1
|
Xu X, Ma S, Liu Z, Yuan H, Wang Y, Chen M, Du M, Kan H, Wang Z, Chong X, Wen H. EV71 5'UTR interacts with 3D protein affecting replication through the AKT-mTOR pathway. Virol J 2024; 21:114. [PMID: 38778344 PMCID: PMC11110317 DOI: 10.1186/s12985-024-02385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND EV71 is one of the important pathogens of Hand-foot-and-mouth disease (HFMD), which causes serious neurological symptoms. Several studies have speculated that there will be interaction between 5'UTR and 3D protein. However, whether 5'UTR interacts with the 3D protein in regulating virus replication has not been clarified. METHODS Four 5'UTR mutation sites (nt88C/T, nt90-102-3C, nt157G/A and nt574T/A) and two 3D protein mutation sites (S37N and R142K) were mutated or co-mutated using virulent strains as templates. The replication of these mutant viruses and their effect on autophagy were determined. RESULTS 5'UTR single-point mutant strains, except for EGFP-EV71(nt90-102-3C), triggered replication attenuation. The replication ability of them was weaker than that of the parent strain the virulent strain SDLY107 which is the fatal strain that can cause severe neurological complications. While the replication level of the co-mutant strains showed different characteristics. 5 co-mutant strains with interaction were screened: EGFP-EV71(S37N-nt88C/T), EGFP-EV71(S37N-nt574T/A), EGFP-EV71(R142K-nt574T/A), EGFP-EV71(R142K-nt88C/T), and EGFP-EV71(R142K-nt157G/A). The results showed that the high replicative strains significantly promoted the accumulation of autophagosomes in host cells and hindered the degradation of autolysosomes. The low replicative strains had a low ability to regulate the autophagy of host cells. In addition, the high replicative strains also significantly inhibited the phosphorylation of AKT and mTOR. CONCLUSIONS EV71 5'UTR interacted with the 3D protein during virus replication. The co-mutation of S37N and nt88C/T, S37N and nt574T/ A, R142K and nt574T/A induced incomplete autophagy of host cells and promoted virus replication by inhibiting the autophagy pathway AKT-mTOR. The co-mutation of R142K and nt88C/T, and R142K and nt157G/A significantly reduced the inhibitory effect of EV71 on the AKT-mTOR pathway and reduced the replication ability of the virus.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Shao Ma
- Department of Breast Surgery, QiLu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ziwei Liu
- Jinan Center For Disease Control And Prevention, Jinan, Shandong, 250014, China
| | - Haowen Yuan
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Yao Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Mengting Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Mengyu Du
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haopeng Kan
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Zequn Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xiaowen Chong
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Hongling Wen
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China.
| |
Collapse
|
2
|
Devaux CA, Pontarotti P, Levasseur A, Colson P, Raoult D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front Public Health 2024; 11:1284337. [PMID: 38259741 PMCID: PMC10801389 DOI: 10.3389/fpubh.2023.1284337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Pierre Pontarotti
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Anthony Levasseur
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
3
|
Trus I, Udenze D, Karniychuk U. Generation of CpG-Recoded Zika Virus Vaccine Candidates. Methods Mol Biol 2022; 2410:289-302. [PMID: 34914053 DOI: 10.1007/978-1-0716-1884-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Experimental increase of cytosine-phosphate-guanine (CpG) dinucleotides in an RNA virus genome impairs infection. Beneficially, this weak infection may lead to robust antiviral host immunity providing a cutting-edge approach for vaccines. For example, we have recently demonstrated that recoded Zika virus variants with the increased CpG content showed considerable attenuated infection phenotypes and protection against lethal challenge in mice. Here, we describe the workflow for the design and generation of CpG-recoded Zika virus vaccine candidates. The workflow can be adapted for other viruses.
Collapse
Affiliation(s)
- Ivan Trus
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Udenze
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
4
|
Filipe IC, Guedes MS, Zdobnov EM, Tapparel C. Enterovirus D: A Small but Versatile Species. Microorganisms 2021; 9:1758. [PMID: 34442837 PMCID: PMC8400195 DOI: 10.3390/microorganisms9081758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses (EVs) from the D species are the causative agents of a diverse range of infectious diseases in spite of comprising only five known members. This small clade has a diverse host range and tissue tropism. It contains types infecting non-human primates and/or humans, and for the latter, they preferentially infect the eye, respiratory tract, gastrointestinal tract, and nervous system. Although several Enterovirus D members, in particular EV-D68, have been associated with neurological complications, including acute myelitis, there is currently no effective treatment or vaccine against any of them. This review highlights the peculiarities of this viral species, focusing on genome organization, functional elements, receptor usage, and pathogenesis.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Mariana Soares Guedes
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, Switzerland and Swiss Institute of Bioinformatics, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
5
|
Schijns V, Majhen D, van der Ley P, Thakur A, Summerfield A, Berisio R, Nativi C, Fernández-Tejada A, Alvarez-Dominguez C, Gizurarson S, Zamyatina A, Molinaro A, Rosano C, Jakopin Ž, Gursel I, McClean S. Rational Vaccine Design in Times of Emerging Diseases: The Critical Choices of Immunological Correlates of Protection, Vaccine Antigen and Immunomodulation. Pharmaceutics 2021; 13:501. [PMID: 33917629 PMCID: PMC8067490 DOI: 10.3390/pharmaceutics13040501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/21/2023] Open
Abstract
Vaccines are the most effective medical intervention due to their continual success in preventing infections and improving mortality worldwide. Early vaccines were developed empirically however, rational design of vaccines can allow us to optimise their efficacy, by tailoring the immune response. Establishing the immune correlates of protection greatly informs the rational design of vaccines. This facilitates the selection of the best vaccine antigens and the most appropriate vaccine adjuvant to generate optimal memory immune T cell and B cell responses. This review outlines the range of vaccine types that are currently authorised and those under development. We outline the optimal immunological correlates of protection that can be targeted. Finally we review approaches to rational antigen selection and rational vaccine adjuvant design. Harnessing current knowledge on protective immune responses in combination with critical vaccine components is imperative to the prevention of future life-threatening diseases.
Collapse
Affiliation(s)
- Virgil Schijns
- Intravacc, Institute for Translational Vaccinology (Intravacc), Utrecht Science Park, 3721 MA Bilthoven, The Netherlands;
- Epitopoietic Research Corporation (ERC), 5374 RE Schaijk, The Netherlands
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Instiute, HR-10000 Zagreb, Croatia;
| | - Peter van der Ley
- Intravacc, Institute for Translational Vaccinology (Intravacc), Utrecht Science Park, 3721 MA Bilthoven, The Netherlands;
| | - Aneesh Thakur
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Artur Summerfield
- Institute of Virology and Immunology, 3147 Mittelhausern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, I-80134 Naples, Italy;
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Biscay Science and Technology Park, 48160 Derio-Bilbao, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Carmen Alvarez-Dominguez
- Facultativo en plantilla (Research Faculty), Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, University of Iceland, 107 Reykjavik, Iceland;
- Department of Pharmacy, College of Medicine, University of Malawi, Blantyre 3, Malawi
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, I-80126 Napoli, Italy;
- Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Policlinico San Martino, 16132 Genova-1, Italy;
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubiljana, Slovenia;
| | - Ihsan Gursel
- Molecular Biology and Genetics Department, Science Faculty, Bilkent University, Bilkent, 06800 Ankara, Turkey;
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
6
|
Trus I, Udenze D, Berube N, Wheler C, Martel MJ, Gerdts V, Karniychuk U. CpG-Recoding in Zika Virus Genome Causes Host-Age-Dependent Attenuation of Infection With Protection Against Lethal Heterologous Challenge in Mice. Front Immunol 2020; 10:3077. [PMID: 32038625 PMCID: PMC6993062 DOI: 10.3389/fimmu.2019.03077] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Experimental increase of CpG dinucleotides in an RNA virus genome impairs infection providing a promising approach for vaccine development. While CpG recoding is an emerging and promising vaccine approach, little is known about infection phenotypes caused by recoded viruses in vivo. For example, infection phenotypes, immunogenicity, and protective efficacy induced by CpG-recoded viruses in different age groups were not studied yet. This is important, because attenuation of infection phenotypes caused by recoded viruses may depend on the population-based expression of cellular components targeting viral CpG dinucleotides. In the present study, we generated several Zika virus (ZIKV) variants with the increasing CpG content and compared infection in neonatal and adult mice. Increasing the CpG content caused host-age-dependent attenuation of infection with considerable attenuation in neonates and high attenuation in adults. Expression of the zinc-finger antiviral protein (ZAP)—the host protein targeting viral CpG dinucleotides—was also age-dependent. Similar to the wild-type virus, ZIKV variants with the increased CpG content evoked robust cellular and humoral immune responses and protection against lethal challenge. Collectively, the host age should be accounted for in future studies on mechanisms targeting viral CpG dinucleotides, development of safe dinucleotide recoding strategies, and applications of CpG-recoded vaccines.
Collapse
Affiliation(s)
- Ivan Trus
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Udenze
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nathalie Berube
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Colette Wheler
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Marie-Jocelyne Martel
- Department of Obstetrics and Gynecology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
O’Connell AK, Douam F. Humanized Mice for Live-Attenuated Vaccine Research: From Unmet Potential to New Promises. Vaccines (Basel) 2020; 8:E36. [PMID: 31973073 PMCID: PMC7157703 DOI: 10.3390/vaccines8010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/24/2023] Open
Abstract
Live-attenuated vaccines (LAV) represent one of the most important medical innovations in human history. In the past three centuries, LAV have saved hundreds of millions of lives, and will continue to do so for many decades to come. Interestingly, the most successful LAVs, such as the smallpox vaccine, the measles vaccine, and the yellow fever vaccine, have been isolated and/or developed in a purely empirical manner without any understanding of the immunological mechanisms they trigger. Today, the mechanisms governing potent LAV immunogenicity and long-term induced protective immunity continue to be elusive, and therefore hamper the rational design of innovative vaccine strategies. A serious roadblock to understanding LAV-induced immunity has been the lack of suitable and cost-effective animal models that can accurately mimic human immune responses. In the last two decades, human-immune system mice (HIS mice), i.e., mice engrafted with components of the human immune system, have been instrumental in investigating the life-cycle and immune responses to multiple human-tropic pathogens. However, their use in LAV research has remained limited. Here, we discuss the strong potential of LAVs as tools to enhance our understanding of human immunity and review the past, current and future contributions of HIS mice to this endeavor.
Collapse
Affiliation(s)
| | - Florian Douam
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
8
|
Zhang Y, Cao J, Zhang S, Lee AJ, Sun G, Larsen CN, Zhao H, Gu Z, He S, Klem EB, Scheuermann RH. Genetic changes found in a distinct clade of Enterovirus D68 associated with paralysis during the 2014 outbreak. Virus Evol 2016; 2:vew015. [PMID: 28512577 PMCID: PMC5426007 DOI: 10.1093/ve/vew015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enterovirus D68 (EV-D68) caused a severe respiratory illness outbreak in the United States in 2014. Reports of acute flaccid myelitis (AFM)/paralysis (AFP) in several independent epidemiological clusters of children with detectable EV-D68 have raised concerns that genetic changes in EV-D68 could be causing increased disease severity and neurological symptoms. To explore the potential link between EV-D68 genetic variations and symptom changes, we performed a series of comparative genomic analyses of EV-D68 2014 outbreak isolate sequences using data and analytical tools in the Virus Pathogen Resource (ViPR; www.viprbrc.org). Our results suggest that (1) three distinct lineages of EV-D68 were co-circulating in 2013 and 2014; (2) isolates associated with AFM/AFP belong to a single phylogenetic subclade - B1; (3) the majority of isolates from the B1 subclade have 21 unique substitutions that distinguish them from other isolates, including amino acid substitutions in the VP1, VP2, and VP3 capsid proteins and the 3D RNA-dependent RNA polymerase, and nucleotide substitutions in the internal ribosome entry sequence (IRES); (4) at 12 of these positions, B1 isolates carry the same residues observed at equivalent positions in paralysis-causing enteroviruses, including poliovirus, EV-D70 and EV-A71. Based on these results, we hypothesize that unique B1 substitutions may be responsible for the apparent increased incidence of neuropathology associated with the 2014 outbreak.
Collapse
Affiliation(s)
- Yun Zhang
- J. Craig Venter Institute, La Jolla, CA, USA
| | - Jing Cao
- Department of Statistical Science, Southern Methodist University, Dallas, TX, USA
| | - Song Zhang
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | - Hongtao Zhao
- Northrop Grumman Health Solutions, Rockville, MD, USA
| | - Zhiping Gu
- Northrop Grumman Health Solutions, Rockville, MD, USA
| | - Sherry He
- Northrop Grumman Health Solutions, Rockville, MD, USA
| | - Edward B Klem
- Northrop Grumman Health Solutions, Rockville, MD, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, USA.,Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Abstract
Insensitivity and technical complexity have impeded the implementation of high-throughput nucleic acid sequencing in differential diagnosis of viral infections in clinical laboratories. Here, we describe the development of a virome capture sequencing platform for vertebrate viruses (VirCapSeq-VERT) that increases the sensitivity of sequence-based virus detection and characterization. The system uses ~2 million probes that cover the genomes of members of the 207 viral taxa known to infect vertebrates, including humans. A biotinylated oligonucleotide library was synthesized on the NimbleGen cleavable array platform and used for solution-based capture of viral nucleic acids present in complex samples containing variable proportions of viral and host nucleic acids. The use of VirCapSeq-VERT resulted in a 100- to 10,000-fold increase in viral reads from blood and tissue homogenates compared to conventional Illumina sequencing using established virus enrichment procedures, including filtration, nuclease treatments, and RiboZero rRNA subtraction. VirCapSeq-VERT had a limit of detection comparable to that of agent-specific real-time PCR in serum, blood, and tissue extracts. Furthermore, the method identified novel viruses whose genomes were approximately 40% different from the known virus genomes used for designing the probe library. The VirCapSeq-VERT platform is ideally suited for analyses of virome composition and dynamics. Importance VirCapSeq-VERT enables detection of viral sequences in complex sample backgrounds, including those found in clinical specimens, such as serum, blood, and tissue. The highly multiplexed nature of the system allows both the simultaneous identification and the comprehensive genetic characterization of all known vertebrate viruses, their genetic variants, and novel viruses. The operational simplicity and efficiency of the VirCapSeq-VERT platform may facilitate transition of high-throughput sequencing to clinical diagnostic as well as research applications. VirCapSeq-VERT enables detection of viral sequences in complex sample backgrounds, including those found in clinical specimens, such as serum, blood, and tissue. The highly multiplexed nature of the system allows both the simultaneous identification and the comprehensive genetic characterization of all known vertebrate viruses, their genetic variants, and novel viruses. The operational simplicity and efficiency of the VirCapSeq-VERT platform may facilitate transition of high-throughput sequencing to clinical diagnostic as well as research applications.
Collapse
|
10
|
Abstract
Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared Phase III, and efficacy results have been published. Excellent tetravalent seroconversion was seen, yet the protective efficacy against infection was surprisingly low. Here, we will describe the complicating factors involved in the generation of a safe and efficacious dengue vaccine. Furthermore, we will discuss the human antibody responses during infection, including the epitopes targeted in humans. Also, we will discuss the current understanding of the assays used to evaluate antibody response. We hope this review will aid future dengue vaccine development as well as fundamental research related to the phenomenon of antibody-dependent enhancement of dengue virus infection.
Collapse
Affiliation(s)
- Jacky Flipse
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Drescher KM, von Herrath M, Tracy S. Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine. Rev Med Virol 2014; 25:19-32. [PMID: 25430610 DOI: 10.1002/rmv.1815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 12/24/2022]
Abstract
Enteroviruses and humans have long co-existed. Although recognized in ancient times, poliomyelitis and type 1 diabetes (T1D) were exceptionally rare and not epidemic, due in large part to poor sanitation and personal hygiene which resulted in repeated exposure to fecal-oral transmitted viruses and other infectious agents and viruses and the generation of a broad protective immunity. As a function of a growing acceptance of the benefits of hygienic practices and microbiologically clean(er) water supplies, the likelihood of exposure to diverse infectious agents and viruses declined. The effort to vaccinate against poliomyelitis demonstrated that enteroviral diseases are preventable by vaccination and led to understanding how to successfully attenuate enteroviruses. Type 1 diabetes onset has been convincingly linked to infection by numerous enteroviruses including the group B coxsackieviruses (CVB), while studies of CVB infections in NOD mice have demonstrated not only a clear link between disease onset but an ability to reduce the incidence of T1D as well: CVB infections can suppress naturally occurring autoimmune T1D. We propose here that if we can harness and develop the capacity to use attenuated enteroviral strains to induce regulatory T cell populations in the host through vaccination, then a vaccine could be considered that should function to protect against both autoimmune as well as virus-triggered T1D. Such a vaccine would not only specifically protect from certain enterovirus types but more importantly, also reset the organism's regulatory rheostat making the further development of pathogenic autoimmunity less likely.
Collapse
Affiliation(s)
- Kristen M Drescher
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | | | | |
Collapse
|
12
|
Wen HL, Si LY, Yuan XJ, Hao SB, Gao F, Chu FL, Sun CX, Wang ZY. Complete genome sequencing and analysis of six enterovirus 71 strains with different clinical phenotypes. Virol J 2013; 10:115. [PMID: 23577963 PMCID: PMC3669102 DOI: 10.1186/1743-422x-10-115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 04/02/2013] [Indexed: 11/15/2022] Open
Abstract
Background Hand, foot and mouth diseases (HFMD) caused by enterovirus 71(EV71) presents a broad spectrum of clinical manifestations ranging from mild febrile disease to fatal neurolocal disease. However, the mechanism of virulence is unknown. Methods We isolated 6 strains of EV71 from HFMD patients with or without neurological symptoms, and sequenced the whole genomes of the viruses to reveal the virulence factors of EV71. Results Phylogenetic tree based on VP1 region showed that all six strains clustered into C4a of C4 sub-genotype. In the complete polypeptide, 298 positions were found to be variable in all strains, and three of these positions (ValP814/IleP814 in VP1, ValP1148/IleP1148 in 3A and Ala P1728/Cys P1728/Val P1728 in 3C) were conserved among the strains with neurovirulence, but variable in strains without neurovirulence. In the 5′-UTR region, it showed that the first 10 nucleotides were mostly conserved, however from the 11th nucleotide, nucleotide insertions and deletions were quite common. The secondary structure prediction of 5′-UTR sequences showed that two of three strains without neurovirulence (SDLY11 and SDLY48) were almost the same, and all strains with neurovirulence (SDLY96, SDLY107 and SDLY153) were different from each other. SDLY107 (a fatal strain) was found different from other strains on four positions (CP241/TP241, AP571/TP571, CP579/TP579 in 5′-UTR and TP7335/CP7335 in 3′-UTR). Conclusions The three positions (ValP814/IleP814 in VP1, ValP1148/IleP1148 in 3A and Ala P1728/Cys P1728/Val P1728 in 3C), were different between two phenotypes. These suggested that the three positions might be potential virulent positions. And the three varied positions were also found to be conserved in strains with neurovirulence, and variable in strains without neurovirulence. These might reveal that the conservation of two of the three positions or the three together were specific for the strains with neurovirulence. Varation of secondary structure of 5′-UTR, might be correlated to the changes of viral virulence. SDLY107 (a fatal strain) was found different from other strains on four positions, these positions might be related with death.
Collapse
Affiliation(s)
- Hong-ling Wen
- The Key Laboratory of Experimental Teratology of Ministry of Education, Department of Virology, School of Public Health, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Duintjer Tebbens RJ, Pallansch MA, Kim JH, Burns CC, Kew OM, Oberste MS, Diop OM, Wassilak SGF, Cochi SL, Thompson KM. Oral poliovirus vaccine evolution and insights relevant to modeling the risks of circulating vaccine-derived polioviruses (cVDPVs). RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2013; 33:680-702. [PMID: 23470192 PMCID: PMC7890645 DOI: 10.1111/risa.12022] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The live, attenuated oral poliovirus vaccine (OPV) provides a powerful tool for controlling and stopping the transmission of wild polioviruses (WPVs), although the risks of vaccine-associated paralytic polio (VAPP) and circulating vaccine-derived poliovirus (cVDPV) outbreaks exist as long as OPV remains in use. Understanding the dynamics of cVDPV emergence and outbreaks as a function of population immunity and other risk factors may help to improve risk management and the development of strategies to respond to possible outbreaks. We performed a comprehensive review of the literature related to the process of OPV evolution and information available from actual experiences with cVDPV outbreaks. Only a relatively small fraction of poliovirus infections cause symptoms, which makes direct observation of the trajectory of OPV evolution within a population impractical and leads to significant uncertainty. Despite a large global surveillance system, the existing genetic sequence data largely provide information about transmitted virulent polioviruses that caused acute flaccid paralysis, and essentially no data track the changes that occur in OPV sequences as the viruses transmit largely asymptomatically through real populations with suboptimal immunity. We updated estimates of cVDPV risks based on actual experiences and identified the many limitations in the existing data on poliovirus transmission and immunity and OPV virus evolution that complicate modeling. Modelers should explore the space of potential model formulations and inputs consistent with the available evidence and future studies should seek to improve our understanding of the OPV virus evolution process to provide better information for policymakers working to manage cVDPV risks.
Collapse
|
14
|
Yeh MT, Wang SW, Yu CK, Lin KH, Lei HY, Su IJ, Wang JR. A single nucleotide in stem loop II of 5'-untranslated region contributes to virulence of enterovirus 71 in mice. PLoS One 2011; 6:e27082. [PMID: 22069490 PMCID: PMC3206083 DOI: 10.1371/journal.pone.0027082] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/10/2011] [Indexed: 11/19/2022] Open
Abstract
Background Enterovirus 71 (EV71) has emerged as a neuroinvasive virus responsible for several large outbreaks in the Asia-Pacific region while virulence determinant remains unexplored. Principal Findings In this report, we investigated increased virulence of unadapted EV71 clinical isolate 237 as compared with isolate 4643 in mice. A fragment 12 nucleotides in length in stem loop (SL) II of 237 5′-untranslated region (UTR) visibly reduced survival time and rate in mice was identified by constructing a series of infectious clones harboring chimeric 5′-UTR. In cells transfected with bicistronic plasmids, and replicon RNAs, the 12-nt fragment of isolate 237 enhanced translational activities and accelerated replication of subgenomic EV71. Finally, single nucleotide change from cytosine to uridine at base 158 in this short fragment of 5′-UTR was proven to reduce viral translation and EV71 virulence in mice. Results collectively indicated a pivotal role of novel virulence determinant C158 on virus translation in vitro and EV71 virulence in vivo. Conclusions These results presented the first reported virulence determinant in EV71 5′-UTR and first position discovered from unadapted isolates.
Collapse
Affiliation(s)
- Ming-Te Yeh
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Shainn-Wei Wang
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Keung Yu
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Hsiang Lin
- Department of Laboratory Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huan-Yao Lei
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Jen-Ren Wang
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Pliaka V, Kyriakopoulou Z, Tsakogiannis D, Ruether IGA, Gartzonika C, Levidiotou-Stefanou S, Krikelis A, Markoulatos P. Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains. Eur J Clin Microbiol Infect Dis 2010; 29:1513-23. [DOI: 10.1007/s10096-010-1033-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 08/04/2010] [Indexed: 12/01/2022]
|
16
|
Parvaneh N, Shahmahmoudi S, Tabatabai H, Zahraei M, Mousavi T, Esteghamati AR, Gooya MM, Mamishi S, Nategh R, Kew OM. Vaccine-associated paralytic poliomyelitis in a patient with MHC class II deficiency. J Clin Virol 2007; 39:145-8. [PMID: 17509935 DOI: 10.1016/j.jcv.2007.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 04/02/2007] [Accepted: 04/04/2007] [Indexed: 11/22/2022]
Abstract
Vaccine-associated paralytic poliomyelitis (VAPP) is a rare complication of oral polio vaccine. We describe a fatal case of VAPP in an 8-month-old boy with Major Histocompatibility Class II deficiency. The isolated poliovirus was a Sabin type 2-type 1 recombinant that showed 1.4% VP1 divergence from Sabin type 2.
Collapse
Affiliation(s)
- Nima Parvaneh
- Department of Pediatrics, Infectious Disease Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Combiescu M, Guillot S, Persu A, Baicus A, Pitigoi D, Balanant J, Oprisan G, Crainic R, Delpeyroux F, Aubert-Combiescu A. Circulation of a type 1 recombinant vaccine-derived poliovirus strain in a limited area in Romania. Arch Virol 2007; 152:727-38. [PMID: 17195957 DOI: 10.1007/s00705-006-0884-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/01/2006] [Indexed: 01/14/2023]
Abstract
After intensive immunisation campaigns with the oral polio vaccine (OPV) as part of the Global Polio Eradication Initiative, poliomyelitis due to wild viruses has disappeared from most parts of the world, including Europe. Here, we report the characterization of a serotype 1 vaccine-derived poliovirus (VDPV) isolated from one acute flaccid paralysis (AFP) case with tetraplegia and eight healthy contacts belonging to the same small socio-cultural group having a low vaccine coverage living in a small town in Romania. The genomes of the isolated strains appeared to be tripartite type 1/type 2/type 1 vaccine intertypic recombinant genomes derived from a common ancestor strain. The presence of 1.2% nucleotide substitutions in the VP1 capsid protein coding region of most of the strains indicated a circulation time of about 14 months. These VDPVs were thermoresistant and, in transgenic mice expressing the human poliovirus receptor, appeared to have lost the attenuated phenotype. These results suggest that small populations with low vaccine coverage living in globally well-vaccinated countries can be the origin of VDPV emergence and circulation. These results reaffirm the importance of active surveillance for acute flaccid paralysis and poliovirus in both polio-free and polio-endemic countries.
Collapse
Affiliation(s)
- M Combiescu
- Cantacuzino National Institute of Research-Development for Microbiology and Immunology, Bucharest, Romania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Campbell SA, Lin J, Dobrikova EY, Gromeier M. Genetic determinants of cell type-specific poliovirus propagation in HEK 293 cells. J Virol 2005; 79:6281-90. [PMID: 15858012 PMCID: PMC1091735 DOI: 10.1128/jvi.79.10.6281-6290.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of poliovirus to propagate in neuronal cells can be reduced by introducing appropriate nucleotide substitutions into the viral genome. Specific mutations scattered throughout the poliovirus genome yielded the live attenuated vaccine strains of poliovirus. Neuron-specific propagation deficits of the Sabin strains are partially encrypted within a confined region of the internal ribosomal entry site (IRES), which carries attenuating point mutations in all three serotypes. Recently, high levels of neurovirulence attenuation were achieved with genetically engineered polioviruses containing heterologous IRES elements. This is exemplified with poliovirus recombinants replicating under control of a human rhinovirus type 2 (HRV2) IRES element. We have carried out experiments delineating the genetic basis for neuronal IRES function. Neuronal dysfunction of the HRV2 IRES is determined mainly by IRES stem-loop domain V, the locus for attenuating point mutations within the Sabin strains. Neuronal incompetence associated with HRV2 IRES domain V is substantially more pronounced than that observed with the attenuating IRES point mutation of the Sabin serotype 1 vaccine strain. Mix-and-match recombination of polio and HRV2 IRES domain V suggests that the attenuation phenotype correlates with overall structural features rather than primary sequence. Our experiments have identified HEK 293 cells as a novel system for the study of neuron-specific replication phenotypes of poliovirus. This cell line, originally derived from embryonic human kidney, has recently been described to display neuronal characteristics. We report propagation properties in HEK 293 cells for poliovirus recombinants with attenuated neurovirulence in experimental animals that corroborate this observation.
Collapse
Affiliation(s)
- Stephanie A Campbell
- Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
19
|
Chevaliez S, Szendröi A, Caro V, Balanant J, Guillot S, Berencsi G, Delpeyroux F. Molecular comparison of echovirus 11 strains circulating in Europe during an epidemic of multisystem hemorrhagic disease of infants indicates that evolution generally occurs by recombination. Virology 2004; 325:56-70. [PMID: 15231386 DOI: 10.1016/j.virol.2004.04.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 03/02/2004] [Accepted: 04/17/2004] [Indexed: 11/23/2022]
Abstract
We compared echovirus 11 (E11) strains implicated in a severe epidemic in Hungary in 1989 with the prototype E11 strain Gregory and with other E11 strains, most of which were isolated over the same period in Europe (Finland, The Netherlands, Romania, Russia) from sporadic cases or from environmental water. Partial sequencing indicated that the Hungarian strains were closely related to each other and to most European strains. They were particularly closely related to one Romanian strain associated with a sporadic case of hemiparesis and several Finnish strains isolated from environmental water. Sequencing of the complete genomes of one Hungarian strain, the Romanian strain, and one Finnish strain revealed differences of only a few nucleotides in the 5' half of the genome, including the 5' nontranslated region (5'-NTR) and the capsid coding region. However, significant differences were observed in the nucleotide sequences of the 3' half of the genome (nonstructural viral protein region and 3'-NTR), indicating that these strains evolved recently and independently by genetic recombination with other unknown E11 or enterovirus strains.
Collapse
Affiliation(s)
- Stephane Chevaliez
- Department of Ecosystems and Epidemiology of Infectious Diseases, Pasteur Institute, Paris, France
| | | | | | | | | | | | | |
Collapse
|
20
|
MacLennan C, Dunn G, Huissoon AP, Kumararatne DS, Martin J, O'Leary P, Thompson RA, Osman H, Wood P, Minor P, Wood DJ, Pillay D. Failure to clear persistent vaccine-derived neurovirulent poliovirus infection in an immunodeficient man. Lancet 2004; 363:1509-13. [PMID: 15135598 DOI: 10.1016/s0140-6736(04)16150-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Individuals who chronically excrete neurovirulent poliovirus of vaccine-origin are of considerable concern to the Global Polio Eradication programme. Chronic infection with such polioviruses is a recognised complication of hypogammaglobulinaemia. METHODS We did a series of in-vitro and in-vivo therapeutic studies, with a view to clearing persistent neurovirulent poliovirus infection in an individual with common variable immunodeficiency, using oral immunoglobulin, breast milk (as a source of secretory IgA), ribavirin, and the anti-picornaviral agent pleconaril. We undertook viral quantitation, antibody neutralisation and drug susceptibility assays, and viral gene sequencing. FINDINGS Long-term asymptomatic excretion of vaccine-derived neurovirulent poliovirus 2 was identified in this hypogammaglobulinaemic man, and was estimated to have persisted for up to 22 years. Despite demonstrable in-vitro neutralising activity of immunoglobulin and breast milk, and in-vitro antiviral activity of ribavirin, no treatment was successful at clearing the virus, although in one trial breast milk significantly reduced excretion levels temporarily. During the course of study, the virus developed reduced susceptibility to pleconaril, precluding the in-vivo use of this drug. Sequence analysis revealed the emergence of a methionine to leucine mutation adjacent to the likely binding site of pleconaril in these isolates. INTERPRETATION Chronic vaccine-associated poliovirus infection in hypogammaglobulinaemia is a difficult condition to treat. It represents a risk to the strategy to discontinue polio vaccination once global eradication has been achieved.
Collapse
Affiliation(s)
- Calman MacLennan
- MRC Centre for Immune Regulation, Division of Immunity and Infection, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yoshida H, Horie H, Matsuura K, Kitamura T, Hashizume S, Miyamura T. Prevalence of vaccine-derived polioviruses in the environment. J Gen Virol 2002; 83:1107-1111. [PMID: 11961265 DOI: 10.1099/0022-1317-83-5-1107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A survey of poliovirus in river and sewage water was conducted from October 1993 to September 1995 in Toyama Prefecture, Japan. In this study, 25 isolates differentiated as type 2 vaccine-derived polioviruses (VDPVs) were characterized using mutant analysis by PCR and restriction-enzyme cleavage (MAPREC) to estimate the ratio of 481-G revertants correlated to neurovirulence in a virus population. Of these isolates, 23 (92%) comprised between 44 and 96% 481-G revertants by MAPREC. The other two isolates had revertant percentages close to the 0.6% of the attenuated reference strain. It was presumed that these 23 isolates would be variant with potential neurovirulence by MAPREC analysis. Of the 23 isolates, three were isolated from river water. Moreover, our results by MAPREC showed that type 2 poliovirus was phenotypically more variable than type 1 (69%) or type 3 (55%), as determined in previous studies. The prevalence of virulent-type VDPVs in river and sewage water suggested that the oral poliovaccine itself had led to wide environmental pollution in nature. To terminate the cycle of virus transmission in nature, the ecology of VDPVs should be studied further. A hygiene programme, inactivated poliovirus vaccine immunization and well-maintained herd immunity may play key roles in reducing the potential risk of infection by virulent VDPVs.
Collapse
Affiliation(s)
- Hiromu Yoshida
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan1
| | - Hitoshi Horie
- Japan Poliomyelitis Research Institute, Kumegawa 5-34-4, Higashimurayama, Tokyo 189-0003, Japan2
| | - Kumiko Matsuura
- Department of Virology, Toyama Institute of Health, Nakataikoyama, Kosugi-machi, Imizu-gun, Toyama 939-0363, Japan3
| | - Takashi Kitamura
- Department of Virology, Toyama Institute of Health, Nakataikoyama, Kosugi-machi, Imizu-gun, Toyama 939-0363, Japan3
| | - So Hashizume
- Japan Poliomyelitis Research Institute, Kumegawa 5-34-4, Higashimurayama, Tokyo 189-0003, Japan2
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan1
| |
Collapse
|
22
|
Georgopoulou A, Markoulatos P, Spyrou N, Vakalis N, Bei TA, Vamvakopoulos NC. High sequence divergence in the 5' non-coding region of reference Coxsackie B and ECHO viral strains and clinical isolates revealed by restriction fragment length polymorphism analysis. Mol Cell Probes 2001; 15:317-27. [PMID: 11851375 DOI: 10.1006/mcpr.2001.0380] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the restriction fragment length polymorphism (RFLP) patterns of a 440-bp-long 5' non-coding region (5' NCR) amplification target of all 34 reference Coxsackie B and ECHO (enteric cytopathic human orphan) enterovirus strains and a total of 42 serotypically pre-assigned clinical isolates, in order to afford meaningful comparisons among these patterns and those of polioviruses. The RFLP patterns of reference Coxsackie B strains differed from one another and from those of polio and ECHO reference enteroviruses except from Coxsackie B1 and B2, which, although they differed from one another, had identical RFLP patterns with ECHO 17 and 13, respectively. The 28 ECHO reference strains formed a more variable viral group including strains with RFLP patterns distinct from one another and from those of polio and Coxsackie B enteroviruses, and others with RFLP pattern identities common to other ECHO viruses and Coxsackie B1 and B2 but not polioviruses. The RFLP patterns of the clinical isolates and their corresponding serotypically assigned reference Coxsackie B and ECHO strains presented the most notable variations. The observed differences between serotype and genotype-dependent assignments within the 440-bp long 5' NCR target sequence of Coxsackie B and ECHO enteroviruses were in sharp contrast to the analogous situation with polioviruses. These findings support the specificity of the described method for clinical diagnostic genotyping of polioviruses and demonstrate that the 440-bp-long target sequence follows a different evolutionary process in polio and non-polio enteroviruses that is particularly prominent between reference non-polio strains and their serotypically assigned clinical isolates.
Collapse
Affiliation(s)
- A Georgopoulou
- Department of Virology, Hellenic Pasteur Institute, 127 Vas. Sofias Ave, Athens 11521, Greece
| | | | | | | | | | | |
Collapse
|
23
|
Caro V, Guillot S, Delpeyroux F, Crainic R. Molecular strategy for 'serotyping' of human enteroviruses. J Gen Virol 2001; 82:79-91. [PMID: 11125161 DOI: 10.1099/0022-1317-82-1-79] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To explore further the phylogenetic relationships between human enteroviruses and to develop new diagnostic approaches, we designed a pair of generic primers in order to study a 1452 bp genomic fragment (relative to the poliovirus Mahoney genome), including the 3' end of the VP1-coding region, the 2A- and 2B-coding regions, and the 5' moiety of the 2C-coding region. Fifty-nine of the 64 prototype strains and 45 field isolates of various origins, involving 21 serotypes and 6 strains untypable by standard immunological techniques, were successfully amplified with these primers. By determining the nucleotide sequence of the genomic fragment encoding the C-terminal third of the VP1 capsid protein we developed a molecular typing method based on RT-PCR and sequencing. If field isolate sequences were compared to human enterovirus VP1 sequences available in databases, nucleotide identity score was, in each case, highest with the homotypic prototype (74.8 to 89.4%). Phylogenetic trees were generated from alignments of partial VP1 sequences with several phylogeny algorithms. In all cases, the new classification of enteroviruses into five identified species was confirmed and strains of the same serotype were always monophyletic. Analysis of the results confirmed that the 3' third of the VP1-coding sequence contains serotype-specific information and can be used as the basis of an effective and rapid molecular typing method. Furthermore, the amplification of such a long genomic fragment, including non-structural regions, is straightforward and could be used to investigate genome variability and to identify recombination breakpoints or specific attributes of pathogenicity.
Collapse
Affiliation(s)
- Valérie Caro
- Laboratoire d'Epidémiologie Moléculaire des Entérovirus, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France1
| | - Sophie Guillot
- Laboratoire d'Epidémiologie Moléculaire des Entérovirus, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France1
| | - Francis Delpeyroux
- Laboratoire d'Epidémiologie Moléculaire des Entérovirus, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France1
| | - Radu Crainic
- Laboratoire d'Epidémiologie Moléculaire des Entérovirus, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|
24
|
Georgopoulou A, Markoulatos P, Spyrou N, Vamvakopoulos NC. Improved genotyping vaccine and wild-type poliovirus strains by restriction fragment length polymorphism analysis: clinical diagnostic implications. J Clin Microbiol 2000; 38:4337-42. [PMID: 11101561 PMCID: PMC87602 DOI: 10.1128/jcm.38.12.4337-4342.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The combination of preventive vaccination and diagnostic typing of viral isolates from patients with clinical poliomyelitis constitutes our main protective shield against polioviruses. The restriction fragment length polymorphism (RFLP) adaptation of the reverse transcriptase (RT)-PCR methodology has advanced diagnostic genotyping of polioviruses, although further improvements are definitely needed. We report here on an improved RFLP procedure for the genotyping of polioviruses. A highly conserved segment within the 5' noncoding region of polioviruses was selected for RT-PCR amplification by the UC(53)-UG(52) primer pair with the hope that it would be most resistant to the inescapable genetic alteration-drift experienced by the other segments of the viral genome. Complete inter- and intratypic genotyping of polioviruses by the present RFLP method was accomplished with a minimum set of four restriction endonucleases (HaeIII, DdeI, NcoI, and AvaI). To compensate for potential genetic drift within the recognition sites of HaeIII, DdeI, or NcoI in atypical clinical samples, the RFLP patterns generated with HpaII and StyI as replacements were analyzed. The specificity of the method was also successfully assessed by RFLP analysis of 55 reference nonpoliovirus enterovirus controls. The concerted implementation of these conditional protocols for diagnostic inter- and intratypic genotyping of polioviruses was evaluated with 21 clinical samples with absolute success.
Collapse
Affiliation(s)
- A Georgopoulou
- Department of Virology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | | | | | | |
Collapse
|
25
|
|
26
|
Muir P, Kämmerer U, Korn K, Mulders MN, Pöyry T, Weissbrich B, Kandolf R, Cleator GM, van Loon AM. Molecular typing of enteroviruses: current status and future requirements. The European Union Concerted Action on Virus Meningitis and Encephalitis. Clin Microbiol Rev 1998; 11:202-27. [PMID: 9457433 PMCID: PMC121380 DOI: 10.1128/cmr.11.1.202] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human enteroviruses have traditionally been typed according to neutralization serotype. This procedure is limited by the difficulty in culturing some enteroviruses, the availability of antisera for serotyping, and the cost and technical complexity of serotyping procedures. Furthermore, the impact of information derived from enterovirus serotyping is generally perceived to be low. Enteroviruses are now increasingly being detected by PCR rather than by culture. Classical typing methods will therefore no longer be possible in most instances. An alternative means of enterovirus typing, employing PCR in conjunction with molecular genetic techniques such as nucleotide sequencing or nucleic acid hybridization, would complement molecular diagnosis, may overcome some of the problems associated with serotyping, and would provide additional information regarding the epidemiology and biological properties of enteroviruses. We argue the case for developing a molecular typing system, discuss the genetic basis of such a system, review the literature describing attempts to identify or classify enteroviruses by molecular methods, and suggest ways in which the goal of molecular typing may be realized.
Collapse
Affiliation(s)
- P Muir
- Department of Virology, United Medical School of Guy's Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ehrengut W. Role of provocation poliomyelitis in vaccine-associated poliomyelitis. ACTA PAEDIATRICA JAPONICA : OVERSEAS EDITION 1997; 39:658-62. [PMID: 9447753 DOI: 10.1111/j.1442-200x.1997.tb03663.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The impact of different vaccine administrations in the Federal Republic of Germany, in relation to vaccine-associated paralytic poliomyelitis (VAPP) was studied. (This only means that on the basis of the temporal relation of vaccination and onset, the vaccine cannot be ruled out as possible cause). Oral polio vaccine (OPV) was given between 1963 and 1977 only and recommended simultaneously with inactivated vaccines (DT/DPT) between 1980 and 1985. In the first period 10 VAPP cases occurred among 9.96 million estimated vaccinees aged under 2 years. In the second period 6 cases of provocation poliomyelitis (PRP) were found among 2.9 million estimated OPV/DT/DPT vaccinees of the same age group. Statistically the VAPP/PRP frequencies in the two periods studied did not achieve significance.
Collapse
Affiliation(s)
- W Ehrengut
- Institute of Vaccinology and Virology, Hamburg, Germany
| |
Collapse
|
28
|
Georgescu MM, Balanant J, Macadam A, Otelea D, Combiescu M, Combiescu AA, Crainic R, Delpeyroux F. Evolution of the Sabin type 1 poliovirus in humans: characterization of strains isolated from patients with vaccine-associated paralytic poliomyelitis. J Virol 1997; 71:7758-68. [PMID: 9311861 PMCID: PMC192128 DOI: 10.1128/jvi.71.10.7758-7768.1997] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Attenuated strains of the Sabin oral poliovirus vaccine replicate in the human gut and in rare cases cause vaccine-associated paralytic poliomyelitis (VAPP). Reversion of vaccine strains toward a pathogenic phenotype is probably one of the main causes of VAPP, a disease most frequently associated with type 3 and type 2 strains and more rarely with the type 1 (Sabin 1) strain. To identify the determinants and mechanisms of safety versus pathogenicity of the Sabin 1 strain, we characterized the genetic and phenotypic changes in six Sabin 1-derived viruses isolated from immunocompetent patients with VAPP. The genomes of these strains carried either few or numerous mutations from the original Sabin 1 genome. As assessed in transgenic mice carrying the human poliovirus receptor (PVR-Tg mice), all but one strain had lost the attenuated phenotype. Four strains presented only a moderate neurovirulent phenotype, probably due at least in part to reversions to the wild-type genotype, which were detected in the 5' noncoding region of the genome. The reversions found in most strains at nucleotide position 480, are known to be associated with an increase in neurovirulence. The construction and characterization of Sabin 1 mutants implicated a reversion at position 189, found in one strain, in the phenotypic change. The presence of 71 mutations in one neurovirulent strain suggests that a vaccine-derived strain can survive for a long time in humans. Surprisingly, none of the strains analyzed were as neurovirulent to PVR-Tg mice as was the wild-type parent of Sabin 1 (Mahoney) or a previously identified neurovirulent Sabin 1 mutant selected at a high temperature in cultured cells. Thus, in the human gut, the Sabin 1 strain does not necessarily evolve toward the genetic characteristics and high neuropathogenicity of its wild-type parent.
Collapse
Affiliation(s)
- M M Georgescu
- Epidémiologie Moléculaire des Entérovirus, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Radford AD, Bennett M, McArdle F, Dawson S, Turner PC, Glenn MA, Gaskell RM. The use of sequence analysis of a feline calicivirus (FCV) hypervariable region in the epidemiological investigation of FCV related disease and vaccine failures. Vaccine 1997; 15:1451-8. [PMID: 9302760 DOI: 10.1016/s0264-410x(97)00059-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A reverse transcriptase polymerase chain reaction (PCR) was used to amplify a 235 bp hypervariable region of the feline calicivirus (FCV) genome which encodes part of the capsid protein. Sequence from this region was used to compare viruses used in three attenuated vaccines to viruses isolated from vaccinated cats with clinical signs of FCV-infection (vaccine failures). All three vaccine viruses contained sequence similar to that published for FCV strain F9 (Carter et al. 1992, Virology 190, 443-448). However, two of the three vaccines contained a separate sequence which was 20.67% distant (number of nucleotide substitutions per 100 bases) from F9. The sequences derived from isolates obtained from vaccine failures fell into two categories. Most were distinct (21.33-38.00% distant) from vaccine sequence. However, in some cases, sequences were sufficiently similar to the vaccines' (0.00-5.33% distant) to suggest that the isolate may have originated from the vaccine. In addition, comparison of sequence determined for isolates from the same disease outbreak showed them to be closely related (0.00-1.33% distant), whereas epidemiologically unrelated isolates were 20.67-38.00% distant.
Collapse
Affiliation(s)
- A D Radford
- Department of Veterinary Pathology, University of Liverpool, Neston, S. Wirral, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Oral poliovirus vaccine (OPV) developed by A. Sabin has been effectively used to control poliomyelitis in Brazil, and the last case with the isolation of a wild poliovirus strain occurred in March 1989. Although the vaccine controlled the circulation of wild strains and poliomyelitis cases associated with these strains were not detected during the last eight years, rare cases classified as vaccine-associated paralytic poliomyelitis (VAPP) have been detected. Molecular characterization studies of poliovirus strains isolated from VAPP cases and from healthy contacts have confirmed that the isolates are derived from the Sabin vaccine strains and also detected genomic modifications known or suspected to increase neurovirulence such as mutations and recombination. The molecular characterization of polioviruses isolated during the last eight years from paralysis cases classified as Guillain-Barré (GBS) syndrome and transverse myelitis (TM), and from facial paralysis (FP) cases also confirmed the vaccine origin of the strains and demonstrated mutations known to increase neurovirulence. Analysis of the epidemiologic data of these GBS, TM and FP cases demonstrated that in most of them the last OPV dose was given months or years before the onset of the disease and the isolation of the polioviruses. The temporal association between the isolation of these strains and the GBS, TM and FP suggested that the Sabin vaccine-derived poliovirus strains could also rarely trigger the diseases.
Collapse
Affiliation(s)
- F Friedrich
- Departamento de Virologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| |
Collapse
|
31
|
Huzly D, Neifer S, Reinke P, Schröder K, Schönfeld C, Hofmann T, Bienzle U. Routine immunizations in adult renal transplant recipients. Transplantation 1997; 63:839-45. [PMID: 9089223 DOI: 10.1097/00007890-199703270-00008] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Vaccination guidelines for transplant recipients include regular boosters of tetanus, diphtheria, and inactivated polio vaccine, but there are few published data on the efficacy of these vaccines in patients receiving immunosuppressive therapy. METHODS Serum antibody values were evaluated before and 4 weeks after tetanus, diphtheria, and inactivated polio vaccination in 164 renal transplant recipients compared with healthy controls. Twelve months later, antibody levels were evaluated in 55 patients. RESULTS Prebooster tetanus antitoxin values were lower in transplant recipients than in controls. All patients developed protective tetanus antibody levels (> or = 0.01 IU/ml) after vaccination. After 12 months, serum antibodies had decreased, but all patients maintained protective values. Diphtheria antitoxin titers before and after booster vaccination were lower in patients than in controls: 88.5% of patients and 96.2% of controls developed protective diphtheria antibody values. Twelve months after vaccination, diphtheria antitoxin values were below the protective level (0.1 IU/ml) in 38% of patients. Prebooster antibody values to poliovirus types 1 and 3 were comparable in patients and controls, whereas antibodies to poliovirus type 2 were lower in transplant recipients. Seroprotection rates and geometric mean antibody titers after vaccination were equivalent between the two groups for all three poliovirus types. No difference was observed in antibody levels between patients on different immunosuppressive drug regimens. Adverse reactions were significantly less often reported by transplant recipients. CONCLUSIONS In transplant recipients, tetanus and inactivated polio vaccinations are well tolerated and induce protective antibody levels; diphtheria vaccination as currently recommended is less effective and protective antitoxin values decrease rapidly in these patients within 1 year after vaccination.
Collapse
Affiliation(s)
- D Huzly
- Institute of Tropical Medicine, University Hospital Charite, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Li J, Zhang LB, Yoneyama T, Yoshida H, Shimizu H, Yoshii K, Hara M, Nomura T, Yoshikura H, Miyamura T, Hagiwara A. Genetic basis of the neurovirulence of type 1 polioviruses isolated from vaccine-associated paralytic patients. Arch Virol 1996; 141:1047-54. [PMID: 8712922 DOI: 10.1007/bf01718608] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We examined four type 1 polioviruses isolated from the stools of patients with vaccine-associated paralytic poliomyelitis in China. All of these isolates were shown to be Sabin derived viruses by restriction fragment length polymorphism assay after polymerase chain reaction and by sequencing of the viral genome encoding the viral coat protein, VP1. However, the same analysis of the 3D coding region suggested that two of the four isolates had the sequence of wild type poliovirus in the tested region. Furthermore there were also point mutations in the 5' non-coding region. One was a single base change from U to C at nucleotide position 525, and the other three were from G to A at position 480. All the four strains were more neurovirulent that Sabin type 1 virus in transgenic mice with human poliovirus receptor gene. The data showed that the nucleotide positions of type 1 poliovirus which were identified to be in favor of the high neurovirulence were indeed changed during natural transmission, and suggested that the point mutation alone or a recombination of the vaccine type with wild type genome results in an acquisition of neurovirulence.
Collapse
Affiliation(s)
- J Li
- Department of Virology II, National Institute of Health, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The design of strain-specific polymerase chain reactions for discrimination of the raccoon rabies virus strain from indigenous rabies viruses of Ontario. J Virol Methods 1996. [DOI: 10.1016/0166-0934(95)01978-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Nadin-Davis SA, Huang W, Wandeler AI. The design of strain-specific polymerase chain reactions for discrimination of the racoon rabies virus strain from indigenous rabies viruses of Ontario. J Virol Methods 1996; 57:1-14. [PMID: 8919819 DOI: 10.1016/0166-0934(95)01907-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since its recognition as a discrete epizootic in Florida in the early 1950s, the raccoon strain of rabies virus (RV) has spread over almost the entire eastern seaboard of the US and now threatens to enter the southernmost regions of Canada. To characterise this RV strain in more detail, nucleotide sequencing of the N and G genes, encoding the nucleoprotein and glycoprotein, respectively, of representative isolates has been undertaken. This sequence information generated a conserved restriction map of the N gene, thereby permitting unequivocal identification of this strain by molecular techniques. Comparisons of the predicted nucleoprotein and glycoprotein products with those of other RV strains identified a number of amino acid sequence variations conserved only in the raccoon strain. This information was used to design strain-specific primers targeted to the N gene sequences encoding these residues. The incorporation of these primers into a multiplex polymerase chain reaction (PCR) protocol permitted easy and rapid discrimination between the raccoon RV strain and indigenous Ontario RVs.
Collapse
Affiliation(s)
- S A Nadin-Davis
- Pathobiology Section, Agriculture-Agrifood Canada, Animal Diseases Research Institute, Nepean, ON
| | | | | |
Collapse
|
35
|
Schuster V, Seidenspinner S, Kreth HW. Detection of a nuclear antigen 2 (EBNA2)-variant Epstein-Barr virus strain in two siblings with fatal lymphoproliferative disease. J Med Virol 1996; 48:114-20. [PMID: 8825720 DOI: 10.1002/(sici)1096-9071(199601)48:1<114::aid-jmv18>3.0.co;2-g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An EBV type 1 variant strain was detected in two Turkish siblings (boy and girl), who both suffered and died from similar progressive Epstein-Barr virus (EBV)-associated lymphoproliferative disease. Molecular characterisation of this EBV isolate revealed a 51bp-deletion and six nucleotide changes within the Epstein-Barr nuclear antigen 2 (EBNA2). Both isolates contained EBV type 2 sequences in the Epstein-Barr virus-encoded small RNAs (EBER), which are 40 kb proximal to EBNA2. Sequencing of the EBV isolates in a region of Epstein-Barr nuclear antigen 3 (EBNA3a), which is 40 kb distal to EBNA2, revealed the normal EBV type 1 sequence of laboratory strain B95-8. This EBV isolate may represent a distinct wild type EBV strain with altered biological properties. It is suggested that this EBNA2-variant strain may be responsible at least in part for the severe clinical course in both affected children.
Collapse
Affiliation(s)
- V Schuster
- Children's Hospital, University of Würzburg, Germany
| | | | | |
Collapse
|