1
|
Betton GR, Ennulat D, Hoffman D, Gautier JC, Harpur E, Pettit S. Biomarkers of Collecting Duct Injury in Han-Wistar and Sprague-Dawley Rats Treated with N-Phenylanthranilic Acid. Toxicol Pathol 2012; 40:682-94. [DOI: 10.1177/0192623311436174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
N-phenylanthranilic acid is a chloride channel blocker that causes renal papillary necrosis in rats. Studies were conducted in two strains of male rats to evaluate novel biomarkers of nephrotoxicity. Han-Wistar rats were given daily oral doses of 50, 350, or up to 700 mg/kg/day of NPAA, and Sprague-Dawley rats were given 50 or 400 mg/kg/day of NPAA. Rats were euthanized on days 8 and 15. The candidate kidney injury biomarkers renal papillary antigen-1 (RPA-1, for collecting duct injury), clusterin (for general kidney injury), α-glutathione-S-transferase (a proximal tubular marker), and µ-glutathione-S-transferase (a distal tubular marker) were measured in urine by enzyme immunoassay. Characteristic degeneration and necrosis of the collecting duct and renal papilla were observed in Han-Wistar rats at the high dose on day 8 and at the mid and high doses on day 15, and in Sprague-Dawley rats given the high dose on days 8 and 15. Increases in urinary RPA-1, and to a lesser extent urine clusterin, were generally associated with the presence of collecting duct injury and were more sensitive than BUN and serum creatinine. On the other hand, decreases in α-glutathione-S-transferase without proximal tubule lesions in both strains and decreases in µ-glutathione-S-transferase in Sprague-Dawley rats only were not associated with morphological proximal or distal tubule abnormalities, so both were of less utility. It was concluded that RPA-1 is a new biomarker with utility in the detection of collecting duct injury in papillary necrosis in male rats.
Collapse
|
2
|
Williams RE, Cottrell L, Jacobsen M, Bandara LR, Kelly MD, Kennedy S, Lock EA. 1H-Nuclear magnetic resonance pattern recognition studies withN-phenylanthranilic acid in the rat: time- and dose-related metabolic effects. Biomarkers 2008; 8:472-90. [PMID: 15195679 DOI: 10.1080/13547500310001647030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
N-Phenylanthranilic acid (NPAA) causes renal papillary necrosis (RPN) in the rat following repeated oral dosing. Non-invasive early detection of RPN is difficult, but a number of potential biomarkers have been investigated, including phospholipid and uronic acid excretion. This study used 1H-nuclear magnetic resonance (NMR) spectroscopic analysis of urine to investigate urinary metabolic perturbations occurring in the rat following exposure to NPAA. Male Alderley Park rats received NPAA (300, 500 or 700 mg kg(-1) day(-1) orally) for 7 days, and urine was collected on days 7-8, 14-15, 21-22 and 28-29. In a separate study, urine was collected on days 1-2, 3-4, 5-6 and 7-8 from rats receiving 500 mg kg(-1) day(-1). Samples were analysed by 1H NMR spectroscopy combined with multivariate data analysis and clinical chemistry. Histopathology and clinical chemistry analysis of terminal blood samples was carried out following termination on days 4, 6, 8 and 29 (4 week time course) and days 2, 4, 6 and 8 (8 day study). Urine analysis revealed a marked, though variable, excretion of beta-hydroxybutyrate, acetoacetate and acetone (ketone bodies) seen on days 3-4, 5-6 and 7-8 of the study. It is postulated that the ketonuria might be secondary to an alteration in fatty acid metabolism due to inhibition of prostaglandin synthesis. In addition, an elevation in urinary ascorbate was observed during the first 8 days of the study. Ascorbate is considered to be a biomarker of hepatic response, probably reflecting an increased hepatic activity due to glucuronidation of NPAA.
Collapse
Affiliation(s)
- Rebecca E Williams
- Syngenta Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, SK10 4TJ, UK.
| | | | | | | | | | | | | |
Collapse
|
3
|
Thanh NTK, Stevenson G, Obatomi DK, Aicher B, Baumeister M, Bach PH. Urinary lipid changes during the development of chemically-induced renal papillary necrosis: a study using mefenamic acid andN-phenylanthranilic acid. Biomarkers 2008; 6:417-27. [DOI: 10.1080/13547500110057407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Tsuchiya Y, Yabe K, Takada S, Ishii Y, Jindo T, Furuhama K, Suzuki KT. Early pathophysiological features in canine renal papillary necrosis induced by nefiracetam. Toxicol Pathol 2006; 33:561-9. [PMID: 16105799 DOI: 10.1080/01926230500222593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To ascertain the early pathophysiological features in canine renal papillary necrosis (RPN) caused by the neurotransmission enhancer nefiracetam, male beagle dogs were orally administered nefiracetam at 300 mg/kg/day for 4 to 7 weeks in comparison with ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), at 50 mg/kg/day for 5 weeks. During the dosing period, the animals were periodically subjected to laboratory tests, light-microscopic, immunohistochemical, and electron-microscopic examinations and/or cyclooxygenase (COX)-2 mRNA analysis. In laboratory tests, a decrease in urinary osmotic pressure and increases in urine volume and urinary lactate dehydrogenase (LDH) level were early biomarkers for detecting RPN. Light-microscopically, nefiracetam revealed epithelial swelling and degeneration in the papillary ducts in week 7, while ibuprofen displayed degeneration and necrosis in the papillary interstitium in week 5. In immunohistochemical staining with COX-2 antibody, nefiracetam elicited a positive reaction within interstitial cells around the affected epithelial cells in the papillary ducts (upper papilla) in week 7, and ibuprofen positively reacted within interstitial cells adjacent to the degenerative and/or necrotic lesions in week 5. Ultrastructurally, nefiracetam exhibited reductions of intracellular interdigitation and infoldings of epithelial cells in the papillary ducts, whereas ibuprofen showed no changes in the identical portions. Thus, the early morphological change in the papilla brought about by nefiracetam was quite different from that elicited by ibuprofen. By the renal papillary COX-2 mRNA expression analysis, nefiracetam exceedingly decreased its expression in week 4, but markedly increased it in week 7, suggesting an induction of COX-2 mRNA by renal papillary lesions. These results demonstrate that the epithelial cell in the papillary ducts is the primary target site for the onset of RPN evoked by nefiracetam.
Collapse
Affiliation(s)
- Yoshimi Tsuchiya
- Drug Safety Research Laboratory, Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
5
|
Tsuchiya Y, Tominaga Y, Matsubayashi K, Jindo T, Furuhama K, Suzuki KT. Investigation on urinary proteins and renal mRNA expression in canine renal papillary necrosis induced by nefiracetam. Arch Toxicol 2005; 79:500-7. [PMID: 16007418 DOI: 10.1007/s00204-005-0666-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
The occurrence of renal papillary necrosis (RPN), seen only in dogs after repeated oral administration of nefiracetam, a neurotransmission enhancer, at a relatively high dose, is because of inhibition of renal prostaglandin synthesis by the nefiracetam metabolite M-18. In this study, analyses of urinary proteins and renal mRNA expression were performed to investigate the possible existence of a specific protein expressing the characteristics of RPN evoked by nefiracetam. In the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of urinary proteins from male dogs given nefiracetam at 300 mg kg(-1) day(-1) over weeks 5-11, a protein of approximately 40 kDa, which was not seen in control urine, and protein of approximately 30 kDa emerged as distinct bands. Subsequently, clusterin precursor was identified in the former band and tissue kallikrein precursor in the latter by LC-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). By quantitative real-time RT-PCR analysis with renal morphological aspects, individual findings showed that renal clusterin mRNA was increased in dogs with severe renal injury, and renal tissue kallikrein also increased, presumably related to hemodynamics. These results demonstrate that changes in renal clusterin mRNA may reflect the progression or severity of RPN, whereas upregulation of tissue kallikrein mRNA may subsequently play a compensating role in the prevention of RPN.
Collapse
Affiliation(s)
- Yoshimi Tsuchiya
- Drug Safety Research Laboratory, Daiichi Pharmaceutical Co. Ltd, 16-13, Kita-kasai 1-chome, Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Tsuchiya Y, Takahashi Y, Jindo T, Furuhama K, Suzuki KT. Comprehensive evaluation of canine renal papillary necrosis induced by nefiracetam, a neurotransmission enhancer. Eur J Pharmacol 2003; 475:119-28. [PMID: 12954368 DOI: 10.1016/s0014-2999(03)02123-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of nefiracetam, a neurotransmission enhancer, on renal biochemistry and morphology with toxicokinetic disposition were investigated in both in vivo and in vitro systems. In the in vivo studies with rats, dogs, and monkeys, only the dog exhibited renal papillary necrosis. Namely, when beagle dogs were orally administered with 300 mg/kg/day of nefiracetam over 11 weeks, decreased urinary osmotic pressure was noted from week 5, followed by increases in urine volume and urinary lactate dehydrogenase from week 8. The first morphological change was necrosis of ductal epithelia in the papilla in week 8. In toxicokinetics after 3 weeks of repeated oral administration to dogs, nefiracetam showed somewhat high concentrations in serum and the renal papilla as compared with rats and monkeys. As for metabolites, although metabolite-18 (M-18) concentration in the renal papilla of dogs was between that in rats and monkeys, the concentration ratios of M-18 in the papilla to cortex and papilla to medulla were remarkably high. In the in vitro studies, while nefiracetam itself showed no effects on the synthesis of prostaglandin E2 and 6-keto-prostaglandin F1alpha, a stable metabolite of prostaglandin I2, in canine renal papillary slices, only M-18 among the metabolites clearly decreased both prostaglandin syntheses. The basal prostaglandin synthesis in canine renal papillary slices was extremely low relative to those in rats and monkeys. Taken together, certain factors such as basal prostaglandin synthesis, M-18 penetration into the renal papilla leading to an intrarenal gradient, and inhibitory potential of M-18 on prostaglandin synthesis were considered to be crucial for the occurrence of renal papillary necrosis in dogs.
Collapse
Affiliation(s)
- Yoshimi Tsuchiya
- Drug Safety Research Laboratory, Daiichi Pharmaceutical Co, Ltd, 16-13, Kita-kasai 1-chome, Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) are well recognized as a major class of therapeutic agent that causes renal papillary necrosis (RPN). Over the last decade a broad spectrum of other therapeutic agents and many chemicals have also been reported that have the potential to cause this lesion in animals and man. There is consensus that RPN is the primary lesion that can progress to cortical degeneration; and it is only at this stage that the lesion is easily diagnosed. In the absence of sensitive and selective noninvasive biomarkers of RPN there is still no clear indication of which compound, under what circumstances, has the greatest potential to cause this lesion in man. Attempts to mimic RPN in rodents using analgesics and NSAIDs have not provided robust models of the lesion. Thus, much of the research has concentrated on those compounds that cause an acute or subacute RPN as the basis by which to study the pathogenesis of the lesion. Based on the mechanistic understanding gleaned from these model compounds it has been possible to transpose an understanding of the underlying processes to the analgesics and NSAIDs. The mechanism of RPN is still controversial. There are data that support microvascular changes and local ischemic injury as the underlying cause. Alternatively, several model papillotoxins, some analgesics, and NSAIDs target selectively for the medullary interstitial cells, which is the earliest reported aberration, after which there are a series of degenerative processes affecting other renal cell types. Many papillotoxins have the potential to undergo prostaglandin hydroperoxidase-mediated metabolic activation, specifically in the renal medullary interstitial cells. These reactive intermediates, in the presence of large quantities of polyunsaturated lipid droplets, result in localized and selective injury of the medullary interstitial cells. These highly differentiated cells do not repair, and it is generally accepted that continuing insult to these cells will result in their progressive erosion. The loss of these cells is thought to be central to the degenerative cascade that affects the cortex. There is still a need to understand better the primary mechanism and the secondary consequences of RPN so that the risk of chemical agents in use and novel molecules can be fully assessed.
Collapse
Affiliation(s)
- P H Bach
- BioMedical Research Centre, Division of Biomedical Sciences, Sheffield Hallam University, England, United Kingdom
| | | |
Collapse
|
8
|
Abstract
The mammalian urinary tract includes the kidneys, ureters, urinary bladder, and urethra. The renal parenchyma is composed of the glomeruli and a heterogeneous array of tubule segments that are specialized in both function and structure and are arranged in a specific spatial distribution. The ultrastructure of the glomeruli and renal tubule epithelia have been well characterized and the relationship between the cellular structure and the function of the various components of the kidney have been the subject of intense study by many investigators. The lower urinary tract, the ureters, urinary bladder, and urethra, which are histologically similar throughout, are composed of a mucosal layer lined by transitional epithelium, a tunica muscularis, and a tunica serosa or adventitia. The present manuscript reviews the normal ultrastructural morphology of the kidney and the lower urinary tract. The normal ultrastructure is illustrated using transmission electron microscopy of normal rat kidney and urinary bladder preserved by in vivo perfusion with glutaraldehyde fixative and processed in epoxy resin.
Collapse
Affiliation(s)
- J W Verlander
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Health Science Center, Gainesville 32610-0224, USA
| |
Collapse
|