasite Anaplasma marginale. Analysis of 16S ribosomal RNA has confirmed a phylogenetic position close to Ehrlichia sp. and Cowdria ruminantium. Intact genomic DNA of A. marginale digested with SfiI separates into bands from 14 to 170 kbp on pulse-field gels, with a total genome size of 1200-1260 kbp and G + C content of 56 mol%. Major surface proteins (MSP1-MSP5) have been identified and DNA coding sequences are available for most of these. These data have revealed that MSPs may be quite polymorphic between different geographic isolates, may be encoded by multi-gene families, and have some similar features to other prokaryotes including signal peptidase cleavage sites and gene regulatory sequences. Homologies have been detected between MSPs and immunodominant proteins of Cowdria ruminantium. Several MSPs have been expressed to high level and purified from recombinant Escherichia coli. MSP 1, 2 and 4 have potential for the development of vaccines and MSP3 and 5 for improved diagnostic assays.
Collapse
Affiliation(s)
- A F Barbet
- Department of Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville 32611-0880, USA
| |
Collapse
|