1
|
Beale DJ, Hillyer K, Nilsson S, Limpus D, Bose U, Broadbent JA, Vardy S. Bioaccumulation and metabolic response of PFAS mixtures in wild-caught freshwater turtles (Emydura macquariimacquarii) using omics-based ecosurveillance techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151264. [PMID: 34715216 DOI: 10.1016/j.scitotenv.2021.151264] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
PFAS mixtures in the environment are common and identifying PFAS constituents, bioaccumulation, and biological impacts of mixtures remains a challenge. Here, an omics-based ecosurveillance approach was taken to investigate the impacts of PFAS pollution in freshwater turtles (Emydura macquariimacquarii). Four turtles were collected from an impacted waterway downstream from an industrial source of PFAS contamination in Queensland, Australia and analysed for 49 different PFAS. One turtle was collected from a suitable control site. PFAS concentrations were quantified in turtle serum using an established targeted methodology. The serum PFAS concentration was ten-fold greater at the impacted site (Σ49 PFAS 1933 ± 481 ng/mL) relative to the control sample (Σ49 PFAS 140 ng/mL). Perfluorooctane sulfonate (PFOS; 889 ± 56 ng/mL) was 235 times higher in turtle serum than in the water that they were collected from (ΣPFAS 32.0 μg/L). Perfluorobutane sulfonamide (FBSA; 403 ± 83 ng/mL) and perfluorohexane sulfonamide (FHxSA; 550 ± 330 ng/mL) were also reported at substantial concentrations in the serum of impacted turtles. Biochemical profiles were analysed using a mixture of liquid chromatography triple quadrupole (QqQ) and quadrupole time-of-flight (QToF) mass spectrometry methodologies. These profiles demonstrated a positive correlation in the impacted turtles exposed to elevated PFAS with an enhanced purine metabolism, glycerophosphocholines and an innate immune response, which suggest an inflammation response, metabolic preservation and re-routing of central carbon metabolites. Conversely, lipid transport and binding activity were negatively correlated. Using these preliminary data, we were able to demonstrate the negative metabolic impact from PFAS mixtures on turtle metabolic health. With further research on a larger turtle cohort, omics-based data will contribute towards linking adverse outcome pathways for turtle populations exposed to PFAS mixtures. Moreover, expanding the use of ecosurveillance tools will inform mechanistic toxicological data for risk assessment and regulatory applications.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - Katie Hillyer
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Duncan Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Australia
| | - Utpal Bose
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - James A Broadbent
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Suzanne Vardy
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Australia
| |
Collapse
|
2
|
Liu H, Wang J, Sheng N, Cui R, Pan Y, Dai J. Acot1 is a sensitive indicator for PPARα activation after perfluorooctanoic acid exposure in primary hepatocytes of Sprague-Dawley rats. Toxicol In Vitro 2017; 42:299-307. [DOI: 10.1016/j.tiv.2017.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 01/09/2023]
|
3
|
Yamada J, Kuramochi Y, Takoda Y, Takagi M, Suga T. Hepatic induction of mitochondrial and cytosolic acyl-coenzyme a hydrolases/thioesterases in rats under conditions of diabetes and fasting. Metabolism 2003; 52:1527-9. [PMID: 14669149 DOI: 10.1016/j.metabol.2003.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Acyl-coenzyme A (CoA) hydrolases/thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoA thioesters to free fatty acids and CoA-SH. The potency of these enzymes may serve to modulate intracellular concentrations of acyl-CoAs, free fatty acids, and CoA to affect various cellular functions, including lipid metabolism. In this study, we investigated the effect of diabetes and fasting on the protein levels of mitochondrial (MTE-I) and cytosolic acyl-CoA thioesterases (CTE-I), multigene family members of this class of enzymes, in adult rat liver. Rats were treated with alloxan to induce diabetes or fasted for 72 hours. Western blot analysis with the liver homogenates revealed 2.8-fold and 3.8-fold increases in MTE-I and 8.5-fold and 9.2-fold increases in CTE-I under the diabetic and fasting conditions, respectively, compared with the control in which the level of MTE-I was 4.3-fold higher than CTE-I. Serum level of free fatty acids was elevated 5-fold and 2.5-fold in diabetic and fasted rats, respectively. These results confirm the adaptive induction of MTE-I and CTE-I in response to fatty acid overload in the liver, being consistent with their auxiliary role in fatty acid degradation.
Collapse
Affiliation(s)
- J Yamada
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Japan
| | | | | | | | | |
Collapse
|
4
|
Kudo N, Suzuki E, Katakura M, Ohmori K, Noshiro R, Kawashima Y. Comparison of the elimination between perfluorinated fatty acids with different carbon chain length in rats. Chem Biol Interact 2001; 134:203-16. [PMID: 11311214 DOI: 10.1016/s0009-2797(01)00155-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Elimination in urine and feces was compared between four perfluorinated fatty acids (PFCAs) with different carbon chain length. In male rats, perfluoroheptanoic acid (PFHA) was rapidly eliminated in urine with the proportion of 92% of the dose being eliminated within 120 h after an intraperitoneal injection. Perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) was eliminated in urine with the proportions of 55, 2.0 and 0.2% of the dose, respectively. By contrast, four PFCAs were eliminated in feces with the proportion of less than 5% of the dose within 120 h after an injection. In female rats, the proportions of PFOA and PFNA eliminated in urine within 120 h were 80% and 51% of the dose, respectively, which were significantly higher compared with those in male rats. There was the tendency that PFCA with longer carbon chain length is less eliminated in urine in both male and female rats. Fecal elimination of PFCAs was not different between PFCAs in female rats and comparable to those in male rats. The rates of biliary excretion of PFCAs in male rats were slower than those in female rats. Sex-related difference in urinary elimination of PFOA was abolished when male rats had been castrated. On the contrary, treatment with testosterone suppressed the elimination of PFOA in urine in both castrated male rats and female rats. The effect of testosterone was in a time- and dose-dependent manner. These results suggest that PFCAs are distinguished by their carbon chain length by a renal excretion system, which is regulated by testosterone.
Collapse
Affiliation(s)
- N Kudo
- Faculty of Pharmaceutical Sciences, Josai University, Keyakidai 1-1, Sakado, 350-0295, Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Kudo N, Bandai N, Suzuki E, Katakura M, Kawashima Y. Induction by perfluorinated fatty acids with different carbon chain length of peroxisomal beta-oxidation in the liver of rats. Chem Biol Interact 2000; 124:119-32. [PMID: 10670823 DOI: 10.1016/s0009-2797(99)00150-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The potency of the induction of peroxisomal beta-oxidation was compared between perfluorinated fatty acids (PFCAs) with different carbon chain lengths in the liver of male and female rats. In male rats, perfluoroheptanoic acid (PFHA) has little effect, although perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) potentially induced the activity. By contrast, PFHA and PFOA did not induce the activity of peroxisomal beta-oxidation in the liver of female rats while PFNA and PFDA effectively induced the activity. The induction of the activity by these PFCAs was in a dose-dependent manner, and there is a highly significant correlation between the induction and hepatic concentrations of PFCAs in the liver regardless of their carbon chain lengths. These results strongly suggest that the difference in their chemical structure is not the cause of the difference in the potency of the induction. Hepatic concentrations of PFOA and PFNA was markedly higher in male compared with female rats. Castration of male rats reduced the concentration of PFNA in the liver and treatment with testosterone entirely restored the reduction. In contrast to the results obtained from the in vivo experiments, the activity of peroxisomal beta-oxidation was induced by PFDA and PFOA to the same extent in cultured hepatocytes prepared from both male and female rats. These results, taken together, indicate that difference in accumulation between PFCAs in the liver was responsible for the different potency of the induction of peroxisomal beta-oxidation between PFCAs with different carbon chain lengths and between sexes.
Collapse
Affiliation(s)
- N Kudo
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | | | | | | | | |
Collapse
|
6
|
Svensson LT, Wilcke M, Alexson SE. Peroxisome proliferators differentially regulate long-chain acyl-CoA thioesterases in rat liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:813-20. [PMID: 7607256 DOI: 10.1111/j.1432-1033.1995.0813h.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have investigated the effects of peroxisome proliferators on rat liver long-chain acyl-CoA thioesterase activities. Subcellular fractionations of liver homogenates from control, clofibrate- and di(2-ethylhexyl)phthalate-treated rats confirmed earlier studies which demonstrated that peroxisome-proliferating drugs induce long-chain acyl-CoA thioesterase activity mainly in the mitochondrial and cytosolic fractions. The aim of the present study was to investigate whether the induced activities were due to increases in normally expressed enzymes, or due to induction of novel enzymes. To investigate whether structurally different peroxisome proliferators differentially induced thioesterase activities, we tested the effects of di(2-ethylhexyl)phthalate (a plastisizer) and the hypolipidemic drug clofibrate. For this purpose, we established an analytical size exclusion chromatography method. Chromatography of solubilised mitochondrial matrix proteins showed that the activity in control mitochondria was mainly due to enzymes with molecular masses of about 50 kDa and 35 kDa. The activity in samples prepared from clofibrate- and di(2-ethylhexyl)phthalate-treated rats eluted as proteins of about 40 kDa and 110 kDa. Highly purified peroxisomes contained two peaks of activity, which were not induced, that corresponded to molecular masses of 40 kDa and 80 kDa. The 80-kDa peak was shown to be due to dimerization by addition of glycerol. Chromatography of cytosolic fractions from control rat livers indicated the presence of long-chain acyl-CoA thioesterases with molecular masses of approximately 35 kDa and 125 kDa and a broad peak corresponding to a high-molecular-mass protein. The activity in cytosolic fractions from peroxisome-proliferator-treated rats eluted mainly as peaks corresponding to 40, 110 and 150 kDa. In addition, in the 110-kDa peak, a different degree of induction and different chain-length specificities were caused by clofibrate and di(2-ethylhexyl)phthalate, suggesting that these peroxisome proliferators differentially regulate the cytosolic acyl-CoA thioesterase activities. Western blot analysis showed that enzymes in the 40-kDa peak of the peroxisomal and cytosolic fractions were structurally related, but not identical, to a 40-kDa mitochondrial very-long-chain acyl-CoA thioesterase. Our data show that the increased acyl-CoA thioesterase activities in mitochondria and cytosol were mainly due to induction of acyl-CoA thioesterases which are not, or only weakly, expressed under normal conditions.
Collapse
Affiliation(s)
- L T Svensson
- Department of Metabolic Research, Wenner-Gren Institute, Stockholm University, Sweden
| | | | | |
Collapse
|
7
|
Kawashima Y, Kobayashi H, Miura H, Kozuka H. Characterization of hepatic responses of rat to administration of perfluorooctanoic and perfluorodecanoic acids at low levels. Toxicology 1995; 99:169-78. [PMID: 7610463 DOI: 10.1016/0300-483x(95)03027-d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Male rats were fed a diet that contained perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) at concentrations ranging from 0.0025-0.04% (w/w) and from 0.00125-0.01% (w/w), respectively, for 1 week. The hepatic responses of the rats to PFOA and PFDA were examined. Upon the administration of PFOA and PFDA, three peroxisome proliferator-responsive parameters, peroxisomal beta-oxidation, microsomal 1-acylglycerophosphocholine (1-acyl-GPC) acyltransferase and cytosolic long-chain acyl-CoA hydrolase, were induced in a dose-dependent manner. A multiple regression analysis of the three parameters revealed that the data from rats treated with PFOA and PFDA shared one common line, indicating a marked correlation among the inductions of the three parameters. The activities of glutathione (GSH) S-transferases towards 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) were depressed by PFOA and PFDA. Significant inverse correlations were found between activities of GSH S-transferases and peroxisomal beta-oxidation. The administration of PFOA and PFDA significantly increased hepatic concentration of triacylglycerol. The perfluorocarboxylic acids at relatively high doses caused accumulation of cholesterol in liver. Electron microscopic studies showed that the administration of PFOA and PFDA caused an increase in cell size and proliferations of peroxisomes, and that the treatment of rats with PFDA at dietary concentration of 0.01% caused a marked increase in small lipid droplet in hepatocytes, indicative of hepatotoxic manifestations. The present results suggest that when PFOA and PFDA are administered at low levels, there are no differences between the properties of the perfluorocarboxylic acids as peroxisome proliferators, although the administration of PFDA at the doses exceeding a certain level becomes markedly toxic to hepatocytes.
Collapse
Affiliation(s)
- Y Kawashima
- Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | | | | | | |
Collapse
|
8
|
Kawashima Y, Suzuki S, Kozuka H, Sato M, Suzuki Y. Effects of prolonged administration of perfluorooctanoic acid on hepatic activities of enzymes which detoxify peroxide and xenobiotic in the rat. Toxicology 1994; 93:85-97. [PMID: 7974521 DOI: 10.1016/0300-483x(94)90070-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Male and female rats were fed a diet containing 0.01% (w/w) perfluorooctanoic acid (PFOA) for 2 or 26 weeks, and the effects on enzymes that participate in the metabolism of peroxides and xenobiotics in liver were studied. Elevated activity of peroxisomal beta-oxidation persisted throughout the treatment of male rats with PFOA for 26 weeks. The activity of glutathione (GSH) peroxidase towards hydrogen peroxide was depressed significantly by the prolonged administration. The long-term treatment of male rats with PFOA decreased the activity of GSH peroxidase towards cumene hydroperoxide and increased the activity of microsomal NADPH-dependent lipid peroxidation. The activities of GSH reductase and hepatic content of GSH remained unchanged. There was no difference in the content of conjugated dienes in microsomal lipid between male rats exposed to PFOA for 26 weeks and age-matched control. The activities of GSH S-transferase towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene were depressed by the short-term administration of PFOA to male rats, and this inhibition became pronounced during the prolonged treatment. Microsomal cytochrome P450 was induced by the short-term treatment of male rats with PFOA, and elevated levels persisted throughout the treatment for 26 weeks. Upon the administration of PFOA to male rats for 2 weeks, the activity of 7-ethoxycoumarin O-deethylase was increased markedly, whereas the activities of either aniline p-hydroxylase or aminopyrine N-demethylase were unchanged. Although an age-dependent decrease was observed in the activity of 7-ethoxycoumarin O-deethylase, the activity in male rats treated with PFOA for 26 weeks was higher than that of age-matched control, to the same extent as was observed with the short-term treatment. The prolonged administration of PFOA to male rats caused a significant increase in the activity of both aniline p-hydroxylase and aminopyrine N-demethylase. Little changes were found in the same parameters tested in female rats even after the prolonged administration of PFOA.
Collapse
Affiliation(s)
- Y Kawashima
- Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | |
Collapse
|
9
|
Sterchele PF, Vanden Heuvel JP, Davis JW, Shrago E, Knudsen J, Peterson RE. Induction of hepatic acyl-CoA-binding protein and liver fatty acid-binding protein by perfluorodecanoic acid in rats. Lack of correlation with hepatic long-chain acyl-CoA levels. Biochem Pharmacol 1994; 48:955-66. [PMID: 8093108 DOI: 10.1016/0006-2952(94)90366-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Liver fatty acid-binding protein (L-FABP) and acyl-CoA-binding protein (ACBP) are involved in the intracellular trafficking and compartmentalization of fatty acids and fatty acyl-CoA esters, respectively, in the liver. Both proteins are induced in rat liver by the potent peroxisome proliferator perfluorodecanoic acid (PFDA). While it is believed that the peroxisome proliferator-activated receptor may mediate the responses to peroxisome proliferators by inducing responsive genes, the ligand(s) of this receptor remains unknown. We hypothesized that induction of L-FABP and ACBP in rat liver by PFDA is secondary to accumulation of long-chain acyl-CoA esters. However, neither dose-response nor time-course effects of PFDA on hepatic long-chain acyl-CoA, L-FABP, or ACBP concentrations confirmed this hypothesis. In a dose-response study, PFDA increased hepatic long-chain acyl-CoA concentrations (7 days after treatment) over the dose range of 20-50 mg/kg, whereas it increased ACBP and L-FABP over the wider dose range of 20-65 mg/kg. In the time-course study, PFDA treatment (50 mg/kg) elevated long-chain acyl-CoA esters in the liver beginning on day 3 post-treatment, yet hepatic L-FABP concentrations were increased earlier beginning on day 2 and ACBP was not induced until day 7. To determine if this dissociation of increases in hepatic long-chain acyl-CoA concentrations from increases in hepatic L-FABP and ACBP concentrations could be demonstrated under other conditions, control rats fasted for 24-48 hr were used. Fasting increased hepatic long-chain acyl-CoA levels to a greater extent than PFDA treatment, yet neither L-FABP nor ACBP was induced. We conclude that elevated concentrations of hepatic long-chain acyl-CoAs in PFDA-treated rats are not a major contributor to the induction of L-FABP or ACBP by peroxisome proliferators. A more plausible mechanism is that PFDA induces L-FABP and ACBP by activating the peroxisome proliferator receptor directly rather than indirectly through long-chain acyl-CoA esters.
Collapse
Affiliation(s)
- P F Sterchele
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | | | | | | | | | |
Collapse
|