1
|
Zhang J, Li Z, Dai Y, Guo J, Qi X, Liu P, Lv S, Lu D, Liang W, Chang X, Cao Y, Wu C, Zhou Z. Urinary para-nitrophenol levels of pregnant women and cognitive and motor function of their children aged 2 years: Evidence from the SMBCS (China). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114051. [PMID: 36075123 DOI: 10.1016/j.ecoenv.2022.114051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Urinary para-nitrophenol (PNP), an exposure biomarker of ethyl parathion (EP) and methyl parathion (MP) pesticides, was still pervasively detected in the general population even after global restriction for years. And the concern whether there is an association of PNP level with child development of the nervous system is increasing. The current study aimed to evaluate the maternal urinary PNP concentrations during late pregnancy and the associations of PNP levels with cognitive and motor function of their children at the age of 2 years. METHODS 323 mother-child pairs from the Sheyang Mini Birth Cohort Study were included in the current study. Gas chromatography-tandem mass spectrometry was used to measure concentrations of PNP, the specific metabolite of EP and MP, in maternal urine samples during pregnancy. Developmental quotients (DQs) scores measured with Gesell Developmental Scales were employed to evaluate cognitive and motor function of children aged 2 years. Generalized linear models were performed to analyze the associations of PNP concentrations in pregnant women's urine samples with cognitive and motor function of their children. RESULTS Maternal PNP was detected in all urine samples with a median of 4.11 μg/L and a range from 0.57 μg/L to 109.13 μg/L, respectively. Maternal urinary PNP concentrations showed a negative trend with DQ of motor area [regression coefficient (β) = - 1.35; 95 % confidence interval (95 %CI): - 2.37, - 0.33; P < 0.01], and the children whose mothers were in the fourth quartile exposure group performed significantly worse compared to the reference group (β = - 1.11; 95 %CI: - 1.80, - 0.42; P < 0.01). As for average DQ score, children with their mothers' urinary PNP concentrations in the third quartile group had higher scores than those in the first quartile group (β = 0.39; 95 %CI: 0.03, 0.75; P = 0.04). In sex-stratified analyses, a negative trend between maternal urinary PNP concentrations and DQ scores in motor area of children was only observed in boys (β = - 1.62; 95 %CI: - 2.80, - 0.43; P < 0.01). Boys in the third quartile group had higher DQ average scores than those in the lowest quartile as reference (β = 0.53; 95 %CI: 0.02, 1.04; P = 0.04). CONCLUSIONS The mothers from SMBCS may be widely exposed to EP and/or MP, which were associated with the cognitive and motor function of their children aged 2 years in a sex-specific manner. Our results might provide epidemiology evidence on the potential effects of prenatal exposure to EP and/or MP on children's cognitive and motor function.
Collapse
Affiliation(s)
- Jiming Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zeyu Li
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Yiming Dai
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jianqiu Guo
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No.3399 Binsheng Road, Hangzhou 310051, China
| | - Ping Liu
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Shenliang Lv
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Shanghai 200336, China
| | - Weijiu Liang
- Shanghai Changning Center for Disease Control and Prevention, No.39 Yunwushan Road, Shanghai 200051, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro 70182, Sweden; Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Chunhua Wu
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
2
|
Oesch F, Fabian E, Landsiedel R. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2018; 92:2411-2456. [PMID: 29916051 PMCID: PMC6063329 DOI: 10.1007/s00204-018-2232-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which—taken with great caution because of the still very limited data—the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive-metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the Conclusions section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131, Mainz, Germany
| | - E Fabian
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany.
| |
Collapse
|
3
|
Oesch F, Fabian E, Guth K, Landsiedel R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2014; 88:2135-90. [PMID: 25370008 PMCID: PMC4247477 DOI: 10.1007/s00204-014-1382-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/02/2014] [Indexed: 02/01/2023]
Abstract
The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the “Overview and Conclusions” section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions GmbH&Co.KG, Rheinblick 21, 55263, Wackernheim, Germany
| | | | | | | |
Collapse
|
4
|
Miller MA, Kasting GB. Toward a better understanding of pesticide dermal absorption: diffusion model analysis of parathion absorption in vitro and in vivo. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:284-300. [PMID: 20077298 DOI: 10.1080/15287390903249230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Human skin absorption of radiolabeled parathion was studied in vitro at specific doses (mass loadings) of 0.4, 4.0, 41, or 117 microg/cm(2), with and without occlusion. The compound was applied in small volumes of acetone solution to split-thickness skin. Permeation of radiolabel into the receptor solutions was monitored for 76 h, after which the tissue was dissected and analyzed for residual radioactivity. For the 3 lower doses, cumulative permeation after 76 h was approximately dose-proportional, ranging from 28.5-30.5% of applied dose (unoccluded) to 45.5-55.7% (occluded). Total absorption, calculated as receptor fluid plus dermis content, followed a similar pattern. Both permeation rate and total absorption continued to increase up to the highest dose tested, consistent with results from other laboratories. These results are compared with predictions from a previously developed skin diffusion model (Kasting et al., 2008a). The model predicted total absorption to within a factor of 1.4 at 0.4 microg/cm(2) and 1.6 at 4 microg/cm(2), but substantially underpredicted absorption at the 2 higher doses. The analysis showed that parathion partitioned more favorably into the stratum corneum than the diffusion model prediction. Nevertheless, comparison of the model predictions to a previously reported human study showed that the skin absorption model, when corrected for surface losses occurring in vivo, satisfactorily described in vivo dermal absorption of parathion applied at 4 microg/cm(2) to various body sites.
Collapse
Affiliation(s)
- Matthew A Miller
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio 45267-0004, USA
| | | |
Collapse
|
5
|
Knaak JB, Dary CC, Power F, Thompson CB, Blancato JN. Physicochemical and Biological Data for the Development of Predictive Organophosphorus Pesticide QSARs and PBPK/PD Models for Human Risk Assessment. Crit Rev Toxicol 2008; 34:143-207. [PMID: 15112752 DOI: 10.1080/10408440490432250] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A search of the scientific literature was carried out for physiochemical and biological data [i.e., IC50, LD50, Kp (cm/h) for percutaneous absorption, skin/water and tissue/blood partition coefficients, inhibition ki values, and metabolic parameters such as Vmax and Km] on 31 organophosphorus pesticides (OPs) to support the development of predictive quantitative structure-activity relationship (QSAR) and physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models for human risk assessment. Except for work on parathion, chlorpyrifos, and isofenphos, very few modeling data were found on the 31 OPs of interest. The available percutaneous absorption, partition coefficients and metabolic parameters were insufficient in number to develop predictive QSAR models. Metabolic kinetic parameters (Vmax, Km) varied according to enzyme source and the manner in which the enzymes were characterized. The metabolic activity of microsomes should be based on the kinetic activity of purified or cDNA-expressed cytochrome P450s (CYPs) and the specific content of each active CYP in tissue microsomes. Similar requirements are needed to assess the activity of tissue A- and B-esterases metabolizing OPs. A limited amount of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CaE) inhibition and recovery data were found in the literature on the 31 OPs. A program is needed to require the development of physicochemical and biological data to support risk assessment methodologies involving QSAR and PBPK/PD models.
Collapse
Affiliation(s)
- James B Knaak
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, New York 14214, USA.
| | | | | | | | | |
Collapse
|
6
|
Wetherell JR, Armstrong SJ, Read RW, Clough GF. VX Penetration Following Percutaneous Poisoning: A Dermal Microdialysis Study in the Guinea Pig. Toxicol Mech Methods 2008; 18:313-21. [DOI: 10.1080/15376510701884944] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Boudry I, Blanck O, Cruz C, Blanck M, Vallet V, Bazire A, Capt A, Josse D, Lallement G. Percutaneous penetration and absorption of parathion using human and pig skin modelsin vitroand human skin grafted onto nude mouse skin modelin vivo. J Appl Toxicol 2008; 28:645-57. [DOI: 10.1002/jat.1317] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Moody RP, Akram M, Dickson E, Chu I. In vitro dermal absorption of methyl salicylate, ethyl parathion, and malathion: first responder safety. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:985-99. [PMID: 17497409 DOI: 10.1080/15287390600870874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In vitro tests with fresh dermatomed (0.3 to 0.4 mm thick) female breast skin and one leg skin specimen were conducted in Bronaugh flow-through Teflon diffusion cells with three chemicals used to simulate chemical warfare agents: 14C-radiolabeled methyl salicylate (MES), ethyl parathion (PT), and malathion (MT), at three dose levels (2, 20, and 200 mM). Tests were conducted at a skin temperature of 29 degrees C using a brief 30-min exposure to the chemical and a 6.5-h receivor collection period. Rapid absorption of all three chemicals was observed, with MES absorbed about 10-fold faster than PT and MT. For MES, PT, and MT, respectively, there was 32%, 7%, and 12% absorption into the receivor solution (Hank's HEPES buffered saline with 4% bovine serum albumin [BSA], pH 7.4) at the low dose (2 mM), 17%, 2%, and 3% at the medium dose (20 mM), and 11%, 1%, and 1% at the high dose (200 mM) levels. Including the skin depot for MES, PT, and MT, respectively, there was 40%, 41%, and 21% (low dose), 26%, 16%, and 8% (medium dose), and 13%, 19%, and 10% (high does) absorption. Efficacy of skin soap washing conducted at the 30 min exposure time ranged from 31% to 86%, varying by chemical and dose level. Skin depot levels were highest for the relatively lipophilic PT. "Pseudo" skin permeability coefficient (K(p)) data declined with dose level, suggesting skin saturation had occurred. An in-depth comparison with literature data was conducted and risk assessment of first responder exposure was briefly considered.
Collapse
Affiliation(s)
- Richard P Moody
- Health Canada, Environmental Occupational and Toxicology Division, Systemic Toxicity and Pharmacokinetics Section, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Mahajan R, Blair A, Coble J, Lynch CF, Hoppin JA, Sandler DP, Alavanja MCR. Carbaryl exposure and incident cancer in the Agricultural Health Study. Int J Cancer 2007; 121:1799-805. [PMID: 17534892 DOI: 10.1002/ijc.22836] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carbaryl is a carbamate insecticide with a broad spectrum of uses in agricultural, commercial and household settings. It has previously been linked with non-Hodgkin lymphoma (NHL) but studies of cancer risk in humans are limited. We examined occupational carbaryl use and risk of all cancers in the Agricultural Health Study, a prospective study of a cohort of pesticide applicators in North Carolina and Iowa. This analysis included 21,416 subjects (1,291 cases) enrolled from 1993-1997 and followed for cancer incidence through 2003. Pesticide exposure and other data were collected using self-administered questionnaires. Poisson regression was used to calculate rate ratios (RRs) and 95% confidence intervals (CIs) while controlling for potential confounders. Carbaryl was not associated with cancer risk overall. Relative to subjects who never used carbaryl, melanoma risk was elevated with >175 lifetime exposure-days (RR = 4.11; 95%CI, 1.33-12.75; p-trend = 0.07), >10 years of use (RR = 3.19; 95%CI, 1.28-7.92; p-trend = 0.04), or >or=10 days of use per year (RR = 5.50; 95%CI, 2.19-13.84; p-trend < 0.001). Risk remained after adjusting for sunlight exposure. Although not significant, there appeared to be a trend of decreasing prostate cancer risk with increasing level of exposure. A small increase in NHL risk was observed using some, but not all, exposure measures. No associations were observed with other examined cancer sites. Because the observed results were not hypothesized a priori and because of limited study of their biological plausibility, they should be interpreted with caution.
Collapse
Affiliation(s)
- Rajeev Mahajan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
van der Merwe D, Brooks JD, Gehring R, Baynes RE, Monteiro-Riviere NA, Riviere JE. A Physiologically Based Pharmacokinetic Model of Organophosphate Dermal Absorption. Toxicol Sci 2005; 89:188-204. [PMID: 16221965 DOI: 10.1093/toxsci/kfj014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rate and extent of dermal absorption are important in the analysis of risk from dermal exposure to toxic chemicals and for the development of topically applied drugs, barriers, insect repellents, and cosmetics. In vitro flow-through cells offer a convenient method for the study of dermal absorption that is relevant to the initial processes of dermal absorption. This study describes a physiologically based pharmacokinetic (PBPK) model developed to simulate the absorption of organophosphate pesticides, such as parathion, fenthion, and methyl parathion through porcine skin with flow-through cells. Parameters related to the structure of the stratum corneum and solvent evaporation rates were independently estimated. Three parameters were optimized based on experimental dermal absorption data, including solvent evaporation rate, diffusivity, and a mass transfer factor. Diffusion cell studies were conducted to validate the model under a variety of conditions, including different dose ranges (6.3-106.9 microg/cm2 for parathion; 0.8-23.6 microg/cm2 for fenthion; 1.6-39.3 microg/cm2 for methyl parathion), different solvents (ethanol, 2-propanol and acetone), different solvent volumes (5-120 microl for ethanol; 20-80 microl for 2-propanol and acetone), occlusion versus open to atmosphere dosing, and corneocyte removal by tape-stripping. The study demonstrated the utility of PBPK models for studying dermal absorption, which can be useful as explanatory and predictive tools that may be used for in silico hypotheses generation and limited hypotheses testing. The similarity between the overall shapes of the experimental and model-predicted flux/time curves and the successful simulation of altered system conditions for this series of small, lipophilic compounds indicated that the absorption processes that were described in the model successfully simulated important aspects of dermal absorption in flow-through cells. These data have direct relevance to topical organophosphate pesticide risk assessments.
Collapse
Affiliation(s)
- D van der Merwe
- Center for Chemical Toxicology Research and Pharmacokinetics, College of Veterinary Medicine, NC State University, Raleigh, North Carolina 27606, USA
| | | | | | | | | | | |
Collapse
|
11
|
Seki T, Hosoya O, Yamazaki T, Sato T, Saso Y, Juni K, Morimoto K. A rabbit ear flap perfusion experiment to evaluate the percutaneous absorption of drugs. Int J Pharm 2004; 276:29-40. [PMID: 15113611 DOI: 10.1016/j.ijpharm.2004.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 02/01/2004] [Accepted: 02/04/2004] [Indexed: 11/18/2022]
Abstract
A rabbit ear flap single-pass perfusion system was examined as an experimental method for studying the relationship between the physiological conditions of tissues and drug disposition after topical applications. Tyrode solutions containing bovine serum albumin (BSA) and sucrose or flurbiprofen (FP), used as a model drug, were perfused through the vessel in the ear flap to evaluate the physiological conditions prior to the application of FP to the skin surface. The extracellular volume and distribution properties of FP in the perfused ear were similar to those in an in vivo experimental system. In addition, the perfused ear flap exhibited a pharmacological response to bradykinin (BK). The amount of FP in the outflow Tyrode solution containing BSA after application to the skin surface of the perfused ear decreased with the addition of BK, while that in the tissues under the application site increased. FP binds to BSA, which leaked from the intravascular space, and could be retained in the tissues under the application site. The protein binding also affected the redistribution of FP to other tissues in the ear flap after application to the skin. The rabbit ear perfusion system is a useful method for studying the percutaneous absorption of drugs especially variations in the disposition of drugs in oedematous tissues.
Collapse
Affiliation(s)
- Toshinobu Seki
- Hokkaido College of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Wagner S, Dues G, Sawitzky D, Frey P, Christ B. Assessment of the biological performance of the needle-free injector INJEX using the isolated porcine forelimb. Br J Dermatol 2004; 150:455-61. [PMID: 15030327 DOI: 10.1111/j.1365-2133.2004.05853.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The development and utilization of novel needle-free injection devices in order to minimize needle stick injuries make increasing demands for suitable assay systems, which reflect the physiological situation in humans as close as possible. OBJECTIVES It was therefore the goal of the present study to test the biological performance of a needle-free injector (INJEX) by the use of porcine skin as a model with a high predictive value for the feasibility in humans because of its close similarity to human skin. METHODS In order to use porcine skin in the context of the underlying tissues, the isolated porcine forelimb was chosen as an assay model for use with the INJEX injector. Ink or the fluorescent dye fluorescein-isothiocyanate was injected and the penetration depth was determined metrically and dye distribution histologically. To assess the resorption of heparin, needle injection was compared with needle-free injection in a perfused limb model. RESULTS Increasing amounts of ink increasingly penetrated into subcutaneous tissue layers in a cone-shaped manner mainly following lead structures. Penetration was hampered by skin thickness and by the deep muscle fascia, which served as a penetration barrier. Resorption of heparin was similar irrespective of injection by the use of a needle or the INJEX device. CONCLUSIONS The isolated porcine forelimb serves as a versatile tool for the assessment of the biological performance of needle-free injection devices such as INJEX. Further studies are necessary to correlate the model for drug delivery in humans.
Collapse
Affiliation(s)
- S Wagner
- Vitro-Tec Entwicklungs-GmbH, Wiesenweg 10, D-12247 Berlin, Germany.
| | | | | | | | | |
Collapse
|
13
|
Kramer RE, Wellman SE, Rockhold RW, Baker RC. Pharmacokinetics of methyl parathion: a comparison following single intravenous, oral or dermal administration. J Biomed Sci 2002; 9:311-20. [PMID: 12145528 DOI: 10.1007/bf02256586] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Assessment of the risks posed by the residential use of methyl parathion requires an understanding of its pharmacokinetics after different routes of exposure. Thus, studies were performed using adult female rats to define the pharmacokinetic parameters for methyl parathion after intravenous injection and to apply the described model to an examination of its pharmacokinetics after single oral or dermal exposure. The pharmacokinetics of methyl parathion after intravenous administration (1.5 mg/kg) were best described by a three-compartment model; the apparent volume of the central compartment was 1.45 liters/kg, clearance was 1.85 liters/h/kg and the terminal half-life was 6.6 h with an elimination constant of 0.50 h(-1). The apparent oral absorption coefficient for methyl parathion (1.5 mg/kg) was 1.24 h(-1), and its oral bioavailability was approximately 20%. The latter likely includes a significant first pass effect. Concentrations of methyl parathion increased during the initial 10-60 min and then declined during the next 15-36 h. After dermal administration (6.25-25 mg/kg), methyl parathion concentrations peaked within 12-26 h and then declined dose dependently. The apparent dermal absorption coefficient was approximately 0.41 h(-1), and only two pharmacokinetic compartments could be distinguished. In conclusion, the pharmacokinetics of methyl parathion are complex and route dependent. Also, dermal exposure, because of sustained methyl parathion concentrations, may pose the greatest risk.
Collapse
Affiliation(s)
- Robert E Kramer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | | | |
Collapse
|
14
|
Kramer RE, Wellman SE, Zhu H, Rockhold RW, Baker RC. A comparison of cholinesterase activity after intravenous, oral or dermal administration of methyl parathion. J Biomed Sci 2002; 9:140-8. [PMID: 11914581 DOI: 10.1007/bf02256025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Time-dependent changes in blood cholinesterase activity caused by single intravenous, oral or dermal administration of methyl parathion to adult female rats were defined. Intravenous and oral administration of 2.5 mg/kg methyl parathion resulted in rapid (<60 min) decreases in cholinesterase activity which recovered fully in vivo within 30-48 h. In contrast, spontaneous reactivation of cholinesterase in vitro was complete within 6 h at 37 degrees C. Dermal administration of methyl parathion caused dose-dependent inhibition of cholinesterase activity which developed slowly (> or =6 h) and was prolonged (> or =48 h). Time- and route-dependent effects of methyl parathion on cholinesterase activity in brain and other tissues generally paralleled its effects on activity in blood. In conclusion, pharmacodynamics of methyl parathion differ substantially with route of exposure. Recovery of cholinesterase in vivo after intravenous or oral exposure may partially reflect spontaneous reactivation and suggests a rapid clearance of methyl parathion or its active metabolite methyl paraoxon. The more gradual and prolonged inhibition of cholinesterase caused by dermal administration is consistent with disposition of methyl parathion at a site from which it or methyl paraoxon is only slowly distributed. Thus, dermal exposure to methyl parathion may pose the greatest risk for long-term adverse effects.
Collapse
Affiliation(s)
- Robert E Kramer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Epizoonoses such as scabies, lice and cimicosis are common, vexing disorders that occur worldwide. Historically, many treatment modalities have been employed in the management of these disorders, and most of the drugs described in this review are of historical interest and no longer recommended or in widespread use because of their wide spectrum of adverse effects. More recently, reports documenting resistance against various antiectoparasite drugs, complicated and severe courses of the diseases, and adverse effects of drug therapy have prompted the development of new treatment strategies and drugs for optimal disease management. Because the strategies currently recommended for the treatment of ectoparasites differ worldwide, this review proposes a rational approach to selecting the best therapeutic agent by comparing the pharmacokinetics, pharmacodynamics, drug efficacy and adverse effects. A literature search of the currently Internet accessible libraries PubMed, Medline and Ideal library, of citations of articles found there, and from communications with the Federal Institute for Drugs and Medical Devices, Germany, was conducted based on this approach. One major observation of this literature search is that permethrin is the treatment of choice for lice and scabies in the US and in Great Britain, whereas lindane is still recommended for scabies in most other European countries because of its longer-standing record of effectiveness. Although permethrin has not yet been proven to be more effective than lindane in treating infections with these ectoparasites, it currently appears to have the best efficacy versus safety profile of topical treatments for scabies and lice. Ivermectin is a newer oral drug for the treatment of ectoparasites, which has been used with great success in the treatment of onchocercosis and other endoparasites. Although ivermectin appears to be a promising drug, its role in the treatment of ectoparasitic infections will be clarified as more study data become available. Finally, it is important to emphasise the clinical aspects of ectoparasite therapy and that providing the patient with optimal instructions on the use of topical therapeutics is of great importance in avoiding adverse effects and assuring complete removal of the ectoparasite, thereby avoiding the development of drug-resistance.
Collapse
Affiliation(s)
- T C Roos
- Department of Dermatology, University Clinic of the Rheinisch Westfälischen Technischen Hochschule Aachen, Germany.
| | | | | | | | | |
Collapse
|
16
|
Riviere JE, Papich MG. Potential and problems of developing transdermal patches for veterinary applications. Adv Drug Deliv Rev 2001; 50:175-203. [PMID: 11500227 DOI: 10.1016/s0169-409x(01)00157-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A new frontier in the administration of therapeutic drugs to veterinary species is transdermal drug delivery. The primary challenge in developing these systems is rooted in the wide differences in skin structure and function seen in species ranging from cats to cows. The efficacy of a transdermal system is primarily dependent upon the barrier properties of the targeted species skin, as well as the ratio of the area of the transdermal patch to the species total body mass needed to achieve effective systemic drug concentrations. A drug must have sufficient lipid solubility to traverse the epidermal barrier to be considered for delivery for this route. A number of insecticides have been developed in liquid "pour-on" formulations that illustrate the efficacy of this route of administration for veterinary species. The human transdermal fentanyl patch has been successfully used in cats and dogs for post-operative analgesia. The future development of transdermal drug delivery systems for veterinary species will be drug and species specific. With efficient experimental designs and available transdermal patch technology, there are no obvious hurdles to the development of effective systems in many veterinary species.
Collapse
Affiliation(s)
- J E Riviere
- Center for Cutaneous Toxicology and Residue Pharmacology, Department of Farm Animal Health and Resource Management, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27613, USA.
| | | |
Collapse
|
17
|
|
18
|
Riviere JE, Smith CE, Budsaba K, Brooks JD, Olajos EJ, Salem H, Monteiro-Riviere NA. Use of methyl salicylate as a simulant to predict the percutaneous absorption of sulfur mustard. J Appl Toxicol 2001; 21:91-9. [PMID: 11288131 DOI: 10.1002/jat.718] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exposure to chemical vesicants such as sulfur mustard (HD) continues to be a threat to military forces requiring protectant strategies to exposure to be evaluated. Methyl salicylate (MS) has historically been the simulant of choice to assess HD exposure. The purpose of this study was to compare the percutaneous absorption and skin deposition of MS to HD in the isolated perfused porcine skin flap (IPPSF). The HD data were obtained from a previously published study in this model wherein 400 microg cm(-2) of ](14)C[-MS or ](14)C[-HD in ethanol were topically applied to 16 IPPSFs and experiments were terminated at 2, 4 or 8 h. Perfusate was collected at increasing time intervals throughout perfusion. Radioactivity was determined in perfusate and skin samples. Perfusate flux profiles were fitted to a bi-exponential model Y(t) = A(e(-bt) - e(-dt)) and the area under the curve (AUC), peak flux and time to peak flux were determined. Sulfur mustard had more pronounced and rapid initial flux parameters (P < 0.05). The AUCs determined from observed and model-predicted parameters were not statistically different, although the mean HD AUC was 40--50% greater than MS. The HD skin and fat levels were up to twice those seen with MS, but had lower stratum corneum and residual skin surface concentrations (P < 0.05). Compared with other chemicals studied in this model, HD and MS cutaneous disposition were very similar, supporting the use of MS as a dermal simulant for HD exposure.
Collapse
Affiliation(s)
- J E Riviere
- Center for Cutaneous Toxicology and Residue Pharmacology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Sartorelli P, Aprea C, Bussani R, Novelli MT, Orsi D, Sciarra G. In vitro percutaneous penetration of methyl-parathion from a commercial formulation through the human skin. Occup Environ Med 1997; 54:524-5. [PMID: 9282131 PMCID: PMC1128824 DOI: 10.1136/oem.54.7.524] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To compare in vitro percutaneous absorption of methyl-parathion dissolved in an acetone vehicle and in the form of a commercial formulation. METHODS Penetration through the human skin was measured in Franz diffusion cells with full thickness skin from a human cadaver as the membrane. The two tailed non-parametric Mann-Whitney U test was used to compare the cumulative diffusion of methyl-parathion in the receptor fluid of the cells at various time intervals. RESULTS In vitro skin penetration of methyl-parathion was significantly higher with the commercial formulation. The percentage of the applied dose absorbed after 24 hours was 5.20% v 1.35%. The mean lag time was < 8 hours. CONCLUSION Assessments of uptake and internal dose after exposure to pesticides should be based on the commercial products rather than active ingredients, because of the crucial role of the vehicle, as shown in this study.
Collapse
Affiliation(s)
- P Sartorelli
- Institute of Occupational Medicine, University of Siena, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Baynes RE, Halling KB, Riviere JE. The influence of diethyl-m-toluamide (DEET) on the percutaneous absorption of permethrin and carbaryl. Toxicol Appl Pharmacol 1997; 144:332-9. [PMID: 9194417 DOI: 10.1006/taap.1997.8156] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Simultaneous exposure to DEET and permethrin was recently proposed to be associated with the "Gulf War Syndrome." However, no studies have reported the percutaneous absorption of DEET and permethrin when applied simultaneously to the skin as a mixture, the relevant route of exposure in the Persian Gulf. The present study quantitates percutaneous absorption of DEET and permethrin after coadministration to rodent and pig skin in vitro. Dosing solutions were also prepared with either acetone, dimethyl sulfoxide (DMSO), or ethanol to compare vehicle effects on percutaneous absorption of permethrin and DEET. The influence of DEET on carbaryl absorption and dermal disposition was also assessed in pig studies to statistically demonstrate DEET effects in acetone or DMSO and different solvent concentrations. Topical application of permethrin + DEET resulted in absorption of DEET (1-20% dose), but no permethrin. Permethrin (1.2-1.7% dose) was detected only when mouse skin was dosed solely with permethrin, a finding suggesting that DEET decreased permethrin absorption. DEET also inhibited carbaryl absorption in acetone mixtures, but had no effect on DMSO mixtures. Irrespective of solvent, DEET did not enhance carbaryl penetration into skin. For DEET, absorption was greater in mouse skin (10.7-20.6% dose) than in rat skin (1.1-5.2% dose) and pig skin (2.8% dose). The extent of DEET absorption was greater with DMSO and acetone than with ethanol in rat and mouse skin. These studies support DEET, but not permethrin or carbaryl, as having sufficient systemic exposure to potentially cause signs of toxicity when simultaneously applied with pesticides. Furthermore, these studies demonstrated that DEET does not necessarily enhance dermal absorption of all toxicants as was originally hypothesized.
Collapse
Affiliation(s)
- R E Baynes
- Cutaneous Pharmacology and Toxicology Center, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA
| | | | | |
Collapse
|
21
|
Williams FM. Exposure factors that contribute to variability in toxic responses in man. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1996; 2:147-149. [PMID: 21781717 DOI: 10.1016/s1382-6689(96)00045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The route of exposure is an important determinant of the internal dose of a chemical in man and the expression of toxicity. Routes of exposure are inhalation via the lung and dermal penetration, and the degree of absorption and first pass metabolism vary between chemicals. Inter-individual differences in metabolism of both genetic and environmental cause contribute to variability in metabolic fate and toxic response.
Collapse
|
22
|
Affiliation(s)
- J E Riviere
- Cutaneous Pharmacology and Toxicology Center, North Carolina State University, Raleigh 27606, USA
| |
Collapse
|