1
|
Synthetic peptides to produce antivenoms against the Cys-rich toxins of arachnids. Toxicon X 2020; 6:100038. [PMID: 32550593 PMCID: PMC7285918 DOI: 10.1016/j.toxcx.2020.100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Scorpion and spider envenomation is treated with the appropriate antivenoms, prepared as described by Césaire Auguste Phisalix and Albert Calmette in 1894. Such treatment requires the acquisition and manipulation of arachnid venoms, both very complicated procedures. Most of the toxins in the venoms of spiders and scorpions are extremely stable cysteine-rich peptide neurotoxins. Many strategies have been developed to obtain synthetic immunogens to facilitate the production of antivenoms against these toxins. For example, whole peptide toxins can be synthesized by solid-phase peptide synthesis (SPPS). Also, epitopes of the toxins can be identified and after the chemical synthesis of these peptide epitopes by SPPS, they can be coupled to protein carriers to develop efficient immunogens. Moreover, multiple antigenic peptides with a polylysine core can be designed and synthesized. This review focuses on the strategies developed to obtain synthetic immunogens for the production of antivenoms against the toxic Cys-rich peptides of scorpions and spiders.
Collapse
|
2
|
Bermúdez-Méndez E, Fuglsang-Madsen A, Føns S, Lomonte B, Gutiérrez JM, Laustsen AH. Innovative Immunization Strategies for Antivenom Development. Toxins (Basel) 2018; 10:toxins10110452. [PMID: 30400220 PMCID: PMC6265855 DOI: 10.3390/toxins10110452] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Snakes, scorpions, and spiders are venomous animals that pose a threat to human health, and severe envenomings from the bites or stings of these animals must be treated with antivenom. Current antivenoms are based on plasma-derived immunoglobulins or immunoglobulin fragments from hyper-immunized animals. Although these medicines have been life-saving for more than 120 years, opportunities to improve envenoming therapy exist. In the later decades, new biotechnological tools have been applied with the aim of improving the efficacy, safety, and affordability of antivenoms. Within the avenues explored, novel immunization strategies using synthetic peptide epitopes, recombinant toxins (or toxoids), or DNA strings as immunogens have demonstrated potential for generating antivenoms with high therapeutic antibody titers and broad neutralizing capacity. Furthermore, these approaches circumvent the need for venom in the production process of antivenoms, thereby limiting some of the complications associated with animal captivity and venom collection. Finally, an important benefit of innovative immunization approaches is that they are often compatible with existing antivenom manufacturing setups. In this review, we compile all reported studies examining venom-independent innovative immunization strategies for antivenom development. In addition, a brief description of toxin families of medical relevance found in snake, scorpion, and spider venoms is presented, as well as how biochemical, bioinformatic, and omics tools could aid the development of next-generation antivenoms.
Collapse
Affiliation(s)
| | - Albert Fuglsang-Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
- Department of Biology, University of Copenhagen, DK-2200 København N, Denmark.
| | - Sofie Føns
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Lima SDA, Guerra-Duarte C, Costal-Oliveira F, Mendes TM, Figueiredo LFM, Oliveira D, Machado de Avila RA, Ferrer VP, Trevisan-Silva D, Veiga SS, Minozzo JC, Kalapothakis E, Chávez-Olórtegui C. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits. Front Immunol 2018; 9:653. [PMID: 29666624 PMCID: PMC5891610 DOI: 10.3389/fimmu.2018.00653] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/16/2018] [Indexed: 01/20/2023] Open
Abstract
Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.
Collapse
Affiliation(s)
- Sabrina de Almeida Lima
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Clara Guerra-Duarte
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Costal-Oliveira
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais Melo Mendes
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luís F M Figueiredo
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daysiane Oliveira
- Programa de Pós-Graduação em Ciências da Saúde - PPGCS, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Ricardo A Machado de Avila
- Programa de Pós-Graduação em Ciências da Saúde - PPGCS, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | | | | | | | - João C Minozzo
- Centro de Produção e Pesquisa de Imunobiológicos - CPPI, Piraquara, Brazil
| | - Evanguedes Kalapothakis
- Departamentos de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Chávez-Olórtegui
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins (Basel) 2016; 8:E226. [PMID: 27455327 PMCID: PMC4999844 DOI: 10.3390/toxins8080226] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark.
| | - Mireia Solà
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Emma Christine Jappe
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Saioa Oscoz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Line Præst Lauridsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikael Engmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Santibáñez-López CE, Francke OF, Ureta C, Possani LD. Scorpions from Mexico: From Species Diversity to Venom Complexity. Toxins (Basel) 2015; 8:E2. [PMID: 26712787 PMCID: PMC4728524 DOI: 10.3390/toxins8010002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/25/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world's medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided.
Collapse
Affiliation(s)
- Carlos E Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| | - Oscar F Francke
- Colección Nacional de Arácnidos, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Copilco, Coyoacán A.P. 70-233, Distrito Federal 04510, Mexico.
| | - Carolina Ureta
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, Distrito Federal 04510, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| |
Collapse
|
6
|
Mendes TM, Guimarães-Okamoto PTC, Machado-de-Avila RA, Oliveira D, Melo MM, Lobato ZI, Kalapothakis E, Chávez-Olórtegui C. General characterization of Tityus fasciolatus scorpion venom. Molecular identification of toxins and localization of linear B-cell epitopes. Toxicon 2015; 99:109-17. [PMID: 25817000 DOI: 10.1016/j.toxicon.2015.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/18/2022]
Abstract
This communication describes the general characteristics of the venom from the Brazilian scorpion Tityus fasciolatus, which is an endemic species found in the central Brazil (States of Goiás and Minas Gerais), being responsible for sting accidents in this area. The soluble venom obtained from this scorpion is toxic to mice being the LD50 is 2.984 mg/kg (subcutaneally). SDS-PAGE of the soluble venom resulted in 10 fractions ranged in size from 6 to 10-80 kDa. Sheep were employed for anti-T. fasciolatus venom serum production. Western blotting analysis showed that most of these venom proteins are immunogenic. T. fasciolatus anti-venom revealed consistent cross-reactivity with venom antigens from Tityus serrulatus. Using known primers for T. serrulatus toxins, we have identified three toxins sequences from T. fasciolatus venom. Linear epitopes of these toxins were localized and fifty-five overlapping pentadecapeptides covering complete amino acid sequence of the three toxins were synthesized in cellulose membrane (spot-synthesis technique). The epitopes were located on the 3D structures and some important residues for structure/function were identified.
Collapse
Affiliation(s)
- T M Mendes
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP: 486, CEP: 31270-901 Belo Horizonte, MG, Brazil
| | - P T C Guimarães-Okamoto
- Unesp-Faculdade de Medicina Veterinária e Zootecnia de Botucatu, Distrito de Rubião Júnior s/n, CEP: 18618-970 Botucatu, SP, Brazil
| | - R A Machado-de-Avila
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP: 486, CEP: 31270-901 Belo Horizonte, MG, Brazil
| | - D Oliveira
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP: 486, CEP: 31270-901 Belo Horizonte, MG, Brazil
| | - M M Melo
- Escola de Veterinária - Universidade Federal de Minas Gerais, CP: 567, CEP: 30123-970 Belo Horizonte, MG, Brazil
| | - Z I Lobato
- Escola de Veterinária - Universidade Federal de Minas Gerais, CP: 567, CEP: 30123-970 Belo Horizonte, MG, Brazil
| | - E Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP: 486, CEP: 31270-901 Belo Horizonte, MG, Brazil
| | - C Chávez-Olórtegui
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP: 486, CEP: 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Carmo AO, Chatzaki M, Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E. Evolution of alternative methodologies of scorpion antivenoms production. Toxicon 2015; 97:64-74. [PMID: 25701676 DOI: 10.1016/j.toxicon.2015.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 12/23/2022]
Abstract
Scorpionism represents a serious public health problem resulting in the death of children and debilitated individuals. Scorpion sting treatment employs various strategies including the use of specific medicines such as antiserum, especially for patients with severe symptoms. In 1909 Charles Todd described the production of an antiserum against the venom of the scorpion Buthus quinquestriatus. Based on Todd's work, researchers worldwide began producing antiserum using the same approach i.e., immunization of horses with crude venom as antigen. Despite achieving satisfactory results using this approach, researchers in this field have developed alternative approaches for the production of scorpion antivenom serum. In this review, we describe the work published by experts in toxinology to the development of scorpion venom antiserum. Methods and results describing the use of specific antigens, detoxified venom or toxins, purified toxins and or venom fractions, native toxoids, recombinant toxins, synthetic peptides, monoclonal and recombinant antibodies, and alternative animal models are presented.
Collapse
Affiliation(s)
- A O Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - M Chatzaki
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, 69100 Komotini, Greece.
| | - C C R Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B F Magalhães
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B B R Oliveira-Mendes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - C Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - E Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
8
|
Dias-Lopes C, Guimarães G, Felicori L, Fernandes P, Emery L, Kalapothakis E, Nguyen C, Molina F, Granier C, Chávez-Olórtegui C. A protective immune response against lethal, dermonecrotic and hemorrhagic effects of Loxosceles intermedia venom elicited by a 27-residue peptide. Toxicon 2010; 55:481-7. [DOI: 10.1016/j.toxicon.2009.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/18/2009] [Accepted: 09/29/2009] [Indexed: 11/29/2022]
|
9
|
Espino-Solis GP, Calderon-Amador J, Calderon-Aranda ES, Licea AF, Donis-Maturano L, Flores-Romo L, Possani LD. Rational design of synthetic peptides to generate antibodies that recognize in situ CD11c(+) putative dendritic cells in horse lymph nodes. Vet Immunol Immunopathol 2009; 132:181-90. [PMID: 19682754 DOI: 10.1016/j.vetimm.2009.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/08/2009] [Accepted: 06/10/2009] [Indexed: 11/29/2022]
Abstract
A three-dimensional model of the alphaX I-domain of the horse integrin CD11c from dendritic cells provided information for selecting two segments of the primary structure for peptide synthesis. Peptide 1 contains 20 amino acids and peptide 2 has 17 amino acid residues. The first spans from position Thr229 to Arg248 of an alpha-helix segment of the structure, whereas peptide 2 goes from Asp158 to Phe174 and corresponds to an exposed segment of the loop considered to be the metal ion-dependent adhesion site. Murine polyclonal antisera against both peptides were generated and assayed in peripheral blood cell suspensions and in cryosections of horse lymph nodes. Only the serum against peptide 2 was capable of identifying cells in suspension and in situ by immunohistochemistry, some with evident dendritic morphology. Using this approach, an immunogenic epitope exposed in CD11c was identified in cells from horse lymph node in situ.
Collapse
Affiliation(s)
- Gerardo P Espino-Solis
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|
10
|
Duarte CG, Alvarenga LM, Dias-Lopes C, Machado-de-Avila RA, Nguyen C, Molina F, Granier C, Chávez-Olórtegui C. In vivo protection against Tityus serrulatus scorpion venom by antibodies raised against a discontinuous synthetic epitope. Vaccine 2009; 28:1168-76. [PMID: 19948263 DOI: 10.1016/j.vaccine.2009.11.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/06/2009] [Accepted: 11/11/2009] [Indexed: 11/16/2022]
Abstract
Scorpion stings cause human fatalities in numerous countries. Serotherapy is the only specific means to try to circumvent the noxious effects of venom toxins. TsNTxP is a natural anatoxin from the venom of the scorpion Tityus serrulatus that may be useful to raise therapeutic anti-venom sera. Linear epitopes recognized by anti-TsNTxP antibodies have previously been mapped. Here, we attempted to identify discontinuous epitopes in TsNTxP since neutralizing epitopes are often associated with such complex entities. One hundred and fifty-three octadecapeptides with the general formula (P1)-(Gly-Gly)-(P2) were synthesized by the Spot method on cellulose membranes. P1 and P2 were octapeptides from the TsNTxP N-terminal and C-terminal sections, respectively. Each sequence of eight amino acids was frameshifted in turn by three residues, in order to cover TsNTxP entire sequence. Binding of neutralizing anti-TsNTxP rabbit antibodies to spotted peptides revealed GREGYPADGGGLPDSVKI as the more reactive peptide sequence. This epitope was made from the first eight residues of the protein (GREGYPAD) and from residues 47 to 54 (GLPDSVKI) of the C-terminal part of TsNTxP. BALB/c mice were immunized with synthetic GREGYPADGGGLPDSVKI peptide conjugated to ovalbumin. One week after the last immunization, in vivo protection assays showed that immunized mice could resist a challenge by an amount of T.serrulatus whole venom equivalent to 1.75 LD(100), a dose that killed all control non-immune mice. Based on molecular models of TsNTxP and related Tityus toxins, we found that the above peptide matches with a discontinuous epitope, well exposed at the toxin molecular surface which contains residues known to be important for the bioactivity of toxins.
Collapse
Affiliation(s)
- Clara Guerra Duarte
- Departamentos de Bioquímica-Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Pampulha, CP 486, CEP 31270901, Belo Horizonte-MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Felicori L, Fernandes PB, Giusta MS, Duarte CG, Kalapothakis E, Nguyen C, Molina F, Granier C, Chávez-Olórtegui C. An in vivo protective response against toxic effects of the dermonecrotic protein from Loxosceles intermedia spider venom elicited by synthetic epitopes. Vaccine 2009; 27:4201-8. [PMID: 19389441 DOI: 10.1016/j.vaccine.2009.04.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/08/2009] [Accepted: 04/13/2009] [Indexed: 11/19/2022]
Abstract
Loxoscelism is a necrotic-hemolytic syndrome caused by bites of brown spiders belonging to the genus Loxosceles. Many approaches for the treatment of Loxosceles poisoning have already been proposed, among which administration of specific antivenom is thought to be the more specific. We have evaluated the use of peptides as immunogen to raise in rabbits an antibody response that could protect animals from a challenge by the Loxtox isoform LiD1, one of the main toxic component of Loxosceles intermedia venom. Six antigenic regions of LiD1 were mapped by using the SPOT method. The corresponding peptides were further chemically synthesized, mixed, and used as immunogens in rabbits. Control animal received recombinant LiD1 alone or together with peptides. We found that the rabbit antibody response to peptides was cross-reactive with LiD1, although only one peptide from the mix of six was immunogenic. The dermonecrotic, hemorrhagic and oedema forming activities induced by LiD1 in naïve rabbits were inhibited by 82%, 35% and 35% respectively, by preincubation of LiD1 with anti-peptide antibodies prepared from immunized rabbits. Animals that were immunized with peptides or LiD1r, were found to be protected from the dermonecrotic, hemorrhagic and oedema forming activities induced by a challenge with LiD1. The protection conferred by peptides was, however, lower than that provided by the peptide protein combination or by the full-length protein. These results encourage us in the utilization of synthetic peptides for therapeutic serum development or vaccination approaches.
Collapse
Affiliation(s)
- Liza Felicori
- Departamento de Bioquímica-Imunologia, ICB, Universidade Federal de Minas Gerais, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Quintero-Hernández V, Juárez-González VR, Ortíz-León M, Sánchez R, Possani LD, Becerril B. The change of the scFv into the Fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies. Mol Immunol 2007; 44:1307-15. [PMID: 16814388 DOI: 10.1016/j.molimm.2006.05.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 05/19/2006] [Accepted: 05/24/2006] [Indexed: 11/28/2022]
Abstract
The antigen-binding fragment (Fab) has been considered a more functionally stable version of recombinant antibodies than single chain antibody fragments (scFvs), however this intuitive consideration has not been sufficiently proven in vivo. This communication shows that three out of four specific scFvs against a scorpion toxin, with different affinities and stabilities, become neutralizing in vivo when expressed as Fabs, despite the fact that they are not neutralizing in the scFv format. A scFv fragment previously obtained from a neutralizing mouse antibody (BCF2) was used to produce three derived scFvs by directed evolution. Only one of them was neutralizing, however when expressed as Fab, all of them became neutralizing fragments in vivo. The initial scFvBCF2 (earlier used for directed evolution) was not neutralizing in the scFv format. After expressing it as Fab did not become a neutralizing fragment, but did reduce the intoxication symptoms of experimental mice. The stability of the four Fabs derived from their respective scFvs was improved when tested in the presence of guanidinium chloride. The in vitro stability of the Fab format has been shown earlier, but the physiological consequences of this stability are shown in this communication. The present results indicate that improved functional stability conferred by the Fab format can replace additional maturation steps, when the affinity and stability are close to the minimum necessary to be neutralizing.
Collapse
Affiliation(s)
- Veronica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | |
Collapse
|
13
|
Gazarian KG, Gazarian T, Hernández R, Possani LD. Immunology of scorpion toxins and perspectives for generation of anti-venom vaccines. Vaccine 2005; 23:3357-68. [PMID: 15837360 DOI: 10.1016/j.vaccine.2004.12.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 08/31/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
Scorpions and other venomous animals contain concentrates of biologically active substances developed to block vital physiological and biochemical functions of the victims. These have contrasting human health concerns, provide important pharmacological raw material and pose a serious threat to human life and health in tropical and subtropical regions. Because only occasional and minor quantities of venom are introduced into the human organism with a scorpion sting and their mortal effect is an acute phenomenon these substances are unknown to the immune defense system and thus no immunity has appeared against them during evolution. Antidotes prepared from animal anti-sera are effective against some species of scorpions but depend on the manufacturer and the availability of product to the medical community. Although significant progress has been made in immunological studies of certain groups of toxins, few centers are dedicated to this research. Information is still insufficient to generate a comprehensive picture of the subject and to propose vaccines against venoms. A novel approach based on mimotopes selected from phage-displayed random peptide libraries show potential to impel further progress of toxin immunological studies and to provide putative vaccine resources. In this report we revise the "state of the art" in the field.
Collapse
Affiliation(s)
- Karlen G Gazarian
- Department of Molecular Biology and Biotechnology of Institute of Biomedical Research, Mexican National University (UNAM), Ciudad Universitaria, Circuito escolar s/n, Ciudad Universitaria, 04510 México DF, México.
| | | | | | | |
Collapse
|
14
|
Juárez-González VR, Riaño-Umbarila L, Quintero-Hernández V, Olamendi-Portugal T, Ortiz-León M, Ortíz E, Possani LD, Becerril B. Directed Evolution, Phage Display and Combination of Evolved Mutants: A Strategy to Recover the Neutralization Properties of the scFv Version of BCF2 a Neutralizing Monoclonal Antibody Specific to Scorpion Toxin Cn2. J Mol Biol 2005; 346:1287-97. [PMID: 15713481 DOI: 10.1016/j.jmb.2004.12.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/15/2004] [Accepted: 12/30/2004] [Indexed: 11/25/2022]
Abstract
BCF2, a monoclonal antibody raised against scorpion toxin Cn2, is capable of neutralizing both, the toxin and the whole venom of the Mexican scorpion Centruroides noxius Hoffmann. The single chain antibody fragment (scFv) of BCF2 was constructed and expressed in Escherichia coli. Although its affinity for the Cn2 toxin was shown to be in the nanomolar range, it was non-neutralizing in vivo due to a low stability. In order to recover the neutralizing capacity, the scFv of BCF2 was evolved by error-prone PCR and the variants were panned by phage display. Seven improved mutants were isolated from three different libraries. One of these mutants, called G5 with one mutation at CDR1 and another at CDR2 of the light chain, showed an increased affinity to Cn2, as compared to the parental scFv. A second mutant, called B7 with a single change at framework 2 of heavy chain, also had a higher affinity. Mutants G5 and B7 were also improved in their stability but they were unable to neutralize the toxin. Finally, we constructed a variant containing the changes present in G5 and B7. The purpose of this construction was to combine the increments in affinity and stability borne by these mutants. The result was a triple mutant capable of neutralizing the Cn2 toxin. This variant showed the best affinity constant (KD=7.5x10(-11) M), as determined by surface plasmon resonance (BIAcore). The k(on) and k(off) were improved threefold and fivefold, respectively, leading to 15-fold affinity improvement. Functional stability determinations by ELISA in the presence of different concentrations of guanidinium hydrochloride (Gdn-HCl) revealed that the triple mutant is significantly more stable than the parental scFv. These results suggest that not only improving the affinity but also the stability of our scFv were important for recovering its neutralization capacity. These findings pave the way for the generation of recombinant neutralizing antisera against scorpion stings based on scFvs.
Collapse
Affiliation(s)
- V R Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Coeurdacier JL, Laporte F, Pepin JF. Preliminary approach to find synthetic peptides from nodavirus capsid potentially protective against sea bass viral encephalopathy and retinopathy. FISH & SHELLFISH IMMUNOLOGY 2003; 14:435-47. [PMID: 12711276 DOI: 10.1006/fsim.2002.0449] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Four synthetic peptides of 15 amino acids (aa), corresponding to sequences of the nodavirus DIEV RNA(2) protein, were chosen to test their potential immunogenicity in sea bass. Two of these included the N or C terminal regions (N-ter or C-ter) and the sequences of the others contained a potential external site (aa 127-140: Lp1 and as 266-279: Lp2). Two heat inactivated strains of nodavirus (HI Sb1 and HI Sb2), were used as positive controls and the carrier (KLH) as a negative control. ELISAs were performed to quantify serum antibodies specific to nodavirus, to peptides, and to the carrier in order to monitor their immunogenicity. All the fish reacted to the peptides C-Ter, Lp1 and Lp2 but only 55% of animals injected with N-ter produced specific antibodies. The proportion of fish that produced antibodies that cross reacted with nodavirus was very different with regard to the antigen injected: HI Sb1=88%; HI Sb2=85%; N-ter=38%; C-ter=27%. Protection against nodavirus was investigated by challenging the fish with a virulent viral suspension. The results showed that heat-inactivated Nodavirus protect fish and the N-ter peptide is a potential protective peptide. This initial approach showed that although vaccinating fish with peptides is possible, the tools and strategies of the research used in this field still need to be adapted to fish.
Collapse
|
16
|
Theakston RDG, Warrell DA, Griffiths E. Report of a WHO workshop on the standardization and control of antivenoms. Toxicon 2003; 41:541-57. [PMID: 12676433 DOI: 10.1016/s0041-0101(02)00393-8] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A workshop to discuss progress in the standardization and control of antivenoms, organized by the Quality Assurance and Safety of Biologicals Unit of WHO, was held at the National Institute for Biological Standards and Control, Potters Bar, England, 7-9 February 2001. This was the first meeting convened by the WHO on this subject since 1979 and it brought together experts from academic institutions, antivenom manufacturers and national regulatory authorities from 21 countries. The meeting reviewed antivenom production and quality control measures and special consideration was given to the current crisis in antivenom production and supply in sub-Saharan Africa. The importance of snake bite and scorpion stings as public health issues was re-emphasised. The majority of commercial antivenoms are raised against snake or scorpion venoms.The review of antivenom production methods indicated that the vast majority of commercial antivenoms were still produced by traditional technology in horses, although some antisera were raised in sheep and rabbits. Methods used for plasma fractionation included salt and heat coagulation, caprylic acid stabilization or ion exchange chromatography, as well as immunoglobulin digestion with pepsin to produce F(ab')(2) or with papain to produce Fab fragments. The meeting agreed that there was much room for improving the production, quality control and safety profile of these products and that lessons could be learnt from the experience gained with the preparation of human immunoglobulins. Many basic assumptions, such as the need to remove Fc fragments by enzyme digestion and to freeze-dry antivenom preparations, required critical re-examination and more attention should be given to clinical trials as a means of assessing efficacy and safety and of defining the average initial dose. The Workshop also discussed concerns about the risks of transmitting infectious agents to humans via animal blood products, especially those posed by viruses or prions and it was agreed that this aspect needed attention. However, there was no documented or even suspected example of this ever having occurred in the case of antivenom treatment. Current WHO Requirements for the production and control of antivenoms and for immune sera of animal origin date from the late 1960s. The Workshop recommended that these be updated to take account of the progress that had taken place in the production and quality control of biologicals in recent years. In addition, the Workshop discussed the need for better standardization of both the venoms and antivenoms, but concluded that international standards and reference materials were not appropriate in the antivenom field due to the considerable variation in venom characteristics from the same species from region to region. Instead, it was recommended that national or regional standards be prepared and used.
Collapse
Affiliation(s)
- R D G Theakston
- Alistair Reid Venom Research Unit, WHO Collaborating Centre for the Control of Antivenoms, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | |
Collapse
|
17
|
Garcia C, Calderón-Aranda ES, Anguiano GAV, Becerril B, Possani LD. Analysis of the immune response induced by a scorpion venom sub-fraction, a pure peptide and a recombinant peptide, against toxin Cn2 of Centruroides noxius Hoffmann. Toxicon 2003; 41:417-27. [PMID: 12657311 DOI: 10.1016/s0041-0101(02)00337-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Three different immunogens from the venom of the Mexican scorpion Centruroides noxius Hoffmann were used to study protective antibody response in mice and rabbits, challenged with toxin Cn2, one of the most abundant toxic peptide of this venom. The immunogens were: Cn5, a crustacean specific toxin; a recombinant protein containing the peptide Cn5 linked to the maltose transporter and a sub-fraction (F.II.5) containing 25 distinct peptides, among which is Cn5. Mice immunized with these three preparations, when directly challenged with Cn2 presented no apparent protection, whereas anti-sera produced in rabbits with these three immunogens were capable of partially neutralizing the effect of Cn2, when injected into naive mice. Cn5 rabbit anti-serum showed a better protective effect on mice, than the rabbit sera obtained against the two other antigens. The subcutaneous route of challenging mice was shown to be better than intraperitoneal injections. Comparative structural analysis of Cn5 with other toxins of this venom showed that our results are important to be taken into consideration, when choosing appropriate immunogens aimed at the production of better anti-venoms or for the rational design of possible vaccines.
Collapse
Affiliation(s)
- Consuelo Garcia
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | | | | | | | | |
Collapse
|
18
|
Chavez-Olortegui C, Molina F, Granier C. Molecular basis for the cross-reactivity of antibodies elicited by a natural anatoxin with alpha- and beta-toxins from the venom of Tityus serrulatus scorpion. Mol Immunol 2002; 38:867-76. [PMID: 11922945 DOI: 10.1016/s0161-5890(01)00117-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A non-toxic protein (TsNTxP) isolated from the venom of the noxious scorpion Tityus serrulatus (Ts) induces polyclonal antibodies cross-reactive with several toxins from the venom, in sharp contrast to anti-toxin antibodies which are toxin specific. To try to uncover the molecular basis for these unusual properties, peptide scanning experiments were performed and indicated that the N- and C-terminal parts of TsNTxP enclose continuous epitopes (residues 1-15 and 47-61). Antibodies raised against peptides corresponding to these two regions were found to have neutralizing properties against a mixture of all toxic proteins from the T. serrulatus venom, indicating that residues 1-15 and 47-61 correspond to neutralizing epitopes. The identification of key antigenic residues within these two epitopes revealed that several of them are well conserved in the amino-acid sequences of the three main toxins (Ts II, Ts IV and Ts VII) from the venom: Glu 3, Tyr 5, Asp 8, Asp 50, Trp 55 and Lys 61. A single key-residue (Glu 58) is unique to TsNTxP. By using homology modeling, a model of the three-dimensional structure of TsNTxP was obtained. The antigenically important residues from TsNTxP were found to be surface exposed, with five of them clustered on the facet of the protein reported to enclose the active site of toxins. Residues equivalent to the seven key-residues of the anatoxin were also found to be exposed in the active toxins from T. serrulatus venom. These results show that antibodies elicited by the non-toxic protein TsNTxP recognized, within the N- and C-terminal parts of toxins of T. serrulatus, conserved and surface exposed residues which might also be involved in the toxic action of the proteins.
Collapse
|
19
|
Hernández R, Gazarian TG, Hérion PS, Gazarian KG. Molecular localization and crossreactivity of two epitopes of noxiustoxin from scorpion Centruroides noxius, identified by a panel of monoclonal antibodies and peptide mimotopes. Immunol Lett 2002; 80:97-103. [PMID: 11750040 DOI: 10.1016/s0165-2478(01)00320-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mimotopes derived from peptide phage display libraries may reproduce basic functions of epitopes including their antigenicity. In case of toxins, this property makes phage displayed mimotopes highly specific vaccine components free of the toxicity. To explore the potential of mimotopes for vaccine development, their ability of substituting the whole toxin molecule deserves a detailed characterization. We used mimotopes of noxiustoxin (NTX), a neurotoxin from scorpion Centruroides noxius, for studying its epitopes recognized by a panel of six monoclonal antibodies (mAbs), as well as their crossreactivity with homologous toxins from other species of the Centruroides genus. Although competitive (displacement) immunoassay showed that all six mAbs inhibit each other for binding to whole NTX molecule, the mimotopes used as specific probes allowed separation of the mAbs into two functional groups recognizing distinct non-overlapping epitopes mapped on the opposite sites of the three-dimensional structure of the toxin. The use of mimotopes permitted a precise specificity analysis of a panel of antibodies raised against this toxin, that may be very important for immunological characterization of other scorpion toxins and for vaccine development.
Collapse
Affiliation(s)
- Ricardo Hernández
- Laboratory of Molecular Genetics, Department of Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad Universitaria, 04510 Mexico City, Mexico
| | | | | | | |
Collapse
|
20
|
Alvarenga LM, Diniz CR, Granier C, Chávez-Olórtegui C. Induction of neutralizing antibodies against Tityus serrulatus scorpion toxins by immunization with a mixture of defined synthetic epitopes. Toxicon 2002; 40:89-95. [PMID: 11602284 DOI: 10.1016/s0041-0101(01)00197-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have used the Spot method of multiple peptide synthesis to prepare sets of immobilized overlapping peptides of uniform size (15 mer), covering the complete amino acid sequences of TsNTxP a non-toxic and immunogenic protein and TsIV, an alpha-type toxin that is the major lethal component of the venom of scorpion Tityus serrulatus. Anti-TsNTxP antibodies binding to peptides, revealed three antigenic regions, one in the N-terminal, the second in the central part and the other in the C-terminal part of TsNTxP. One peptide epitope in the C-terminal part of TsIV was identified with anti-TsIV neutralizing rabbit antibodies. Anti-peptide antibodies were raised against these four peptides all together covalently coupled to keyhole limpet hemocyanin (KLH) and found to neutralize in vitro the toxic effects of the T. serrulatus venom. Quantities of venom equivalent to 13.5 LD(50) were effectively neutralized by 1ml of the anti-peptide serum. The antigenic specificities of the anti-peptides were compared by an indirect enzyme-linked immunosorbent assay (ELISA) using synthetic peptides and crude venoms from T. serrulatus, T. bahiensis, T. cambridgei, T. stigmurus, Androctonus autralis Hector and Centruroides sculpturatus to coat the microtitration plates. The anti-peptide antibodies had a comparable high reactivity with the crude venom of T. serrulatus, moderate binding to T. bahiensis, T. cambridgei, T. stigmurus and Centruroides sculpturatus venoms but were unable to recognize the venom of Androctonus autralis Hector. These results show that by using peptides derived from the sequence of scorpion toxins, the generation of anti-peptide antibodies able to neutralize the cognate venom appears to be an alternative strategy for the easy preparation of antivenoms.
Collapse
Affiliation(s)
- L M Alvarenga
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, 30550-010, MG, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
21
|
Calderon-Aranda ES, Selisko B, York EJ, Gurrola GB, Stewart JM, Possani LD. Mapping of an epitope recognized by a neutralizing monoclonal antibody specific to toxin Cn2 from the scorpion Centruroides noxius, using discontinuous synthetic peptides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:746-55. [PMID: 10491120 DOI: 10.1046/j.1432-1327.1999.00620.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Na+-channel-affecting toxin Cn2 represents the major and one of the most toxic components of the venom of the Mexican scorpion Centruroides noxius Hoffmann. A monoclonal antibody BCF2 raised against Cn2 has been shown previously to be able to neutralize the toxic effect of Cn2 and of the whole venom of C. noxius. In the present study the epitope was mapped to a surface region comprising the N- and C-terminal segments of Cn2, using continuous and discontinuous synthetic peptides, designed on the basis of the sequence and a three-dimensional model of Cn2. The study of peptides of varying length resulted in the identification of segments 5-14 and 56-65 containing residues essential for recognition by BCF2. The peptide (abbreviated SP7) with the highest affinity to BCF2 (IC50 = 5.1 microM) was a synthetic heterodimer comprising the amino acid sequence from position 3-15 (amidated) of Cn2, bridged by disulfide to peptide from position 54-66, acetylated and amidated. Similar affinity was found with peptide SP1 [heterodimer comprising residues 1-14 (amidated) of Cn2, bridged with synthetic peptide 52-66 (acetylated)]. SP1 and SP7 were used to induce anti-peptide antibodies in mouse and rabbit. Both peptides were highly immunogenic. The sera obtained were able to recognize Cn2 and to neutralize Cn2 in vitro. The most efficient protection (8.3 microgram Cn2 neutralized per mL of serum) was induced by rabbit anti-SP1 serum.
Collapse
Affiliation(s)
- E S Calderon-Aranda
- Department of Molecular Recognition, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | | | | | | |
Collapse
|
22
|
Moreira-Ferreira AM, Kalapothakis E, Diniz CR, Chávez-Olórtegui C. In vivo protection against Tityus serrulatus scorpion toxins by immunization of mice with a non-toxic protein. Toxicon 1998; 36:333-9. [PMID: 9620580 DOI: 10.1016/s0041-0101(97)00103-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The possibility of inducing a humoral immune response able to produce neutralizing antibodies against the lethal effects of scorpion toxins was evaluated in the mouse model. A non-toxic protein (TsNTxP) was purified from the venom of the Brazilian scorpion Tityus serrulatus by combining gel filtration, ion exchange and reverse phase HPLC chromatographic steps. After four injections of TsNTxP the mice developed an IgG response. The anti-TsNTxP antibodies had a comparable high cross-reactivity for the crude venom, toxic fraction (toxic fraction of venom that represents most of the toxicity of the crude venom -- TsTFG50) and TsIV, a representative alpha-type toxin of T. serrulatus, and moderate binding capacity for TsVII, a representative beta-type toxin. In vitro neutralization assays indicated that preincubation of a lethal dose of the toxic fraction with immune serum strongly reduced its toxicity. In vivo protection assays showed that mice immunized with TsNTxP resisted a challenge of 10 LD50 (s.c.) of the toxic fraction of T. serrulatus venom.
Collapse
|
23
|
Chávez-Olórtegui C, Kalapothakis E, Ferreira AM, Ferreira AP, Diniz CR. Neutralizing capacity of antibodies elicited by a non-toxic protein purified from the venom of the scorpion Tityus serrulatus. Toxicon 1997; 35:213-21. [PMID: 9080578 DOI: 10.1016/s0041-0101(96)00133-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polyclonal rabbit antibodies raised against a non-toxic protein (TsNTxP) purified from the toxic fraction of the crude venom of Tityus serrulatus can neutralize the effects of the venom. The antigenic specificities of anti-TsNTxP were compared by an indirect enzyme-linked immunosorbent assay using TsNTxP, TstFG50 (toxic fraction of venom that represents most of the toxicity of the crude venom), and crude venoms from T. serrulatus, T. bahiensis, T. cambridgei, T. stigmurus, Androctonus australis Hector and Centruroides sculpturatus to coat microtitration plates. The anti-TsNTxP antibodies had a comparable high cross-reactivity with the toxic fraction and crude venom of T. serrulatus, moderate binding capacity for T. bahiensis, T. cambridgei, T. stigmurus and were unable to recognize the venoms of A. australis Hector and C. sculpturatus. Quantities of venom equivalent to 20 LD50 were effectively neutralized by 1 ml of the anti-TsNTxP serum. This result shows that this protein may be of interest in the production of antivenoms for clinical use.
Collapse
Affiliation(s)
- C Chávez-Olórtegui
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
24
|
Devaux C, Fourquet P, Granier C. A conserved sequence region of scorpion toxins rendered immunogenic induces broadly cross-reactive, neutralizing antibodies. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:727-35. [PMID: 9022703 DOI: 10.1111/j.1432-1033.1996.0727r.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Scorpion toxins constitute a family of proteins with a high degree of sequence diversity but a common mode of action. Neutralization of the toxic effects of scorpion stings by serotherapy is limited due to the various serotypes expressed by these proteins. We explored the possibility of raising antibodies to conserved parts of the toxins which could recognize several members of the family. We established the variability profile of a set of 25 scorpion toxin sequences, then evaluated systematically by peptide-scanning methods the antigenicity of one scorpion toxin. The most conserved regions were generally very poorly antigenic. One exception was the N-terminal region, which is both conserved and antigenic. Antibodies were raised in rabbits against an eight-residue synthetic peptide mimicking the N-terminal region. These peptide antibodies were cross-reactive with several scorpion toxins belonging to different serotypes and neutralized both the pharmacological effects (binding to rat brain synaptosomes) and the biological activity (toxicity in mice) of the parent toxin. The molecular model of the toxin indicates that antibody binding to residues 1-8 probably either masks some residue(s) of the N-terminus critical for the biological activity or overlaps with the epitope previously defined by neutralizing monoclonal antibody. These findings could open the way for new therapeutic strategies for the medical care of envenomations.
Collapse
Affiliation(s)
- C Devaux
- CNRS URA 1455, Laboratoire de Biochimie, IFR Jean Roche, Faculté de Médecine Nord, Marseille, France
| | | | | |
Collapse
|
25
|
Licea AF, Becerril B, Possani LD. Fab fragments of the monoclonal antibody BCF2 are capable of neutralizing the whole soluble venom from the scorpion Centruroides noxius Hoffmann. Toxicon 1996; 34:843-7. [PMID: 8875771 DOI: 10.1016/0041-0101(96)00043-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BCF2 is a murine hybridoma cell line that produces a neutralizing antibody against toxin 2 (Cn2) from the scorpion Centruroides noxius Hoffmann of Mexico. In this communication we report the preparation and use of the BCF2 antibody and its antigen binding fragments (Fab) in experiments aiming at obtaining protection of experimental albino mice (strain CD1) challenged with purified toxin Cn2, as well as, with whole soluble venom from C. noxius. The monoclonal antibody BCF2 in amounts of 1 mg neutralizes 28 LD50 of soluble venom of C. noxius, whereas the Fab fragments of BCF2 (1 mg) are capable of neutralizing 43 LD50 dose of the same venom. To reach the same level of neutralization, with the commercially available horse antiserum [F(ab')2], we need to use about ninefold more material.
Collapse
Affiliation(s)
- A F Licea
- Department of Molecular Recognition and Structural Biology, National Autonomous University of Mexico, Cuernavaca, Mexico
| | | | | |
Collapse
|